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ON THE ASYMPTOTIC SPECTRUM OF HERMITIAN BLOCK 
TOEPLITZ MATRICES WITH TOEPLITZ BLOCKS 

PAOLO TILLI 

In loving memory of Ennio de Georgi 

ABSTRACT. We study the asymptotic behaviour of the eigenvalues of Hermit- 
ian n x n block Toeplitz matrices Anm, with m x m Toeplitz blocks. Such 
matrices are generated by the Fourier coefficients of an integrable bivariate 
function f, and we study their eigenvalues for large n and m, relating their 
behaviour to some properties of f as a function; in particular we show that, 
for any fixed k, the first k eigenvalues of Anm tend to inf f, while the last 
k tend to sup f, so extending to the block case a well-known result due to 
Szeg6. In the case the Anm's are positive-definite, we study the asymptotic 
spectrum of P7~l Anm, where Pn,m is a block Toeplitz preconditioner for the 
conjugate gradient method, applied to solve the system Anmx = b, obtaining 
strict estimates, when n and m are fixed, and exact limit values, when n and 
m tend to infinity, for both the condition number and the conjugate gradient 
convergence factor of the previous matrices. Extensions to the case of a deeper 
nesting level of the block structure are also discussed. 

1. INTRODUCTION 

In this paper we study the asymptotic behaviour of the eigenvalues of Hermitian 
block Toeplitz matrices with Toeplitz blocks: such matrices arise naturally in many 
applications ([9]), such as signal processing, trigonometric moment problems, inte- 
gral equations and elliptic partial differential equations with boundary conditions, 
solved by means of finite differences. In such problems, it is often necessary to solve 
linear systems of the kind 

(1) AnmX = bi 

with Anm having block Toeplitz structure with Toeplitz blocks, i.e. 

Ao Ai ... An-l 

(2) AnA1 . . 

An+1 ... A-1 A0 
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with 
( apo ap,1 ... ap,mI 

(3) Ap ap., 

: *- *- ~~~apeJ 
ap,_m+l ... ap,_1 apo J 

In this paper we consider the case where the matrices Anm are related to the 
Fourier coefficients of a function f: Q - R, which is integrable on Q (-7r, 7r)2, 
i.e. f e L1(Q) and 

(4) aj,k =42 j f(x, y)e-i(jx+ky) dxdy, j, k = 0, +1, +2,... 

Once the natural numbers n and m have been fixed, we can associate the finite 
block Toeplitz matrix (2) with the function f(x, y): in this case, we will say that 
Anm is generated by f(x, y). The matrix Anm has n x n block Toeplitz structure, 
and each block is an m x m Toeplitz matrix with complex entries; it is immediate 
to see that Anm is Hermitian, since f(x, y) takes only real values. 

The idea of studying the relationship between the spectra of Toeplitz matrices 
and their generating functions dates back to Szeg6 ([9]) for what concerns the one- 
dimensional case (i.e. the generating function depends on one variable only, and the 
associated matrices have scalar Toeplitz structure), while the study of the block case 
is a recent matter, motivated mainly by the need of finding good preconditioners 
for conjugate gradient and other iterative methods ([15, 3, 4, 5]). 

Our purpose here is to study the extremities of the spectra of the set of matrices 
{An,m}, n, m E N, generated by f(x, y), when n and m tend to infinity, and to 
relate their properties to some properties of f(x, y) as a function. 

If A is an n x n Hermitian matrix, throughout this paper we indicate by At 
the transpose matrix (without conjugating the elements), and by Ak(A), k = 
1,... , n, all the eigenvalues of A, counted with their multiplicities, numbered in 
non-decreasing way: in particular, A1 (A) = Amin (A) and An(A) = Amax(A). 

In [15] it was proved that, under the hypothesis that f(x, y) is continuous on the 
closed square Q = [-r, ir]2 and not identically constant, for any n and m all the 
eigenvalues of Anm lie in the open interval (minQ f, maxQ f), and it holds 

(5) lim Amin(An m)= minf, lim Amax(An m) = maxf 
n,m-0oo Q nmoo Q 

(observe that the limits are finite since Q is compact and f was supposed to be 
continuous on Q). In section 3 we prove a stronger statement (Theorem 3.1): 
requiring only the integrability of f over Q, we prove that all the eigenvalues of 
Anm (for any n and m) lie in the open interval (infQ f, supQ) (of course, here infQ f 
is meant to be the essential infimum of f, and supQ f the essential supremum, 
with respect to Lebesgue measure), unless f is constant almost everywhere on Q. 
Moreover, still under the only hypothesis that f is integrable over Q, we prove that 
for any natural number k, it holds 

(6) lim iAk(Anm) = inf f, lim Anm+l-k(An,m)= supf 
nm---+oo Q n,m--oo Q 

Of course, here infQ f might equal -oc, as well as supQ f might equal +oo, since f 
is only supposed to be L1(Q); what is more remarkable, anyway, is that the result 
(5), proved in [15] only for the first (respectively, the last) eigenvalue of An,m, is 
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here extended to the first k (respectively, the last k) eigenvalues of A,,, for any 
fixed k, even under weaker hypotheses on f. This is remarkable since it shows 
that the matrices Anri are always asymptotically ill conditioned for large n and 
m, in the case (which arises very often in the applications) where the An,m's are 
positive-definite and generated by a function f > 0 with inf f = 0 (see Corollary 
3.4): in this situation, in fact, since the first k eigenvalues of the An,m'S tend to 
zero (for any k fixed), those matrices are ill conditioned and the conjugate gradient 
method ([12]), applied to (1) without preconditioning, will converge very slowly on 
any subspace of fixed dimension. In view of these facts, the necessity of finding 
good preconditioners for the system (1) becomes apparent. 

A natural way to build a positive-definite preconditioner Pnm for the system (1) 
is that of letting Pnm be generated by a function p(x, y) > 0, in such a way that 
the eigenvalues of the matrices {Pn- An,m} have nicer properties than those of the 
unpreconditioned {An,m}, for large values of n and m (see [3, 5, 15]). In particular, 
Serra ([15]) proved that if the sets of matrices { An,m}, PiPn,m} are generated by 
two nonnegative functions f and p (not identically zero), both continuous on Q, 
then all the eigenvalues of Pn- Anm lie in the open interval (r, R), where r is the 
infimum and R is the supremum of the ratio f /p. As a consequence, the condition 
number of the matrices Pnvm72A hmPn9m72 resulted bounded from above by the ratio 
R/r. In Theorem 3.5 we improve this result; more precisely we prove that, even 
under weaker hypotheses (f, p E L1(Q) with p continuous on the open square Q, 
p > 0 not identically zero), for any fixed natural number k it holds 

(7) lim Ak(Pn- mAnm) = inf -, lim Anm+1-k(Pn1 An m) = sup -, 
n,m--oo Q+ p In,m--oo Q+ P 

where Q+ C Q is the set where p > 0. We remark that, in general, the set of 
matrices generated by the function f/p (when it belongs to L1 (Q)) has nothing to 
do with the set {Pn-1An,m}; for this reason, Theorem 3.5 comes by no means as a 
consequence of Theorem 3.1. 

Equation (7) once more stresses that the choice of the preconditioner is crucial in 
view of the convergence rate of the conjugate gradient (or other iterative methods, 
see [17]) because, if the infimum of the ratio f /p is still too close to zero, for large n 
and m the preconditioned system will show up the same bad features as the original 
one. According to this, in Corollary 3.6 we obtain that, when f is nonnegative, the 
condition number of the matrices Mn,m = Pn2A mnm/2 verifies 

lim Ai(Mnm) = - 
n,m-*oo R 

where r = infQ+ f/p and R = supQ+ f/p, while the convergence factor of the 
conjugate gradient method verifies 

lim Amax(Mn,m) - Amin (Mn,m) _ R-r 
n,m-*oo Amax(Mnrm ) + Amin(Mnrm) R + r 

It is possible to extend all the results so far examined to a deeper nesting 
level in the block Toeplitz structure of the matrices considered; for example, if 
f (x, y, z) E L1([-7r, 7r]3), it is possible to build its Fourier coefficients with respect 
to the canonical tensor basis: 

1 f \-i(jx+ky+lZ)dxd1.z ?i 
aj,k ,l = (2wF)3 ][} (XI y, z)e- z~dxdydz, j, kI = 0, +L1, 21 
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Obviously, a three-level block Toeplitz matrix An,m,h can be associated to f, for 
each triplet of natural numbers n, m and h. 

It is not difficult to convince oneself that all the proofs presented in this paper 
are independent of the dimension, and could be easily adapted to the case where 
f depends on any number of variables; the difficulty would come mainly from 
notation, and this is why the results are proved in detail only in the two-dimensional 
case. For this reason, all the results presented here are still valid when a larger 
number of variables is involved, and such extensions come in a straightforward way. 

We remark that the techniques used by Szeg6 ([9]) for the scalar Toeplitz struc- 
ture (one variable only) do not lend themselves to be easily adapted to dimension 
higher than one, since they strongly rely on the explicit computation of the minima 
of certain functionals involving univariate orthogonal polynomials. On the other 
hand, in the one-dimensional case all the results on the convergence of the eigen- 
values to inf f or sup f come as a straight consequence of the Theorem of Szeg6 
on the asymptotic distribution of the spectrum of Toeplitz matrices ([9]), which 
is not available in the block case under the only hypothesis that f E L1(Q). For 
this reason, Theorem 3.1 can be seen as an extension to the block case of results 
known only in the scalar case and, together with Theorem 3.5, it is an attempt to 
introduce new and more general techniques suitable for studying the distribution 
of the eigenvalues of large block Toeplitz matrices with Toeplitz blocks. 

2. NOTATION AND PRELIMINARY CONSIDERATIONS 

If n and m are non-negative integers, we indicate by Pn,m the vector space of 
all complex bivariate trigonometric polynomials of degree at most n in the first 
variable and at most m in the second, that is 

(8) 
n m 

U(X,Y) E Pn,m 4=== U(X,y) =je Zk) (Xy) E Q, Ujk E C. 
j=-n k=-m 

Such polynomials can naturally be seen as functions defined on the square Q = 

[-R- -X]2; on the other hand, it is sometimes useful to identify Pn,m with the complex 
Euclidean space Cn* m*, where m* = 2m + 1 and nr = 2n + 1: in fact, any u(x, y) E 

Pn,m is uniquely identified by the complex vector u of its coefficients, which can be 
usefully partitioned into blocks as follows: 

U 
U-n+1 

U Muj,-m l 
(9) 3 U-nl m Ujml|j=-n . .. n. 

U 
On 2 < Ujm 

Throughout, we will systematically use the isomorphism of vector spaces between 
Pn,m and Cn*m*, and to stress this we will often use the same letter, say u, to 
indicate both the polyomial u(x, y) E Pn,m and the vector of its coefficients u E 
Cn*m*, partitioned into blocks according to (9): it will always be clear from the 
context which space we are referring to. 

If x, y E Cn are complex vectors, we indicate by (y, x) = En> xi the usual 
scalar product on Cn. 
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We now derive some simple identities which will be widely used in the rest of 
this paper. If both u(x, y) and v(x, y) belong to Pn,m, i.e. if 

n m n m 

u(x, y) = , ke e v(x, y) = aj, jke e 
j=-nk=-m j=-n k=-m 

and f(x, y) E L1(Q), then we have 

n m 

(10) jfu = E Uj,k fei(j-j )xe-i(k-k )Y dxdy 
j,j =-n k,k'=-m V 

n m n 

= 4w2 a Z uj,kvJ',k'aj-j',k-k' = 42 a (A>_juj,vj') 
j~'=-n k,k'=-m j/='-n 

= 4r2(A*, m*u,v), 

where An*,m* = A2n+1,2m+l, according to (2), (3) and (4). Observe that, in the 
particular case f (x, y) 1, we obtain 

n m 

(11) 47r2 U Uj, kVj k = (U V). 
lTJQ 

j=-nik=-m 

Recall that, if A is a positive-definite Hermitian matrix, the convergence rate of the 

conjugate gradient method, applied to a linear system Ax = b, is strictly related 

to the quantity p(A) = (M - m)/(M + in), where M and m are, respectively, 
the largest and the smallest eigenvalue of A: it holds 0 < p(A) < 1, and it can 
be shown that the absolute error is reduced, at each step, by a factor at least 

p(A). Throughout, we will refer to this quantity as the convergence factor for the 
conjugate gradient, with respect to the matrix A. For more details, the reader is 

referred to [6, 17, 12, 1]. 

In the following, we will have to do with integrable functions with respect to 

Lebesgue measure, which we indicate by L; when not explicitly indicated, we will 

always refer to L as the Lebesgue measure on the open square Q = (-7r, 7r)2, and 

we will indicate by L1(Q) the Banach space of all measurable functions which are 

integrable on Q, that is 

f E L'(Q) m=e; f is measurable and I| fIIL1(Q) = J Ifi dL < +oo. 

In this paper we will simply write fQ f instead of fQ f dL, Lebesgue measure being 

implicitly assumed. We will also refer to the closure of Q as the closed square, 
and we will indicate it by Q. When we state a pointwise property of a function 

f E L1 (Q) (such as f > 0), we will always mean that such property holds almost 
everywhere on Q, i.e. that it holds at every point of Q but for a set of zero Lebesgue 

measure. 

For a measurable function f E L1 (Q) there is a notion of essential infimum 
(essinfQ f), which plays essentially the same role as the usual infimum notion, but 

disregards zero measure sets: 

essinfQ f = sup y E R: f > y almost everywhere on Q}. 
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In this paper we will simply write infQ f to indicate the essential infimum of f on 
Q, if f is only supposed to be measurable on Q; the same considerations are valid 
for the notion of essential supremum which we will simply indicate by SupQ f. 

3. MAIN RESULTS 

Theorem 3.1. Let f(x, y): Q -> R belong to the space L1(Q), and let us indicate 
by {An,m}n,mEN the set of Hermitian matrices it generates, according to (2), (3), 
and (4). Then, for any natural numbers n and m, if A is an eigenvalue of Anm it 
holds 

(12) inff < A < supf 
Q Q 

where the inequalities are always strict, unless f is constant on Q. Moreover, 
however we fix a positive integer k, we have 

(13) lim Ak(Anm) = inf f, lim Anm+l-k(Anm) = sup f, 
n,m-oo Q n,m--oo Q 

that is, for k fixed, the first k eigenvalues of An,m tend to the essential infimum 
of f while the last k tend to the essential supremum of f, as n and m approach 
infinity. 

For the proof of this theorem we need two lemmas, where some simple measure 
theory is involved; in particular, in the second lemma we repeatedly use the fact 
that a bounded set S is Lebesgue-measurable if and only if, for every e > 0, there 
exist a compact set K C S and an open set A D S such that L(A \ K) < e. This 
is nothing but the equivalence of inner and outer measure for Lebesgue-measurable 
sets (see [7, 11] for more details). 

Lemma 3.2. Let Q = (-7r, r)2; suppose S C Q is a measurable set with L(S) > 0, 
and n is a positive integer. Then there exist n open sets Ai C Q, pairwise disjoint, 
such thatL(SflAi)>Ofori=1,... ,n. 

Proof. Let U10 = Q, then divide Q into four equal squares of side 7r, and let U1, 
j = 1,... ,4, indicate their internal parts. Iterate this procedure so that, for any 
natural number p, the original square is divided into 4P equal squares of side 27r/2P, 
and let Up,] = 1,..., 4P, indicate their internal parts. For any p, the open squares 
{ UP} are pairwise disjoint and cover almost all of Q, and since S C Q, they cover 
almost all of S. We seek the requested Ai's among some collection {UP}I, for a 
suitable p such that 4P > n. Suppose that this cannot be done for any p, i.e. 
suppose that, for every p with 4P > n, L(S n UP) = 0 for all j = 1, . . ., 4P, except 

for at most n - 1 indices. Since L(U1P) - wr2/4P-1, we then have 

4P 4P 2 

0< L(S)=L(S UU7)=ZL(SnUP)<(n-1)4 1 
j=l j=1 

and letting p -- oo we obtain L(S) = 0, which is absurd. D 

Lemma 3.3. Let f (x, y) Q -* R and p(x, y) Q -* R be two functions belonging 
to the space L1(Q), with p > 0, p continuous on Q = (-7r, r)2, p not identically 
zero. Let us indicate by Q+ the subset of Q where p(x, y) > 0; if we set 

a= inf f(x Y)RU{-Do}, 
(x,y)EQr p(xy) 
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then for each real number a' > a and each integer N > 0 there exist natural numbers 
n and m so large that, for every N-tuple of polynomials hi e Pnm, i = 1,... , N, 
there exists a polynomial u E P,,, u 0 0, such that 

(14) fQ f U2 a/ 
fQp 2U12 

(15) |hiudx = O i = I,. .., IN. 

The idea underlying the proof of this lemma is that the modulus of the polyno- 
mial u(x, y) should be large on some set where f /p is close to a, and small elsewhere; 
for such u(x, y) to be orthogonal to any N fixed polynomials, we build N + 1 lin- 
early independent polynomials whose moduli have the above property, and then we 
try to express u(x, y) as a suitable linear combination of them. As we will show, 
these N + 1 linearly independent polynomials can be chosen depending only on f, 
p, a' and N, while the coefficients of their linear combination yelding u(x, y) will 
depend, of course, also on the N polynomials to which u(x, y) must be orthogonal. 

Proof. Choose any real number a" such that a < a" < a'. Since f/p is mea- 
surable on Q+ and a" > a, the subset S C Q+ where f/p < a" is measurable 
and has positive measure (this follows from the definition of the essential infi- 
mum). By Lemma 3.2 we can find N + 1 pairwise disjoint open sets Ai C Q such 
that, letting Si = S n A, it holds L(Si) > 0, for i = 1,.. ., N + 1. Let us set 
m = min j+1 {L(S2)}/2; since the sets Si's are measurable, their Lebesgue measure 
equals their inner measure, and so we can find N + 1 compact sets Ci C Si, such 
that L(Ci) > m, i = 1,.. ., N + 1. We set C = UN+1 Ci; since C is compact, 
p > 0 on C and p is continuous on C, p achieves a minimum -y > 0 on C. Let us 
set D = 4(N + 1)2/(-ym). Using the absolute continuity of Lebesgue integral, there 
exists 8 > 0 such that, for every measurable set Q c Q with L(Q) < 2(N + 1)8, it 
holds 

(16) 4D j fl< 2 )and 

(17) 1 4D ffp 
< 8+ 

(we observe that, if a" > 0, the last condition is always fulfilled). Again approx- 
imating Lebesgue measure first with inner measure and then with outer measure, 
we can find N + 1 compact sets Ki C S, such that L(Si \ Ki) < 6, and N + 1 open 
sets Ui D Si such that L(Ui \ Si) < 8. By replacing Ui with Ui n Ai if necessary, 
we can assume that the Ui's are pairwise disjoint; similarly, by replacing K, with 
Ki U Ci we can assume Ci C Ki. Now let U _ UN+1 Ui, and K = UN+l Kj; it 
trivially holds L(U \ K) < 2(N + 1)6, and we will use this later. 

We now choose a number 0 < e < 1/(2N + 2) such that the following inequality 
holds 

(18) 62DU lffLI(Q) < - 
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and, if a" < 0, we choose e so small that, for every measurable set Q C Q with 
L(Q) < 2(N + 1)6, it holds 

(19) I + 4D f p +?E2D fpIfL (Q) - 4 

(it is possible to do this because 8 has already been fixed, and it verifies (17)). Now 
we consider N + 1 continuous functions qi defined on Q such that qi =1 on Ki, 
qif 0 on Q\Ui, and 0 < qi < 1 everywhere, i = 1,... ,N+1 (for any i, such 
Xi exists by virtue of Urysohn's lemma ([14]), since the two sets Ki and Q \ Ui 
are closed and disjoint). Since each qi is zero on the boundary of Q, it can be 
approximated in the uniform norm by a suitable trigonometric polynomial gi, such 
that 

(20) sup lji - gi <6. 
Q 

We seek the polynomials u(x, y) in the form 
N+1 

(21) u(x, y) = Cjgj (X, Y), 
j=1 

where the cj are complex numbers to be determined. It is obvious that u(x, y) E 
Pr,m for suitable n and m, independently of how the numbers cj are chosen. 

Consider any N-tuple of polynomials hi(x, y) E Pn,m, i = 1, . . ., N: we want to 
show that the complex numbers cj can be chosen in such a way that both (14) and 
(15) hold, and this will complete the proof of the lemma. 

According to equation (21), the orthogonality relations (15) become 
N+1 

(22) 0= cj hi(x,y)9j(xy)dxdy, i =1,... ,N. 
j=1 

This is a system of N linear equations in N + 1 unknowns, so it always has a non- 
trivial solution c- = (ci,... , CN+), for any choice of the hi (x, y)'s. There is no loss 
in generality if we suppose that c- is normalized, i.e., if we suppose 

(23) max JCiJ=I1=ICkl, (23) ~~~~1<j<Nf+l j| 

for a suitable choice of k. 
Owing to (20), we have that the modulus of any gj is between 1 - e and 1 + e 

on Kj, is not greater than e on Q \ Uj, and is no greater than 1 + e everywhere in 
Q. For this reason, from (23) we immediately obtain the estimate 

(24) Iu(x, y) I < (N + 1)(1? +e) < 2(N + 1). 

Let us estimate Iu(x,y)I for (xy) E Kk (we remark that Ick1 = 1); we have 

(25) Iu(x, y)I > 1 - E - NE, (x, y) E Kk, and therefore 

(26) jpIu12 > XJpIu2 > [1-(N+ 1)6]2 p > Izym, 

since Ck C Kk, L(Ck) > m, and (N + 1)E < 1/2. In particular, u(x,y) is not 
identically zero. 

By similar arguments we immediately obtain 

(27) Iu(x, y)I < E(N + 1), (x,Iy) E Q \ U. 
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Finally, we have 

j ful2 = IU12 + ? J IfU1 + J f IU12. 
Q K U~~ ~ ~~\K Q\U 

Since f < a"p inside K, from (24) and (27) we have 

Xf IU12 < a"// P 
IU12+ 4(N + 1)2t IfI+,E2 (N +1)2 a If l 

Q K U~~~~~~~~~\K Q\U 

Dividing both sides by fQ p IU12 and using (26) we obtain 

fQf IU12 ,fpuI?4If?EDfIl() 
(28) < a 

K U2 
+f +feD 

f~p~u~ - Q PIU12 JU\K 

Now, since L(U \ K) < 2(N + 1)8, from (16) and (18) we have 

(29) IQ AU < a" 2KP ?I + 3 

-Q 
u IQ PIU12 4 

If a" > 0 we immediately obtain (14), since the ratio of the two integrals on the 
right side is not greater than 1. 

The case a" < 0 requires one more step. From (26) and (27) we have 

fQ\K P fU U\K P IU \U+ p IU12 2 fKP 
IU2 

- f pt ? p <4D p + 6 D IlPIIL1(Q)X 

f~~p~uI2 f~K pIU12 \ 

and so 

fK P IU2 1 1 

fQ PIU12 1 fQ\K PMU 1+ 4D fU\K P + 62D IIPIIL1(Q) 

since a" is negative, putting the last estimate into (29) yields 

fQf IUI2 a" 3 
0 P Iu12 - 1+4D U\K P + 62D IIPIIL1(Q) ? 

and using condition (19) we conclude the proof. E 

Proof of Theorem 3.1. Since the spectrum of a matrix is unaffected by transposi- 
tion, we can prove our theorem referring to the spectrum of the transposed matrices 
{Anm}, instead of {An,m} (the reason for this will become clear throughout this 
proof). 

We first show inequality (12); suppose that, for some n and m, A is an eigenvalue 
of Antm and 

(31) A <inf f; 
-Q 

then it holds Al (Anm) < infQ f, which implies Al (A* ,m*.) < inf Q f, since Atm 
is a principal submatrix of At* m Let u E Cn*m* be an eigenvector of At * m* 
relative to Al (At*,m*), and let us indicate with the same letter u the polynomial 
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u(x, y) E Pn,m which corresponds to the vector u E Cn*m* according to (8), (9). 
Using (10), we obtain 

(32) A(At) (A*i*,m*UU) - ff 
| < inf f, lkn,* (u u) - 2fIUI 

from which it follows that 

O < (f-inf f) IU12 < 0; 
0 Q 

from this relation we obtain that (f - infQ f ) IU12 equals zero almost everywhere 
on Q and, since u is a nonidentically zero polynomial, u :& 0 almost everywhere on 
Q implies f = infQ f almost everywhere. So, inequality (31) can never be strict, 
and can hold only as an equality if and only f is constant. This argument can 
be repeated considering -f in place of f, and so we have proved (12), where the 
inequalities are always strict except when f is constant. 

Now we can prove (13). Let the integer k > 0 be fixed; if we apply Lemma 
3.3 to f (x, y) (with N = k - 1 and p 1), we obtain that for every real number 
a'> infQ f there are n and m such that, however we choose k-I polynomials 
hi E Pn,ml i = 1,... I k - 1, there exists a polynomial u E Pnm such that 

fQ fU2 < a, and Jhiu=O i=1, ..., k-1. 

Using the isomorphism between Pnm and Cn*m* and the identities (10), (11), we 
can reformulate the above statement as follows: for each real number a' > infQ f, 
there are integers n and m so large that, however we choose k-I vectors vi E Cn*m*, 
i = 1,.. , k - 1, there exists a vector u E Cn*m* such that 

(A uxu) ?< a', and (vi,u)=0, i=1, ,k-1. 
(ul u) 

As the via's vary throughout Cn*m*, they span all the subspaces V C Cn*m* whose 
dimension does not exceed k, so that we have 

*A (A*,m* uu) 
sup inf ( < a' 

codim U=k uEU (u U) 

and according to the minimax theorem of Courant and Fisher we obtain that the 
k-th eigenvalue of the matrix At* m * is at most a'. Since a' > infQ f was arbitrary, 
with the aid of (12) we obtain 

(33) inf Ak(Atm) = inff, Vk> 1. 
nm Q 

Now, since m > m' and n > n' imply Ak(At m) < Ak(At ,mI) (because, in this case, 
Ari',m' is a principal submatrix of An m), equation (33) becomes 

lim Ak(Anm) = inff, Vk > 1. 
n,m-+oo ' Q 

By replacing f with -f and repeating this argument, we immediately obtain the 
other limit in (13), the one relative to the k-th from the last eigenvalue. El 

Corollary 3.4. Suppose f E L1 (Q) and f > 0 almost everywhere on Q, with 
f > 0 on a set of positive measure. Then the matrices {An,m} generated by f are 
all positive-definite. 
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Proof. In fact, by Lemma 3.3 all their eigenvalues are strictly positive. O 

Theorem 3.5. Let f(x,y): Q -> R and p(x,y): Q -+ R be as in Lemma 3.3, 
and let {Anm}, {PrIm}, n, m E N, be the sets of block Toeplitz matrices generated, 
respectively, by f (x, y) and p(x, y). Let us set 

r = inf f, R= sup f, where Q+ ={(x,y): p(x,y) > O}, 

and suppose r : R, L(Q \ Q+) = 0; then, for any n and m, all the eigenvalues of 
Pn-1Ar,m lie in the open set (r, R), and for every fixed positive integer k it holds 

(34) nlimo A k(Pn, An,,) = r, limr Anm+l-k(Pn An,m) = R, 

that is, for k fixed, the first k eigenvalues of Pn- Ah,m tend to the infimum of f /p, 
while the last k tend to the supremum of f /p, as n, m approach infinity. 

Proof. Throughout this proof, we will systematically use the fact that the eigenval- 

ues of Pn-1 An,m coincide with those of (Pnm)-lAtm. FRom Corollary 3.4, Pn,m is 

positive-definite (and hence non-singular) for any value of n, m. Let k and a" > r 

be fixed; using the isomorphysm between Pnm and Cn*m* and the identities (10), 

(11), from Lemma 3.3 we get the following: there are integers n and m so large 

that, however we choose k - 1 vectors vi E Cn2m I i = 1 ... k- 1, there exists a 

vector u E Cn*m* such that 

(At~ *m*u, u) 
KP~*,m*UU) < a", and (vj,u) = 0, i =1,... ,k-1. 

As the vi's vary throughout Cn*m*, they span all the subspaces V C Cn*m* whose 

dimension does not exceed k - 1 so that, according to the minimax theorem of 

Courant and Fisher for the generalized eigenvalue problem, we obtain that the k-th 

eigenvalue of the matrix Pn-*lm*An*,m* is at most a", i.e. Ak(An*,m*) < a". Since 

a" > r was arbitrary, we obtain 

(35) inf Ak(Pn-mAn,m) < r, Vk > 1 

We want to show also the opposite inequality (it will suffice to prove it for k = 1). 

Suppose that there exist n and m such that 

(36) A1 (Pn 1Anm) < r; 

since Pn,m is a principal submatrix of Pn*,m*, and An,m is the corresponding sub- 

matrix of An*,m*, again from the minimax theory we have A1 (Pn*lm* An*,m*) < r; 
reasoning as in the proof of Theorem 3.1, i.e. considering an eigenvector relative 

to Al (Pn*m*An*,m*), there exists a a polynomial u(x,y) E Pn,m (not identically 

zero) such that 

Al (Pn1*lm* An*,m*) Q f IU2 <r I 
~~fQ P uI2 - 

from which we obtain 0 < fQ (f - rp) JU12 < 0 (we remark that L(Q \ Q+) = 0). 

Since u :& 0 almost everywhere, we obtain f = rp almost everywhere from which it 

follows that r = R, which is absurd since we had supposed r < R. So, inequality 

(36) cannot hold for any n and m, and we obtain that, for any value of n and m, 
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all the eigenvalues of P 7mAnm are strictly greater than r; in particular, equality 
must hold in (35), so we have 

(37) inf Ak(Pn-mAnm) = r, Vk > 1, and 
n,m M 

(38) Ak(Pn-Anm) > r, Vnm > 1, Vk, I < k < nm. 

Moreover, since Ak (Pn-1An,m) is a non-increasing function of n and m (with respect 
to the usual partial ordering on the pairs (n, m)), the infimum in equation (37) is 
actually a limit, so we obtain 

(39) lim Ak(Pn-1 Anm) r, Vk > 1. 
n,m--+oo 

Replacing f with -f, and repeating this reasoning, we obtain 

(40) lim Anm+l-k(Pnr An m) = RI n,m--oo 

and any eigenvalue of Pn- An,m, for any value of n and m, is strictly smaller than 
R. So we have proved that the spectrum of any matrix Pn-1An,m lies in the open 
set (r, R), i.e. 

(41) r < Ak(PnjmAn,m) < R, Vnm > 1, Vk, I < k < nm. El 

Corollary 3.6. Under the same hypotheses and notations as in Theorem 3.5, sup- 
pose that f > 0 almost everywhere, with f > 0 on a set of positive measure. Then, 

1 _ _1 

letting Mn,m = PnMAn,m nn, it holds 

(42) /iKMn,m) <-RI Vn, m > 1, 

(43) lim At(Mnm) = -X 
n,m-+oo r 

where />(A) indicates the condition number, i.e. Al(A) = JJAJJ ||A`111 with respect 
to the Euclidean norm (it is understood that R/r = +oo if r = 0), and the limit is 
monotone increasing with respect to the usual partial ordering over the pairs (n, m); 
moreover, the convergence factor of the conjugate gradient method verifies 

(44) lim Amax(Mnm) Amin(Mnm) 
- 

R - r 
n,m-oo Amax(Mnm) + Amin(Mnm) R + r 

Proof. For any n and m, the matrix Mn,m is Hermitian and is positive-definite, 
because it has the same eigenvalues as Pn-1An,m, which by Theorem 3.5 lie in the 
open set (r, R), with r > 0. So we have 

(~Mn m) = 
Amax(Pn 1 Anm) 
Amin(PTlAn,m) 

Then estimate (42) follows immediately from (41), while (43) follows from (39) and 
(40), passing to the limit in the above equation. The limit is monotone, being 
non-increasing in the limit (39) and non-decreasing in the limit (40). Finally, the 
limit relation (44) is proved in the same way. D 
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