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COMPOSITION CONSTANTS FOR RAISING THE ORDERS OF 

UNCONVENTIONAL SCHEMES FOR ORDINARY 

DIFFERENTIAL EQUATIONS 

WILLIAM KAHAN AND REN-CANG LI 

ABSTRACT. Many models of physical and chemical processes give rise to or- 
dinary differential equations with special structural properties that go unex- 
ploited by general-purpose software designed to solve numerically a wide range 
of differential equations. If those properties are to be exploited fully for the 
sake of better numerical stability, accuracy and/or speed, the differential equa- 
tions may have to be solved by unconventional methods. This short paper is 
to publish composition constants obtained by the authors to increase efficiency 
of a family of mostly unconventional methods, called reflexive. 

1. INTRODUCTION 

Modeling many problems in physics, chemistry, and engineering gives rise to 
systems of ordinary differential equations. Typically these systems take the form 

dy t f (t,y), with y(O) =y. 

The initial vector yo and the vector-valued function f(.) are given, and the function 
is assumed as smooth as necessary. An interval 0 < t < T is usually specified for 
the scalar variable t, often identified with Time. The problem (1) is known as an 
Initial Value Problem (IVP), and as an Autonomous Initial Value Problem (AIVP) 
if f(t, y) _ f(y). Any given IVP (1) can be rewritten in a way that suppresses all 
explicit references to t; in other words, any IVP is equivalent to an AIVP. In what 
follows, we will consider AIVP 

(2) dy-t 
f (y), with y(O) = yo 

only, unless otherwise stated, in order to simplify the formulas that will arise. 
In relatively few instances can analytical solutions be found for (2), and therefore 

the only option for most IVPs is a numerical solution. A typical program to solve 
the initial value problem is expected to generate a sequence of approximations 

Received by the editor June 10, 1996. 
1991 Mathematics Subject Classification. Primary 34A50, 65L05. 
Key words and phrases. Ordinary differential equations, reflexive methods, composition 

schemes, palindromic schemes. 
The first author was supported in part by the Office of Naval Research contract N00014-90-J- 

1372 and National Science Foundation contract ASC-9005933. 
The second author was supported in part by a Householder Fellowship in Scientific Computing 

at Oak Ridge National Laboratory, supported by the Applied Mathematical Sciences Research 
Program, Office of Energy Research, United States Department of Energy contract DE-AC05- 

960R22464 with Lockheed Martin Energy Research Corporation. 

01997 American Mathematical Society 
1089 



1090 WILLIAM KAHAN AND REN-CANG LI 

Y1,Y2, , YN to y(t) at Sample-Times to = 0 < t, < t2 < < tN = T. 
Numerical methods are classified into two major categories One-Step Methods 
and Multi-Step Methods according to how they use past information. A method 
is classified as a one-step method if the computation of Yn+1 involves only the 
approximation Yn to y(tn), but not approximations at previous sample times; it is 
a multi-step method otherwise. 

Many conventional methods (linear multi-step, Runge-Kutta methods) [1, 2, 7] 
are in use. To achieve generality, they have evolved into complicated programs 
thousands of lines long, and have become highly refined and relatively efficient 
solvers of a wide range of differential equations. Yet, because of their generality, 
conventional methods may do worse than what we called unconventional methods 
which exploit what may be known a priori about the initial value problem. In 
applications, differential systems often have some special structures and properties. 
Such structures and properties, if known and incorporated, may improve the effi- 
ciency of a numerical method greatly. Normally, constructing low order numerical 
formulas that preserve the structure is often much easier than going directly for 
higher order formulas that preserve the structure. These ad hoc formulas are often 
better than conventional formulas in some respect, but may be inaccurate because 
of their low orders of convergence. Composition Schemes are then particularly help- 
ful to obtain higher order methods while retaining the properties of simple lower 
order updating formulas. 

In this short paper, we will present composite constants that may help to increase 
the efficiency of certain numerical methods, called reflexive, for solving IVPs. While 
keeping this paper as short as possible, we try to give enough details for someone 
who'd like to try out our schemes on their particular applications. A more complete 
theory and history behind the schemes will be published in forthcoming papers. 

2. UPDATING FORMULAS AND CONVERGENCE 

In principle, any one-step method for solving the initial value problem (2) yields 
an updating formula Q(O, g) which advances g y(w) to Q(O, g) I y(r + 0). 

Any updating formula appropriate to problem (2) is intended to be iterated N 
times thus: 

y(T) _ YN = Q(ON-1,Q (ON-2, Q (ON-3, *,Q(01, Q(0oYo))) ).. 

For this numerical solution to make sense, it is natural to ask that this N-fold 
composition of the updating formula yields a value converging to y(T) as max On 

n 
0. It turns out that convergence depends on the local error 

Q(0, g) - 4(0, g) 
def 

where 4(O, y) is the solution operator defined by 4(O, g) = y(?+0) for the problem 
dy 
d- = f(y), with y(r) = g. 
dt 

The updating formula Q(O, g) is called consistent if the local error is at most o(O). 
It turns out that convergence is guaranteed if the updating formula Q(O, g) is 
consistent. A one-step method with updating formula Q(O, g) is of order p if the 
local error satisfies 

(3) Q(O, g) - 4(O, g) = 0(OP+ 
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This means that the Taylor series of the numerical updating formula in powers of 
0 matches that of the true solution P(0, g) up to the term in OP for all g. It is 
provable [1] that under (3) the global error behaves like 

y(T) - YN = O (max OP). 

An updating formula Q(O, g) is Reflexive if 

Q(-0, Q(O, g)) = g. 

(It has been called Symmetric, Reversible, and Self-Adjoint too but, as argued by 
Kahan [6], these terms are already overworked, so we prefer the word reflexive.) One 

example is the Implicit Mid-point Rule: Yn+1 = Yn + Onf (Yn+2n+ ). A consistent 

and reflexive formula has at least second order convergence [1, 2, 4, 8] and has other 
properties which allow efficient constructions of higher order approximations. One 
such construction composes Q(8j, -) with specially correlated step-sizes Oj; details 
will be given in the coming section. 

In principle, a reflexive scheme can be obtained out of any conventional one-step 
numerical scheme by composing it with its Reflection. Various other unconventional 
ways [6, 8] to design reflexive schemes will be published in forthcoming papers. 

3. PALINDROMIC COMPOSITION DEVISED TO INCREASE A FORMULA'S ORDER 

Assume now g y(r). By composing the existing updating formula Q(., ) to 
obtain higher order methods we mean, for example, that with appropriately chosen 
integer m and scalar 6j's 

(4) Q(QmO, Q(Qm-r0 .Q(. X Q(610 g) ... 

approximates y(r + 0) (much) more accurately than Q(0, g) does provided 0 is 
m 

small enough. We call (4) an m-Stage Scheme. Consistency implies that E 6i = 1. 
j=1 

Because some of the &j's may be negative, the approximation (4) may be called a 
Back-and-Forth numerical scheme. Particularly interesting are the 

Palindromic Compositions: 6i = 6m-i+l for i = 1, 2,... , m 

when Q is reflexive. (This term was coined by Kahan in his lecture notes [6, 1993].) 
They preserve reflexiveness, and then lead to far simpler determining equations 
than do non-palindromic compositions. In what follows, we will be considering 
Palindromic Compositions (4) only. 

An immediate question is "how shall we find these magic numbers 6j?" It 
turns out there are determining equations-so-called order conditions-that these 

&i must satisfy for (4) to be a certain (even) order approximations. Surpris- 
ingly the determining equations in this general context are equivalent to those 
that would be otherwise derived from special cases like for separable Hamilton- 
ian systems [13], the implicit mid-point rule Q [10], and decompositions of ex- 
ponential operators [12]. An explanation of such equivalence resides in Lie Al- 
gebra Tools [8]. In Yoshida [13], order conditions for orders up to 8 are given; 
while Suzuki [12] attempted to give order conditions for orders1 up to 12, but 
his order 10 conditions are incorrect and so would his order 12 conditions. Since 

1A palindromic scheme is always of even order of convergence. Nevertheless, Suzuki still 
assigned an odd order to a palindromic scheme. A scheme to which he assigned order 2k - 1 
would actually have order 2k. 
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this paper is meant to be short, we will not go any further in this matter. The 
reader is referred to Li [8] and forthcoming papers for different ways of derivations. 
MAPLE codes that generate order conditions and more is available from NETLIB; 
see http://www.netlib. org/ode/composition. txt. The following table lists the 
numbers of determining equations for the approximations (4) to have a certain 
(even) order. (See also McLachlan [9].) By counting the numbers of equations and 

Order 2p 2 4 6 8 10 12 
The #'s of det. eqs. 1 2 4 8 16 34 

free parameters in 6j's, we arrive at the minimums of m of an order 2p scheme. 

IOrder 2p 2 |4 6 8 10 12| 
- m > 1 3 7 15 31 67 

The approximation (4) consists of m moves; at the end of the jth move 

Q(&30, Q(... , Q(610, g) )) y(T + cjO) 

def 3 
where cj d > E i. It is possible for a scheme to have some c; < 0 or c; > 1, 

i=1 
which means some of the intermediate moves may jump "out of bounds", outside 
[l, w + 0]. Such "out of bounds" moves are permissible in orbit calculations, but 
may be harmful in situations when true solutions y(t) pass too near singularities: 
"out of bounds" moves may hit or cross the singularities, and thus jeopardize com- 
putations. In our searching for high order schemes (4), efforts have been made to 
keep all 0 < c; < 1, among other things. We found that keeping all 0 < Cj < 1 is 
possible only when the number of stages m is bigger than its minimum required for 
achieving a particular order by at least 2, in which case the determining equations 
are underdetermined and thus present room for choices. Considering that increas- 
ing m implies increasing work, we always keep m as small as possible while having 
o < c; < 1. Two other quantities we have attempted to minimize (globally if we 
can or locally) are 

m 
(5) max 6j I and E 16il 

1<j<m = 

The first one is the largest intermediate step-size and the second is the overall 
distance travelled. 

4. PALINDROMIC SCHEMES 

Palindromic schemes of orders up to 10 have been constructed in Li [8]. Some 
of them have been known in some special context as we shall comment. For ease of 
future references, we adopt notation sIodrJ? to denote an I-Stage Order J Scheme. 
(Thus slodr2 is the reflexive updating formula itself.) Analytic solutions can be 
found for order 4 schemes. 

1. s3odr4: m = 3 and =63= 3 13 62 - < O for which cl = E1 > 1, 

C2 2-1, and C3 = 1. This is the scheme that has been discovered in 
integrating separable Hamiltonian systems by Yoshida [13], in composing the 
implicit mid-point rule by Sanz-Serna and Abia [10], and in its most general 
context by Kahan [6]. 
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2. s5odr4: m = 5 and 61 = 62 = 64 = 65 = 1 63 = - . Suzuki [11] had 
this scheme for exponential approximations. It has been known to the first 
author for quite a while, but as the minimizer to both quantities in (5) it is 
due to [8]. 

3. s5odr4a and s5odr4b: m = 5 and 61= 6 =65,2 6 64, 63 1 

for which cl = 3 C2 = 1, C3 = 0, C4 6 3 43 C5 = 1. They are interesting 
because they embedded an order 2 scheme in it, and thus may be used with 
cheap error estimators. 

Analytic solutions are not available for schemes of orders 6 and higher. In the 
Appendix, numerical values with 20 correct decimal digits are given. These 
constants as well as codes that compute them are available from NETLIB; see 
http://www.netlib.org/ode/composition.txt. 

5. LINEAR STABILITY PROPERTIES 

In the past, instances have been reported on successful applications of composi- 
tion schemes to Hamiltonian systems, but we cautioned the reader that composition 
schemes should be used with care. They may be instable, even though the Q is sta- 
ble. In Li [8], a linear stability theory has been developed for the above mentioned 
palindromic schemes, assuming Q is the implicit mid-point rule and thus A-Stable 
[7]. But the linear stability regions for (4) will have holes in the left half-plane as 
long as there are negative 6j's. This suggests that composition schemes may not 
be suitable to integrate stiff systems. 

The reader is referred to Li [8] for the linear stability regions for all palindromic 
schemes in this paper. 

6. AN EXAMPLE 

We present a simple numerical example to illustrate the usage of our schemes. 
The example also serves as a confirmation that these schemes do behave with the 
claimed order of convergence. Consider Lorenz Attractor 

Yi \ ( -a(Y1-Y2) \ 
(6) Y2 j = -YlY3 +rY1-y2 

Y3/ \ Y1Y2 -by3 

where a = 10, r = 28, and b = 8/3. For illustration only, we take Yi(0) = 10, 

Y2(0) = -20 and y3(0) = 20 initially, and are interested in integrating the system 
from t = 0 to t = 1. 

A second order reflexive updating formula is obtained via a technique so-called 
Symmetrical Splitting [6, 8]. Let yj's be the approximations at t = r. Then the 
approximations Y2 at t = r + 0 are obtained via solving a linear system 

(7) 
(Y1 -Yi Y- ((y + Yj)/2 - (Y2 + Y2)/2) ( 

zY2-Y2 /0 = -(YlY3 + Yiy3)/2 + r(yi + Y1)/2 - (Y2 + Y2)/2 ) 

Y3- Y3 -(YiY2 + YIy2)/2 - b(y3 + Y3)/2 
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10? 

10- 

:-: s'slodr2 

1 0-8 * -*Xs 
1 0 

> ED- -ED: sl'5odr8 E : s5odr4 

2 103 104 0 

*-)~~:s31orThe nubrso sae 10 1. Relatcdr 

: s~~~~~l odrl Oa:s~or~ 
-16 

10 51 

102 1 31410 
The numbers of stages 

FiGURE 1. Relative errors of numerical solutions by palindromic 
schemes based on (8) ploted against costs (in the numbers of calls 
to (8)). 

which is equivalent to 

(8) 

- 0 o o Y1 - Y1 0 / -9(Y1 - Y2) 
I-2|-Y3 + -1 -Y1 Y2- Y2 0 -Y1Y3 + rl-Y2 j 

\ Y2 Y1 -b/J Y3-Y3 Y1 Y2-by3Y / 
where I is the 3 x 3 identity matrix. Y = Q(O, y) obtained by solving (8) is reflexive 
since substitutions 

Y -Y, ,Y?-y, -0 ? 0 

leave (7) unchanged. It is worth mentioning that such Q(O, y) has an advantage over 
two conventional reflexive methods-the trapezoidal rule and the implicit mid-point 
rule-in that it requires solving no nonlinear systems but linear ones. 

Once we have the Q(O, y), various palindromic schemes follow immediately. To 
keep this paper short, we choose to only present Figure 1 which plots the relative 
errors in numerical solutions at t = 1 against the numbers of calls to (8), where by 
relative errors we mean la - I/Jlal if & is to approximate ae. Not all palindromic 
schemes in ?4 and ?A are included in the figure. This is because if we did, the figure 
would be a mess and not readable. But we point out that schemes not included 
behave similarly. 
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Two things need to be said about this example. First, the true solution to the 
system (6) is carefully computed using IBM's FORTRAN REAL*16 and very small 
step-sizes. To 20 decimal digits, the true solution is 

Yi 8.6356927098925060179DO 
(9) | Y2 | = l 2.7986633879274570520Do 

\ Y3 Jt~l \ 3.3360635089731421578D+1 

These digits are guaranteed correct by doing computations with different step-sizes 
and observing convergences. 

Second, all computations are done in FORTRAN's DOUBLE PRECISION, and com- 
pensated summation technique is used. We briefly describe what we did with com- 
pensated summation technique. (For more discussion of compensated summation, 
see Kahan [5] and Higham [3].) The idea of the technique is to represent a number 
by two double precision floating point numbers such that the number is correctly 
represented to roughly 30 decimal digits. Take Yi for an example. We represent 
Yi by (yl,yt1). As time advances from r to r + 0, Yj is advanced to Yi and the 
difference Y1 - Yi (not Y1 itself) is computed. Let the computed difference be dyl. 
Then Y1 is represented as (Y1, Ytl) computed by 

Yl=(dyl+ytl)+yl and Ytl=((yl-Y1)+dyl)+ytl. 

Parentheses here must be fully respected. This technique turns out to be helpful 
in suppressing rounding errors sometimes. For example running s9odr6a for 0 = 

0.390625D-3 with/out compensated summation technique, we have the following 
relative errors in yj's at t = 1: 

1. With compensated summation, 0. OOOOD+00, 4.7604e-16, 2.1299e-16. For 
the Yi component, it is due to pure luck. 

2. Without compensated summation, 2.7152e-14, 1.6661e-14, 1.2353e-14, 
less accurate by two decimal digits than with the technique. 

7. CONCLUSIONS 

We have presented constants for designing palindromic schemes of orders up 
to 10 from composing a reflexive (unconventional) scheme to possiblly increase 
its efficiency. Such schemes are very simple to implement, and may work much 
better than conventional schemes when they work. A simple example is included 
to illustrate the usage, as well as to verify the claimed orders of convergence of our 
schemes. 

To keep this paper short, we left out discussions on important practical questions 
like their stability properties, what orders are worth implementing? The reader is 
referred to [8]. 

Finally, let's point out again that most of the material in this paper, includ- 
ing codes for the example, is available from NETLIB; see http://www.netlib. 
org/ode/composition.txt. 
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APPENDIX A. PALINDROMIC SCHEMES FOR ORDERS 6 AND HIGHER 

Among schemes that follow, s7odr6 appeared in Yoshida [13], and sl5odr8 was 
also obtained by McLachlan [9] under different circumstances. 

s7odr6 
Cl 0.78451361047755726382 61 = 67 0.78451361047755726382 
c2 1.0200868238369153975 62 = 66 0.23557321335935813368 
C3 -0. 15759316034195560944 63 = 65 -1. 1776799841788710069 

64 1.3151863206839112189 

s9odr6a 

cl 0.39216144400731413928 61 = 69 0.39216144400731413928 
C2 0.72476058079667357788 62 = 68 0.33259913678935943860 
C3 0.018514408239034218070 63 = 67 -0.70624617255763935981 
C4 0.10072800453258501830 64 = 66 0.082213596293550800230 

65 0.79854399093482996340 

s9odr6b 
cl 0.39103020330868478817 61 = 69 0.39103020330868478817 
C2 0.72506749291982080566 62 = 68 0.33403728961113601749 
C3 0.018840211732259462202 63 = 67 -0.70622728118756134346 
C4 0.10071776138031890797 64 = 66 0.081877549648059445768 

65 0.79856447723936218406 

sl5odr8 

Cl 0.74167036435061295345 61 = 615 0.74167036435061295345 
C2 0.33256953855058135945 62 = 614 -0.40910082580003159400 
C3 0.52332424884681973940 63 = 613 0.19075471029623837995 
C4 -0.050538222269262527252 64 = 612 -0.57386247111608226666 
C5 0.24852595903439339659 65 = 611 0.29906418130365592384 
C6 0.58315087727969158038 66 = 610 0.33462491824529818378 
C7 0.89844396967645817701 67 = 69 0.31529309239676659663 

68 -0.79688793935291635402 

sl7odr8a 

Cl 0.13020248308889008088 61 = 617 0.13020248308889008088 
C2 0.69136546486399846544 62 = 616 0.56116298177510838456 
C3 0.30189050221915117903 63 = 615 -0.38947496264484728641 
C4 0.46073240877430677993 64 = 614 0.15884190655515560090 
C5 0.064828514641069202593 65 = 613 -0.39590389413323757734 

C6 0.24936815561938490968 66 = 612 0.18453964097831570709 
C7 0.50774254330570695698 67 = 611 0.25837438768632204729 
C8 0.80275426691501725585 68 = 610 0.29501172360931029887 

69 -0.60550853383003451170 
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s l7odr8b 

cl 0.12713692773487857916 61 = 617 0.12713692773487857916 

C2 0.68883946572368127888 '52 = '516 0.56170253798880269972 
C3 0.30630474577485109000 63 = 615 -0.38253471994883018888 
C4 0.46638080206949852119 '54 = '514 0.16007605629464743119 
C5 0.064564427742691554464 65 = 613 -0.40181637432680696673 

C6 0.25193114428497005171 66 = 612 0.18736671654227849724 
C7 0.51263985349276245740 67 = 611 0.26070870920779240570 

C8 0.80303724161792408129 68 = 610 0.29039738812516162389 
'59 -0.60607448323584816258 

s3lodrl0a 

cl -0.48159895600253002870 C9 0.13637459831059490870 
C2 -0.47796856284807043601 clo 0.32249749378157398757 
C3 0.023834612739160966776 cil 0.55387077244595759390 
C4 0.30681863898422351546 C12 0.031960406541771304852 
C5 1.1138483179379457535 C13 0.78062154368676427278 

C6 1.0877577373993535481 C14 0.84735805557736833031 
C7 0.21489183593617283260 C15 0.043754811820660027146 
C8 -0.30884384468893298382 

61 = '531 -0.48159895600253002870 69 = 623 0.44521844299952789252 

'52 = '530 0.0036303931544595926879 610 = 622 0.18612289547097907887 

'53 = '529 0.50180317558723140279 611 = 621 0.23137327866438360633 
'54 = '528 0.28298402624506254868 612 = 620 -0.52191036590418628905 
'55 = 527 0.80702967895372223806 613 = 619 0.74866113714499296793 

66 = 626 -0.026090580538592205447 614 = 618 0.066736511890604057532 
'57 = 525 -0.87286590146318071547 '515 = 617 -0.80360324375670830316 

'58 '524 -0.52373568062510581643 '516 0.91249037635867994571 

s3lodrlOb 

cl 0.27338476926228452782 C9 0.61814916938393924433 
C2 0.71926323428788736779 clo 0.13895907755995660185 
C3 1.5514596627592504390 cil 0.30619982436039369094 

C4 0.71749097720967101026 C12 -0.56823168827336774213 

C5 0.99640940777982295318 C13 -1.0669665068095694000 
C6 1.8867367882368482732 C14 -0.47766114071982021148 
C7 1.9434183030820939827 C15 0.35692823718900708627 
C8 1.0860440949323051054 

(1 = '531 0.27338476926228452782 '59 = 523 -0.46789492554836586111 

'52 = 530 0.44587846502560283997 610 '622 -0.47919009182398264249 
'53 = 529 0.83219642847136307126 611 = 521 0.16724074680043708909 

'54 = '528 -0.83396868554957942879 '512 = 620 -0.87443151263376143307 

(5 = 627 0.27891843057015194293 '513 = 519 -0.49873481853620165786 

'56 = '526 0.89032738045702532006 '514 = 518 0.58930536608974918851 

67 = '525 0.056681514845245709418 '515 = 517 0.83458937790882729775 
'58 = '524 -0.85737420814978887722 '516 0.28614352562198582747 
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s33odrlOa 
Cl 0.070428877682658066880 C9 0.41100594684580454818 
C2 0.94458539503619755729 ciO 0.95487420737052878156 
C3 1 Cil 0.022351898086056138449 
C4 0.93319952210120298840 C12 0.19195369692282078700 
C5 0.30678643251320743247 C13 0.90803937270732642308 
C6 0.54361264338849506120 C14 0.10787207023422068796 
C7 0.12140200935679451910 C15 0.34565392315678839544 
C8 0.36363143136720311159 C16 0.022350907648148961545 

61= 633 0.070428877682658066880 61o =624 0.54386826052472423338 
62 = 632 0.87415651735353949041 611 = 623 -0.93252230928447264311 
63 = 631 0.055414604963802442707 612 =622 0. 16960179883676464855 
64 = 630 -0.066800477898797011598 613 = 621 0.71608567578450563608 
65 = 629 -0.62641308958799555593 614 =620 -0.80016730247310573512 
66 = 628 0.23682621087528762872 615 = 619 0.23778185292256770747 
67 = 627 -0.42221063403170054210 616 = 618 -0.32330301550863943389 

68 = 626 0.24222942201040859249 617 0.95529818470370207691 
69 = 625 0.047374515478601436594 

s33odrlOb 
cl - 0.12282427644721572094 C9 0.45769021135686462033 
C2 0.89927108535418012436 CIO 0.90032429949679707981 
C3 1.0480862308915230991 cil 0.080970924700860105168 
C4 0.87569497135646242666 C12 0.21542566611838894562 
C5 0.32823501353793778878 C13 0.85986805780855541100 
C6 0.47336433681100706358 C14 0.14056656410653928542 
C7 0.15771878527986245795 C15 0.35093558908002593152 
C8 0.27858743617820117774 c16 0.081853639664320768579 

61 = 633 0.12282427644721572094 610 = 624 0.44263408813993245949 
62 = 632 0.77644680890696440342 611 = 623 -0.81935337479593697464 
63 = 631 0.14881514553734297479 612 = 622 0.13445474141752884045 

64 = 630 -0.17239125953506067249 613 = 621 0.64444239169016646538 
65 = 629 -0.54745995781852463787 614 = 620 -0.71930149370201612557 
66 = 628 0.14512932327306927479 615 = 619 0.21036902497348664610 
67 = 627 -0.31564555153114460562 616 = 618 -0.26908194941570516294 
68 = 626 0.12086865089833871979 617 0.83629272067135846284 
69 = 625 0.17910277517866344258 
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s33odrl0c 

Cl 0.12313526870982994083 c9 0.45728247090890761976 

C2 0.89958508567920304603 Co 0.90046791756319334905 
C3 1.0486399864748735022 Cll 0.080978911880202504863 

C4 0.87613237428093605795 C12 0.21480436926509833506 
C5 0.32741996609293427854 C13 0.85989460450920438526 
C6 0.47031762031135269954 C14 0.14053123280998377807 

C7 0.15612568767148407956 C15 0.35004505094462027488 
C8 0.28283512506709448979 C16 0.081763919538259755223 

61 = 633 0.12313526870982994083 610 = 624 0.44318544665428572929 
62 = 632 0.77644981696937310520 611 = 623 -0.81948900568299084419 
63 = 631 0.14905490079567045613 612 = 622 0.13382545738489583020 
64 = 630 -0.17250761219393744420 613 = 621 0.64509023524410605020 
'55 = 629 -0.54871240818800177942 614 = 620 -0.71936337169922060719 
'56 = 628 0.14289765421841842100 615 = 619 -0.71936337169922060719 
67 = 627 -0.31419193263986861997 616 = 618 -0.26828113140636051966 
68 = 626 0.12670943739561041022 617 0.83647216092348048955 
69 = 625 0.17444734584181312998 
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