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CALCULATION OF GAUSS-KRONROD QUADRATURE RULES 

DIRK P. LAURIE 

ABSTRACT. The Jacobi matrix of the (2n+1)-point Gauss-Kronrod quadrature 
rule for a given measure is calculated efficiently by a five-term recurrence 
relation. The algorithm uses only rational operations and is therefore also 
useful for obtaining the Jacobi-Kronrod matrix analytically. The nodes and 
weights can then be computed directly by standard software for Gaussian 
quadrature formulas. 

1. INTRODUCTION 

A (2n + 1)-point Gauss-Kronrod integration rule for the integral 
b 

(1) If ibfd(x)ds(x) 

where s is a nonnegative measure on the interval [a, b], is a formula of the form 
2n+1 

(2) K(2n+l)f - E wif(xi) 
2=1 

with the following two properties: 
* n of the nodes of K(2n+l) coincide with those of the n-point Gaussian quad- 

rature rule G(n) for the same measure; 
* K(2n+l)f = If whenever f is a polynomial of degree less than or equal to 

3n+ 1. 
A thorough survey of the history, existence and other theoretical properties, and 

computational aspects of Gauss-Kronrod rules and their generalizations is given by 
Gautschi [9]. In this paper we are concerned with the efficient calculation of the 
nodes x, and weights w, of Gauss-Kronrod rules. Several methods for computing 
these formulas have been suggested [2, 3, 4, 6, 14, 15, 21, 22] but most of them, as 
Gautschi puts it, compute the Gauss-Kronrod formula "piecemeal." That is to say, 
the new points and their weights are found by one method, and the new weights 
for the old points by another. 

The present author is aware of only two methods for computing the entire formula 
K (2n+) in a single algorithm. One of them [2, 6] is based on solving by Newton's 
method the 3n + 2 equations that express the exactness of the quadrature rule. 
In [6] the authors remark about this method: " ... by careful choice of initial 
approximations and continued monitoring of the iteration process, the method could 
be made to work for rules with up to 81 nodes ... ." The other [4] is a very general 
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algorithm for embedded quadrature formulas that uses among other tools the full 
eigenvector matrix of a tridiagonal matrix and the singular value decomposition. 
Both these methods therefore require O(n3) operations. 

The main contribution of the present paper is an 0(n2) procedure for computing 
specifically the Kronrod extension. It is not applicable to more general embedded 
quadratures. The procedure is derived in Section 4 and given in pseudocode in 
the Appendix. We do not claim that this procedure is more accurate than the 
"piecemeal" methods, or even that it is computationally more efficient - such issues 
will need a thorough investigation - but only that it is an efficient way of reducing 
the computation of a Kronrod rule to the well-studied problem of computing a 
Gaussian rule from recurrence coefficients. 

For the calculation of Gaussian quadrature rules, the definitive algorithm (in- 
cluded in the recent software package of Gautschi [10]) is that of Golub and Welsch 
[11], which is based on the recurrence relation 

(3) p_(x) = 0; 

(4) po(x) = 1; 

(5) Pj+I (x) = (x - aj)pj (x) - bjpj (x), j = 0,. . .1, 

satisfied by the polynomials pj orthogonal with respect to the weight s. Since bo 
only appears as a multiplier for P-1 (which is zero), any finite value will do: we 
follow Gautschi [7] in putting bo = Ip', which leads to the useful property that 

(6) Ipj = bob, . . . bj. 

Golub and Welsch show that for all integers m > 1 the nodes of the Gaussian 
formula G(m) are the eigenvalues, and the weights are proportional to the squares 
of the first components of the normalized eigenvectors, of the symmetric tridiago- 
nal matrix (known as the Jacobi matrix associated with the Gaussian quadrature 
formula) 

NA- a, A/- 
(7) Tm 1 

bn_-i am-, 

Remark. Although the routine in [10] works explicitly with the quantities in Tm 
(which are formed by taking square roots of the bj) there exist square-root free 
eigensolvers for tridiagonal matrices that work directly with the bj (see [19], Sec- 
tion 8-15, and [20]). An investigation of which eigensolver is most accurate for the 
special purpose of computing Gaussian quadrature formulas would be worthwhile, 
but is outside the scope of the present article. The claim in [20] that small com- 
ponents of eigenvectors are computed with high relative accuracy is of particular 
interest here. 

Let us now suppose that the 2n + 1 nodes and weights of the Gauss-Kronrod 
formula K(2n+l) can be found in a similar way from the symmetric tridiagonal 
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matrix 

ao o 

(8) T2n+l 

b2 a2n_- 

which we shall call the Jacobi-Kronrod matrix associated with the Gauss-Kronrod 
formula K(2n l). We do not know T2,+?, but we do know a lot about it: some 
theoretical questions are discussed in Section 2. Our main result in Section 4 is a 
rational algorithm that computes T2n+l efficiently in 0(n2) arithmetic operations. 

A related problem is considered by Boley and Golub [1], where the double- 
dimension Jacobi matrix T2n is to be found when all its eigenvalues are known and 
Tn is specified. They use the available information to compute the weights of G(2n) 
in 0(n2) arithmetic operations, after which any algorithm (three such are cited in 
[1]) for recovering a Jacobi matrix from its Gaussian quadrature formula may be 
used to compute T2n. Since we do not know all the eigenvalues of T2n+?i, a similar 
algorithm is not possible here. 

The main tool that we require is the theory of mixed moments, which is implicit 
in the work of Salzer [25] and appears more explicitly in the work of Sack and 
Donovan [24] and Wheeler [26]. An accessible exposition is given by Gautschi [8]. 
For the sake of clarity, we give the essentials of the theory in Section 3. 

2. PROPERTIES OF THE JACOBI-KRONROD MATRIX 

In the literature on Kronrod formulas and Stieltjes polynomials (see the surveys 
[9, 18]) some non-existence theorems on these formulas are given. It is therefore 
of interest to relate existence questions to the Jacobi-Kronrod matrix. We use the 
following terminology [16]: 

* A quadrature formula exists if its defining equations have a (possibly complex) 
solution. 

* The formula is real if the points and weights are all real. 
* A real formula is internal if all the points belong to the (closed) interval of 

integration. A node not belonging to the interval is called an exterior node. 
* The formula is positive if all the weights are positive. 

It is well known (see e.g. [7]) that there is a one-to-one correspondence between 
Jacobi matrices and quadrature formulae with positive weights: if we knew the 
Kronrod formula itself, we could in principle find the Jacobi-Kronrod matrix, even 
though the computation may be delicate [12]. So we have: 

Fact 1. The Jacobi-Kronrod matrix exists and is real if and only if the correspond- 
ing Kronrod formula exists and is real and positive. 

Note that this fact does not imply that the Kronrod formula contains no exterior 
nodes. In view of Monegato's result [17] that positivity of the weights of the new 
points is equivalent to the interlacing property (i.e. that there is one Gaussian node 
between any consecutive pair of Kronrod nodes), all that can be said is that at 
most two nodes, one at each end point, are exterior. It is, however, easy to diag- 
nose whether the formula is interior once the Jacobi-Kronrod matrix is available: 
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one simply factorizes T2+? - aI- LDLT, where L is lower triangular with unit 
diagonal, and D = diag{do, d1,... , d241. It is well known (see any standard text 
on linear algebra) that there is one eigenvalie of T2,+? less than the end point a 
if and only if there is one sign change on the diagonal of D. This algorithm is also 
rational, since do = ao, dj+1 = aj+- bj+1/dj. A similar test can be applied at the 
other end point b. 

As pointed out in [16], the fact that the formula K(2,+I) is exact for polynomials 
of degree less than or equal to 3n + 1 implies that the first 3n + 1 coefficients in 
the sequence {af0, a1,b2,... } equal the corresponding coefficients in the known 
sequence {ao, b1, a,, b2, ... }. Only the remaining n coefficients are unknown. They 
are determined by the condition that n of the eigenvalues of T2n+l are fixed to 
be equal to the eigenvalues of' Tn. At first sight this seems to be a partial inverse 
eigenvalue problem, subject to all the difficulties that surround the solution of such 
problems, but we shall show in Section 4 that the n unknown coefficients can be 
determined efficiently in 0(n2) arithmetic operations. 

The algorithm given in Section 4 is rational and the only divisions are by quan- 
tities that can only be zero if some bj = 0. We therefore have: 

Fact 2. The algorithm of Section 4 cannot break down if the corresponding Kron- 
rod formula exists and is real and positive. 

This does not imply that the algorithm will break down if the Gauss-Kronrod 
formula is not real and positive: it may very well still succeed. But in that case, by 
Fact 1, the Kronrod-Jacobi matrix cannot be real, so at least one of the computed 
recurrence coefficients bj must be negative. This means, of course, that the Golub- 
Welsch algorithm, which always produces real non-negative formulas, can no longer 
be used to compute the Gauss-Kronrod formula. 

There does not seem to be an easy way of distinguishing between the cases of 
negative weights and non-real nodes. For example, when trying to construct a 
7-point extension of the 3-point Gauss-Hermite formula (proved to be impossible 
in [13]), we obtain b6 =-1, and indeed the corresponding Kronrod formula has 
complex nodes. When trying to construct a 9-point extension of the 4-point Gauss- 
Hermite formula (not proved to be impossible in [13] 1) we obtain b7 -4, b8 = 4, 

and the formula indeed turns out to have real nodes but negative weights at two of 
the old points. 

It is also possible to use the Jacobi-Kronrod matrix as a theoretical tool. In 
[5] the authors investigate whether the Gauss-Kronrod formula associated with the 
Jacobi weight function 

(9) ds(x) = (1 -x)a(1 + x)fldx 

is real, positive and internal. In the case n = 1 they obtain analytic results, 
and thereafter give graphs based on numerical calculations. It is easy to code the 
algorithm of Section 4 in an algebraic language and obtain the numbers bj and dj 
analytically. To illustrate this point we have computed the critical coefficients in 

1The results of [13] are often misquoted as implying that a positive extension of the 4-point 
Hermite formula exists, but the abstract only claims " . . . do not exist with positive weights when 
n > 0 in the Laguerre case and n = 3 or n > 4 in the Hermite case." The corollary on p. 985 of 
[13] does state " . . . only exist for n = 1, 2, 4" but the proof is a non-existence proof of the other 
cases, so the quoted phrase is clearly a misprint for " . . . can only exist for n = 1, 2, 4." 



CALCULATION OF GAUSS-KRONROD QUADRATURE RULES 1137 

the case n 2, namely 

-4 = 2(a +3+5)P3,3(a,3) 
(4+ /3) (a +/3+3) (a +/3+4) (e + /3+6)2' 

d4 - ~~~~P2,4 (Ce, a) 

(a + 3+?3) (a + /3+6)2 (a + + 8)21 

where 

[ 72 213 137 21 1 
P2,4(a,/3) [1 a a2 ] -3 4 21 2 ? 02 

11 0 1 0 ? 03 

and 

576 336 -71 -23 1 

P3,3(a,/3)=[ 1 a a2 a3] -71 1 52 41 [337 43 51 2 oJ [ j 

-23 1 0 ? 03 

One can therefore conclude that the 5-point Gauss-Kronrod formula is real and 
positive when P3,3(a, /3) > 0 and is internal when P2,4(a, /) > 0 (there is no node 
less than -1) and P2,4(/, a) > 0 (there is no node greater than 1). The lines marked 
b and c in the first graph on p.241 of [5] are thereby obtained analytically. 

The following lemma gives an essential property of the Jacobi-Kronrod matrix 
T2n+l, which will later be the key to its efficient computation. 

Lemma 1. The characteristic polynomial of the trailing principal n x n submatrix 
of the Jacobi-Kronrod matrix T2n+? is the same as that of its leading principal n x n 
submatrix. 

Proof. Denote by qOk and 'Vk respectively the characteristic polynomial of the 
leading and trailing k x k principal submatrices of T2n+l. Expand q52n+1 (A) 
det(T2n+l - AI) along the (n + 1)-st row. Then (suppressing the argument (A) for 
the sake of readability) 

(10) q52n+1 =-q5n-Ibn'On + (an - A)qOn'On - nbn+lfn- 

Clearly any common zero of On and 'On is a zero of q52n+-1 Conversely, if q52n+1 
is to have On as a factor, then On-In must be divisible by On since bn = bn, 
which is nonzero by (6). But O5n-1 and O5n are consecutive terms in a sequence of 
orthogonal polynomials and therefore mutually prime. It follows that On is divisible 
by On5 Since the two polynomials have the same leading coefficient, they must be 
identical. ? 

Remark. Once we know that On = Vn it is of course possible to divide equation 
(10) by Vn to obtain 

952n+1_ (11) -= -qn-lbn + (an - A)On -bn+1Vn-1i V)n 
which gives an explicit expression for the polynomial with zeros at the Kronrod 
nodes. 
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3. MIXED MOMENTS 

Suppose that two different systems of monic orthogonal polynomials are being 
considered: the system defined in (5), which we shall sometimes call the 'old' 
system, and a similar system (the 'new' system) defined by 

(12) w-1(X) 0; 

(13) w0 (X) = 1; 

(14) rj+?(x) = (x - aj)7r(x) - /j7rj_3(x), j = 0,1. 

The new system (12-14) is assumed to be orthogonal with respect to some inner 
product (, )J with the property that for any three polynomials f, g, h, 

(15) (f, gh), = (fg, h),. 

As before, it is convenient to put /3o = (7ro, 7ro)7. 
Salzer [25] considered the problem of converting a finite expansion in terms of 

the old polynomials pj into one in terms of the new polynomials 7rj. Expanding 
each pj in terms of the 7rw, one finds 

(16) Pi = 0 rk 
k Ukk 

where the mixed moments cxki are given by 

(17) (Jk,1 = (1rk, PI), 

The crucial observation is that a five-term recurrence for the mixed moments can 
be derived by putting j = 1 in (5), j = k in (14), taking the new inner product with 
7rk and pi respectively, and subtracting. Thanks to the property (15), the terms 
that do not immediately reduce to mixed moments cancel, and we are left with 

(18) cxkl+1 + alxki + blxk,1-1 - (Uk+ll + akukil + /kgk-1,1) = 0- 

The equation (18) can be written in a visually appealing manner familiar to 
practioners of finite difference methods as 

-Ok 
(19) j bi al-ak 1 Jkl = 0- 

-1 

Here k is the row index and 1 is the column index, and the rows are numbered from 
top to bottom as is usual with matrices. Values of cxki that are known in advance 
are 

(20) g0,0 = 0; 

(21) c-,,,=O, 1=0,1,... ,n, 

(22) cJk,-1= 0, k =0, 1,... ,n, 

(23) fk,1l , 1 =0, 1,... ,k - 1. 

Equation (23) holds because Irk is orthogonal in the new inner product to all poly- 
nomials of lower degree. 

In the application considered by Salzer [25], all the new recurrence coefficients 
are known. Then cxki can be computed for l increasing, with the 'East' moment 
in (19) the unknown, as in Figure 1. The solution to the problem is obtained 
by substituting (16) into the given orthogonal expansion. (This explanation of 
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1 0 1 2 3 

k 000 
0 0 i0 * v *. 

2 0 v 

3 0 0 
4 0 0 

FIGURE 1. Build-up of mixed moments o'k,l in Salzer's algorithm. 
The stars denote moments that have already been computed, and 
each v denotes a new moment that is being computed at that stage. 

l 0 1 2 3 ... 2n-4 2n-3 2n-2 2n-1 

k 0 0 0 0 *.. 0 0 0 0 
0 0 A0 ,l L2 f3 ... ** t2n-4 /2n-3 L2n-2 L2n-1 

1 0 * * * * * * 

2 0 0 vv** v v 

3 0 0 

FIGURE 2. Build-up of mixed moments in the Sack-Donovan- 
Wheeler algorithm. The stars denote moments that have already 
been computed, and each v denotes a new moment that is being 
computed at that stage. 

Salzer's algorithm, simplified to emphasize its kinship with the other algorithms 
considered here, does not do full justice to its ingenuity. In fact, it employs a five- 
term recurrence involving the expansion coefficients directly, rather than doing the 
last-mentioned substitution.) 

In the application considered by Sack and Donovan [24] and Wheeler [26], the 
new recurrence coefficients ak and A3k are unknown, but the modified moments 

(24) I = a0,1, 1=0 = 1,... 2n- I 

are assumed to be known. In that case, the recurrence can be computed for k 
increasing, with the 'South' moment in (19) the unknown, as in Figure 2. The 
essential idea is that when row k has been computed, one can obtain Ok and ak by 
considering (19) at position (k, k - 1) to yield 

(25) A = k, k 
-1, k-1 

and at position (k, k) to yield 
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(26) ak= ak + Uk,k+l 
- I3kk-l,k 
Ukk 

(27) ak + fk~k+l _ Jk-ik 
(Jk,k UOk-l ,k-1 

4. COMPUTATION OF THE JACOBI-KRONROD MATRIX 

The lemma in Section 2 reduces the partial inverse eigenvalue problem of finding 
a (2n + 1) x (2n + 1) matrix with n prescribed eigenvalues to a standard inverse 
eigenvalue problem in which the number of prescribed eigenvalues is the same as 
the order of the matrix. Moreover, this problem can be solved in a finite number 
of steps. 

Let the old polynomials pi of ?2 be the same as those of ?1, and let the new 
polynomials Irk of ?2 be given by (12-14) with 

(28) ak = an+k+l v 1k = bn+k+l ? k = 0, 1,... ., -1. 

That is, the polynomials irk are those associated with the trailing n x n submatrix 
of the Jacobi-Kronrod matrix. 

Which mixed moments can we now compute? The first n - 1 entries in the 
sequence {oao, I 1, ? l, /32, . . . } are known: they are just an+1 i bn+2v an+2, bn+3 . * - - 

So we can compute a number of mixed moments with the East moment as the 
unknown, as in the case of Salzer's algorithm. To progress further, we use the fact 
that rFn = Pn, and therefore 

(29) O'k,n=0, k = 0 I1,..., n-1. 

This allows us to complete the process in the same way as the Sack-Donovan- 
Wheeler algorithm, with the South moment as the unknown, computing new values 
of ak and /3k as soon as possible, up to gn-ln-l, which together with the known 

Jn-1,n-= 0 is all that we need. The whole scheme is illustrated for n = 7 in Figure 
3. Here we know ao, f1, a1, 032, a2 and 03. The pattern is typical for odd n; when 
n is even, a diagonal of asterisked entries starting at gk,k+l where k = n/2 - 1 can 
also be computed, because ak is then known. 

1 0 1 2 3 4 5 6 n 
k 0 0 0 0 0 0 0 0 
00 * * * * * * * 0 
1 0 * * * * * V 0 

2 0 0* **v v O 
3 0 0* v v v O 
4 OO v v v O 
5 OO v v O 
6 OO v O 

FIGURE 3. Computation of mixed moments for the Jacobi- 
Kronrod matrix when n = 7. The stars denote quantities com- 
putable from the known recurrence coefficients, with the recurrence 
going 'Eastwards', and the v's quantities computable with the re- 
currence going 'Southwards', by using the fact that Pn = irn gives 
a column of zeros, here indicated by 0. 
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Building the table diagonal by diagonal, we obtain the following algorithm. 

Initialization: 

oo,o = 1; 

u-1,1=0, 1 = 0: n; 

Uk,n = 0, k = : n-1; 

(Jk,1 = 01 1= n-2, k =1+ 111+2. 

Eastward phase: For m = 0: n - 2 

cxk,l+1 = cxk+1,l + (ak - al)ok,l + Ikfk-1,1 - bljk,1-1, 

k=Fm/21:-1:0, l=m-k. 

Southward phase: For m = n - 1 2n - 3 

Uk+1,1 = ck,l+1 - (ak - al)ok,l -/3kfk-1,1 + bljk,1-1, 

k=m+1-n: Fm/21, l=m-k. 

If m is even, ak = ak + Uk,k+l -/3kgklk 

(Jk, k 

If m is odd, 3k - (Jk,k 
(k-l,k-1 

Termination: 

= - /3ri-1(Jn-2,n-1 OAn-1 = an-1 -On-l gn-21n- 1 
(Jn-l,n-1 

The algorithm uses approximately _n2 multiplications, and can be implemented 
with two temporary vectors of length Ln/21 + 2. The details are given in the Ap- 
pendix. 

Remark. A variation may be obtained by reversing the rows and columns of the 
leading n x n submatrix of T2n+l before entering the algorithm. Since the char- 
acteristic polynomial is unchanged, the values of ak and 13k computed in this way 
are theoretically the same, even though the modified moments (Jk,j differ. Our 
numerical experiments do not indicate a preference for either version. 

5. NUMERICAL EXAMPLE 

We illustrate the algorithm by computing the Kronrod extension of the n-point 
Gauss-Jacobi formula for the weight function (9) over the interval (-1, 1). In the nu- 
merical example shown here, we took a = 0.3 and / = -0.6, and n = 3,4,... , 199. 
The computations were performed in double precision on a machine conforming to 
the IEEE floating point standard, and for both the normal and 'reversed' versions 
of the algorithm. Actually, as recommended by Reichel [23], the coefficients were 
scaled to the interval (-2, 2) before performing the computation, and the resulting 
points and weights (obtained by Gautschi's routine gauss from [10]) were scaled 
back to (-1, 1). On a machine with a small exponent range, this subterfuge is 
necessary to avoid underflow of the modified moments. 
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0.5~~~~~~~~ . 0 

0 0. 0 0 
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0 50 10~~~00 . 150 200 

40 0 0 @ .0. 

0 0Oo0 

1.0 

-so~~~~~*0 

FIGURE 4. Mean absolute difference (units of machine epsilon) in 
common points of computed n-point Gauss-Jacobi and (2n + 1)- 
point Kronrod-Jacobi formulas (a - 0-3,3 =- -06). 

In this example the coefficients by all turn out to be positive, and therefore the 
old and new nodes interlace. There is one node less than -1. An a posteriori 
indication of the accuracy of the computed formula can be obtained by comparing 
every second computed node of the Kronrod extension with the corresponding node 
(i of the original Gaussian formula, computed using gauss in the same precision. 
Since there is no reason to think that the eigenvalue solver can discriminate in 
accuracy between the original and the new nodes, one may suppose that the new 
nodes are computed to an accuracy similar to that observed for the old nodes. 
Unfortunately this check says nothing about the accuracy of the weights. 

In Figure 4 we show the average difference between these zeros as a multiple of 
the machine roundoff levelTA, i.e. the quantity 

Most of the values lie in the range I < 77n < 2, although there is a slight tendency 
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for Tin to increase with n. The results from the 'reversed' version show essentially 
the same behaviour and are therefore not shown. 

Thanks. The suggestions of an anonymous referee have greatly improved this 
paper. 

APPENDIX A. PSEUDOCODE FOR THE ALGORITHM 

Input: Vectors a = {ao, a,.... , a2n} and b = {bo, b1, . . . , b2n}, in which the 
elements aoa, a,... ,a L3n/2j and bo, b1,... ,bF3n/21 have been initialized to the re- 
currence coefficients of the given weight. 
Working storage: Vectors s = {S-1, so, . ... , sLn/2j } and t = {t1, to,... , tLn/2j }, 
initialized to zeros. 
Output: The vectors a and b now contain the recurrence coefficients from which 
the (2n + 1)-point Gauss-Kronrod formula is obtained by Gautschi's routine gauss 
from [10]. 

We use the notation s +-+ t to indicate that the contents of the vectors s and t 
should be swapped. In an actual implementation, only the pointers to the vectors 
would be swapped: e.g. the vectors could be rows is and it of a two-row matrix, 
and one would swap the indices is and it. 

begin generate Jacobi-Kronrod matrix 
to +- bn+l 

for m from 0 to n - 2 
u -0 
for k from L(m + 1)/2j downto 0 

I -rm-k 
U U + (ak+n+l - al) tk + bk+n+lSk-1 -blsk 

Sk +-U 

end for k 

end for m 
for j from Ln/2i downto 0 

Sj +- Sj-1 
end for j 
formfromn-Ito 2n-3 

U<- 0 
for k from m + 1 - n to L(m - 1)/2i 

1 m-r-k 
j n --1-I 
u u - (ak+n+l - al) tj - bk+n+lsj + bisj+? 
Sj -U 

end for k 
if m mod 2 = 0 

k <- m/2 
ak+n+l + ak + (sj - bk+n+lSj+l)/tj+1 

else 
k- (r+1)/2 
bk+n+l <- Sj/sj+ 
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endif 
s +4t 

end for m 
a2n +- an1- -b2nsO/tO 

end generate Jacobi-Kronrod matrix 
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