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MODULAR FORMS WHICH BEHAVE LIKE THETA SERIES

K. CHAKRABORTY, A. K. LAL, AND B. RAMAKRISHNAN

ABSTRACT. In this paper, we determine all modular forms of weights 36 < k <
56, 4 | k, for the full modular group SL2(Z) which behave like theta series,
i.e., which have in their Fourier expansions, the constant term 1 and all other
Fourier coefficients are non—negative rational integers. In fact, we give convex
regions in R3 (resp. in R*) for the cases k = 36,40 and 44 (resp. for the cases
k = 48,52 and 56). Corresponding to each lattice point in these regions, we
get a modular form with the above property. As an application, we determine
the possible exceptions of quadratic forms in the respective dimensions.

1. INTRODUCTION

The famous problem of investigating the number of representations of numbers
by positive definite integral quadratic forms is dealt with the use of theta series
attached to the corresponding quadratic form. This is one of the classical reasons
for the study of modular forms. Following the works of Witt and Kneser, M. Ozeki
[5] considered the problem of determining all modular forms in My (1) (which is the
space of modular forms of weight k for the modular group SL.(Z)) (k = 12,16)
which are theta series associated to positive definite, even, integral quadratic forms
of 2k variables of determinant unity. Because of the difficulty in attacking this
problem for k > 16 (the cases k = 4,8,12 being known already, (see [5]), Ozeki
[5] considered a weakened form of the problem viz., determining all modular forms
in My (1) (k = 12,16) which behave like theta series (in other words, which have
constant term unity and all other Fourier coefficients in their g—expansions are
non—negative rational integers).

The results obtained by Ozeki have been extended for the cases k = 20, 24, 28, 32
(up to the case dim My (1) = 3), using simpler methods, by M. Manickam and B.
Ramakrishnan [2, 3]. These results are presented in the appendix.

Though, in principle, the methods used in [2, 3] can be extended to higher
dimensional cases, in this paper, we will explicitly solve the problem (getting the
convex region determining the modular forms) for the cases dim My(1) = 4,5,
ie., for k = 36,40,44,48,52,56 using the Simplex method for solving a Linear
Programming problem.

We have used Mathematica for our computations. Mathematica is the trade
mark of Wolfram Research Inc. We thank Ranjan Srivastava for his help related
to Mathematica. We are grateful to the referee for pointing out the applications
of our results, which helped us in determining the possible exceptions of integral
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quadratic forms, on the lines of the work done by A. M. Odlyzko and N. J. A.
Sloane [4]. We also thank the referee for his suggestions to include the previous
results obtained by M. Manickam and the last author.

2. PRELIMINARIES

Let k be a natural number. Let us denote by Sk(1) the space of cusp forms
of weight k for SLy(Z). The following modular forms will mainly be used in our
discussion. The first one is the normalized Eisenstein series Ej(z) € Mi(1) (2 <
k € 2Z) defined by

[ee)
Ek(z) =14+ A Z ak_l(n)q”,
n=1
where ¢ = €*™*, A = _Tgi—k, with By being the k—th Bernoulli number. The

other modular form is the well-known cusp form of weight 12 defined by

A)=q[[a-g9* =D r(n)g",

where 7(n) is the Ramanujan’s function.

3. THE CASES k = 36,40,44

In these cases dim My (1) = 4. The space My(1) is spanned by Ex(2) and
fik(2), 1 <i<3, where

1) fin(2) = A Bx_12i(2) = > air(n)g®,  1<i<3.
n=t

Let ¢p(z) =14+ > oo, ak(n)g™ € My (1) be such that

(2) ax(n) > 0; ax(n) €Z for all n>1.

Then our problem is to find all ¢ (z) satisfying (2).
Letting ax (i) = Xk, € Z, 1 <1 < 3, we get
3
(3) ag (n) = AkBk(n) + Eai,k(n)Xk,i,

=1
where a; ,(n) € Z, 1 <i <3, n>1, and Bg(n) is defined by
@ Bi(n) = ox-1(n) — a1,k(n) — (0%-1(2) — a1,k(2)) az,x(n)
- (O'Ic—l(3) - ag,k (3) - 0']6_1(2)0,2’;@(3) + al,k(2)a2,k(3)) ag,k(n).
Since ax (i) = Xk, € Z, 1 < i < 3 and ax(0) = 1, from Lemma A.1 of the appendix,
we see that ax(n) € Z for all n > 0. This implies that AxBy(n) € Z.

Using the Simplex method for solving a Linear Programming problem, from (2)
and (3) we get the following bounds for Xy ;,

(5) 0 < Xk,i < ks

where I}, ; are given in the table below.
k Iiq Iy 2 T,

6) 36 | 43690641 1155820295703 1694328614487247
40 | 136258892 | 8076880335394 | 16311261365557870
44 | 719376585 | 154458199788843 | 295351327765479655
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Let gx(z) € Sk(1) be a normalized Hecke eigenform. Then using the Ramanujan
— Petersson estimate proved by Deligne, we have

(7) bk (n)| < V3 n*/2,

where g (2) = Y oo bp(n)g™

Also we know that there exists a basis {g; x(z)| 1 < i < 3} of Sk(1) which are
normalized Hecke eigenforms. Now expressing each f; x(z) as a linear combina-
tion of the basis elements g; x(2) and using (7) we get estimates for the Fourier
coefficients a; x(n) as follows.

(8) laix(n)] < Ag,in™/2,
where
k 36 k 40 k 44
A1 1.732881 Ak1 1.742782 Ak,1 1.732488

M,z | 8.303377 x 1076 || A2 | 3.648166 x 1076 || A2 | 9.622303 x 1077
Ai,3 | 3.848747 x 1079 || Mg 3 | 8.112572 x 10710 || Ay 5 | 1.055753 x 1010

Using the bounds from the table (6) and the estimates (8), we can prove that
ar(n) > 0 for.all n except for the following cases:

(k,n) € {(36,4), (36,6), (36, 12); (40, 5), (40,7), (40, 14); (44,6), (44,8), (44, 16)}.
We have thus the following theorem.
Theorem 3.1. ax(n) > 0 if and only if ar(ix) > 0 where

1,2,3,4,6,12 if k = 36,
k=14 1,2,3,5,7,14 if k = 40,
1,2,3,6,8,16 if k = 44.

Using again the Simplex method for solving a Linear Programming problem, we
get the following theorem.

Theorem 3.2. ai(ix) > 0 and ax(ix) € Z if and only if Xi,; (1 < i < 3) belong
to the following convex region in R determined by the following vertices :

Rse = {(0,7.41833,10.84975), (0, 7.66048, 0), (7.60347, 12.06289, 0), (7.64038, 0, 0),
(7.63955,0,13.53880), (0,0, 7.93633), (7.57620, 11.79038, 15.22899), (0,0,0)};

Ry = {(0,7.79332,11.44916), (0, 8.13741, 0), (8.10535, 12.90724, 0), (8.13436, 0, 0),
(8.13372,0,14.61139), (0,0, 8.77584), (8.09472, 12.54750, 16.21248), (0,0,0)};

Ry = {(0,8.23571,12.09800), (0, 8.85738, 0), (8.77219, 14.18881, 0), (8.85695, 0, 0),
(8.85646, 0, 15.79362), (0, 0,9.44320), (8.81136, 13.60069, 17.47033), (0,0,0)},

where iy 15 as in Theorem 3.1 and the nonzero entries of the vertices are in logarithm
to the base 10 computed till 5 places of decimal.

Remark 3.1. A view of the convex region R4 is given in Figure 1.
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Y

FIGURE 1

4. THE CASES k = 48,52, 56

In these cases, dim M (1) = 5. The space My(1) is spanned by Ei(z) and
fik(2), 1 < j <4, where

(9) fin(2) = A Ep_125(2) = ) _aje(n)g”,  1<j<4
=

Let -~
Pe(2) =1+ ) ax(n)q" € My(1)

n=1

be such that
(10) akx(n) >0, ag(n) €Z for all n > 1.

The problem is to find all ¢ (2) satisfying (10). Letting axr(j) = Xi,; € Z,1 <
7 <4, and proceeding as in §3, we get the following.

The bounds Iy ; for Xi,; (1 <13 < 4), where 0 < Xy ; < I;; are given in the
table below.

(11)
k 48 52 56
Ik 1 2686060975 10558143244 48258047804
I o 1251190812852642 11386858254015760 93277927339917074

Ii,3 14062751051899809150 114734698871591508942 1439102569361538331277
I 4 | 12616781321601153192932 | 26896763536380776345441 | 7785250284025588637604758
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Theorem 4.1. ai(n) > 0 if and only if ax(ix) > 0, where

1,2,3,4,5,7,9,10,19, k =48,
i =11,2,3,4,6,8,11,12,22, k=52,
1,2,3,4,7,9,13, 26, k = 56.
Theorem 4.2. ay(ix) > 0 and ag(ix) € Z if and only if X ;,(1 < j < 4), belong
to a convex region, denoted by Ry, in R*, where iy is as in Theorem 4.1. The
regions Ry, 44 < k < 56, are given by the following vertices (the nonzero entries of
the vertices are given in logarithm to the base 10 till 3 places of decimal).

R,4s = {(0,0,0,0),(0,0,0,9.77), (0,0,9.843, 13.144), (0,9.524, 13.682, 14.767),
(0,9.521,13.682,0), (0,9.557,0,0), (9.384,0,0,0), (9.384,0,0,17.286),
(9.429,15.097, 19.148, 22.007), (9.408, 14.885, 18.782, 22.101),
(9.385,0,16.809,0), (9.392, 14.979, 0, 0), (9.392, 14.987, 0, 20.796),
(9.423,14.975,19.138,0), (0,0, 10.101, 0), (0,9.007, 12.902, 16.221) };

Rss = {(0,0,0,10.785), (0,9.68, 14.051, 0), (0, 0, 10.596, 0), (10.006, 0, 0, 0),
0,0, 10.276, 13.785), (0, 10.006, 0, 0), (5.443, 11.645, 15.681, 19.218),
0,10.184,14.219, 17.756), (10.023, 16.032, 0, 0), (10.006, 0, 0, 18.717),
0,10.031,0, 16.404), (10.006, 0, 17.785, 0), (10.006, 15.687, 20.06, 0),
10.006, 0, 17.463, 20.974), (10.024, 16.056, 0, 22.43), (0,0,0,0)};

o~ o~ o~ o~

Rs¢ = {(0,0,0,0), (0,0,0,11.615), (0,0, 10.664, 14.361), (0, 0, 11.032, 0),
(0,10.68,0,17.509), (0, 10.684, 0, 0), (0, 10.688, 14.875, 18.608),
(10.684,0,0,0), (0,10.818,15.395, 0), (10.681,16.97, 21.158, 24.891),
(10.682,16.964, 0, 23.793), (10.682, 16.965, 0, 0), (10.683, 17.103, 21.68, 0),
(10.684, 0, 18.409, 22.109), (10.684, 0, 0, 20.05), (10.684, 0, 18.779, 0)}.

5. APPLICATIONS

In this section, we use our results of the earlier sections to determine the ex-
ceptions of integral quadratic forms following [4]. We use similar notations as in
[4].

Let f,, denote an even unimodular positive definite quadratic form of dimension
n. We assume that n is divisible by 8. Let T,, (which denotes the exceptions for
n) be the set of natural numbers a such that some f,, does not represent 2a. The

theta series of f, is
o) = 0
x

where the sum extends over all z = (21,22, - ,Z,). Note that 0(z) € M, /5(1).
Writing

0(2) = Z an/g(m)qm,

m=0
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where a,,/5(m) is the number of times f,, represents 2m, it is clear that a,/2(m) > 0
and we have the famous Witt’s bound for a,/2(1), namely,

an/2(1) <2n(n —1) if n > 16.
In each dimension n, there is a unique theta series having the following Fourier
expansion
1+0.q+0.q2+...+0.q[n/24]+... ,
the so—called extremal theta series.

Remark 5.1. Though the cases upto dimension 72 were studied in [4], we have
found a mistake in the example given in the paper [4] for the dimension 72 case.
Moreover, the referee has pointed out an improvement in the dimension 56 case of
[4]. We take this opportunity to thank the referee of the revised version, who has
supplied the proof for the improvement of the dimension 56 case, for pointing out
the mistakes in our examples (provided for our cases) given in an earlier version
of the manuscript. While correcting our examples we have found another mistake
in the example of [4] for the dimension 64 case and it turns out that one can get
improvement in the dimension 64 case also. We, thus, consider here the cases from
dimension 56 to dimension 112.

Remark 5.2. Note that from our method, we get a modular form in M (1) cor-
responding to each lattice point in the region Ry (36 < k < 56) which behaves
like a theta series. We also note that our method gives the extremal theta series
corresponding to the point (0,0, 0) (resp. (0,0,0,0)) for the case 36 < k < 44 (resp.
for the case 48 < k < 56).

Remark 5.3. In the following sections we will be determining the possible excep-
tions of quadratic forms of the respective variable and we do not know whether
examples of quadratic forms with those exceptions exist or not.

5.1. Improvement in 56 dimension. The example given in ([4, p.215]) corre-
sponds to the point (810,10434006) which is a modular form of weight 28 behaving
like theta series (for a proof see the Appendix below). It is interesting to observe
that this cannot be a theta series attached to a quadratic form. The proof goes as
follows: If a quadratic form represents 2, then it clearly represents 22 -2 = 8. In
other words, the corresponding theta series will have the property that its ¢*—th
Fourier coefficient is non-zero whenever its ¢g—th Fourier coefficient is non-zero. In
this case it has been pointed out in [4] that azs(1) = 0 and a2g(4) = 0 do not inter-
sect at a lattice point. Thus for 4 to be an exception, one should have agg(1) # 0,
which is impossible as shown above. We, therefore, conclude that

(12) Tse C {1,2}.

5.2. Improvement in 64 dimension. The point (24672,338215905) gives the
example given in ([4, p.215]) (see Appendix for a proof). Observing the fact that
the Fourier coefficients of the theta series (apart from the constant term) attached
to a quadratic form are even integers, it will follow that the example cannot be a
theta series (the g? coefficient is odd) and above all it violates the theta bound,
namely, aza(1) < 8064. We further observed that aga(5) = 0 does not have any
lattice point inside the theta region (intersection of Rsqz, which is described in the
Appendix and a3z(1) < 8064). Hence, we have

(13) Tea  {1,2}.
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5.3. Dimension 72. We have found that the example given in ([4, p.216]) for
the exceptions 4 and 6 is wrong. In our case, the point (43659000,714910316160,
1962733030283070) will provide the above mentioned example and it turns out that
the modular form corresponding to this point has a negative Fourier coefficient
(12—th), which implies that the above point lies outside the region Rsg. In fact,
we have observed that azs(6) = 0 and asg(4) = 0 have no intersection within the
whole region R3zs. On the other hand, if as(6) = 0, then either ags(1) = 0 or
a36(2) = 0 can happen. The point (0, 36162432, 34721684154) provides an example
which corroborates their result that 6 is a possible exception. The example using
the above point is as follows:

1+ 36162432 ¢® + 34721684154 ¢3 + 4528422612000 ¢*
(14) + 370666892907720 ¢° + 2044900385895305412 ¢”
+ 213293766887630083440 ¢& + - - - .

Note that the point (0,36162432,34721684154) lies inside the intersection of Rag
with agg(1) < 10224. The intersection region is given in Theorem 5.1.

5.4. Dimension 80. As mentioned earlier, the point (0,0,0) corresponds to the
following extremal theta series:
(15)
1+ 1250172000 ¢* + 7541401190400 ¢° + 9236514405888000 ¢® + - - - .

Considering the faces of the region R4, and using the fact that a4(1) < 12640,
we note that the only planes to be considered are a4(1) > 0, a40(2) > 0, a40(3) > 0,
a40(5) > 0, aso(7) > 0 and the plane as9(1) < 12640. Using these planes one gets
a bounded region in R? (which, of course, is a subset of the region R4y obtained in
Theorem 3.2 which determines the theta series in this case (i.e., for which a4o(1) <
12640), denoted by Ré4, whose vertices are given in Theorem 5.1.

We also observe that a4o(7) = 0 does not intersect with Rf,9 at any lattice point.
It seems that there are several lattice points at which a40(1) = 0 and a4 (5) =0 ;
a40(2) = 0 and a49(5) = 0 intersect. The examples are given below.

The modular form corresponding to the point (0, 3888,614383616) is

1+ 3888 ¢* + 614383616 ¢> + 105073240800 ¢*
+ 9485305949851200 ¢° + 3766184235926519808 ¢ + - - -
and that corresponding to (32,0, 692941200) is
1+ 32 g + 692941200 ¢* + 118281610976 ¢*
+9971027410950144 ¢5 + 3821440153157783200 ¢” + - - - .
We conclude that
(18) Tso € {1,2,3,5}.

(16)

(17)

5.5. Dimension 88. The point (0,0,0) gives the following extremal theta series:
(19)
1 + 168498000 ¢* + 2480127344640 ¢° + 6298997202432000 ¢ + - - - .

The theta bound is a44(1) < 15312. Like in the previous case, the region Rf,y,
which determines the theta series is obtained by the following planes a44(1) > 0,
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a44(2) > 0, a44(3) > 0, a44(6) > 0, a44(8) > 0 and the plane agq(1) < 15312. The
region Rf,, in R3 is described by its vertices in Theorem 5.1

Though a44(8) = 0 is involved in determining the theta region, it does not
intersect with any lattice point in the region. On the other hand, a4 (1) = 0 and
a44(6) = 0 ; a44(2) = 0 and a44(6) = 0 have intersections with (possibly) many
lattice points. We will give some examples below.

The modular form corresponding to the point (0,235008, 4482334086) is

1 + 235008 g* + 4482334086 ¢ + 1843123327200 ¢*

+ 156784934734200 ¢° + 5163935354086047228 ¢ + - - -
and that corresponding to the point (1284,0,13884968796) is
1) 14 1284 q + 13884968796 ¢> + 5670311737200 ¢*

+ 444535383648744 ¢° + 12234602633705590296 ¢7 + - - - .

(20)

We can now conclude that
(22) Tss C {1,2,3,6}.
In the following theorem, we give the vertices of the theta regions for the above
three cases.
Theorem 5.1. The vertices of the theta regions ROy, for k = 36,40,44 are given
below (till 4 places of decimal).
ROs6 = {(0,0,0), (0,0,86363550), (0,45760226.5708, 0), (10224, 0, 0),
(0, 26202334.8495, 70754060639.13), (10224, 0, 8193582046),
(10224, 340217404.1854, 0), (10224, 193612838.52, 530367407534.3437) };
R4, = {(0,0,0),(0,0,596818707.6923), (0,137219474.3535, 0), (12640, 0, 0),
(12640, 938218697.7658, 0), (12640, 0, 38565203169.2308),
(0,62133345.6593, 281298083974.2577),
(12640, 420655108.6645, 1938968601537.1154) };
Ré44 = {(0,0,0),(0,0,2774634395.8051), (0, 720080843.2055, 0), (15312, 0, 0),
(15312, 4716227066.9582, 0), (15312, 0, 135267967990.6522),
(0,172072043.2049, 1253146429706.0514),
(15312, 1114742540.0899, 8235611319530.06)}.

Remark 5.4. A view of the theta region Rf44 (where the nonzero entries are scaled
to logarithms to the base 10) is given in Figure 2.

5.6. Dimension 96. As mentioned earlier the point (0,0,0,0) corresponds to the
extremal theta series and is given by
(23)

1 + 565866362880 ¢° + 2972108280960000 ¢° + 4164608980546560000 q+-

Examining the region Ryg together with the fact that ass(1) < 18240, it follows
that the only hyperplanes to be considered are a4s(¢) > 0, 7 = 1,2,3,4,5,7,9, 10.
Of these, a45(9) = 0 and a4g(10) = 0 have no integer solutions for which ass(1) <
18240 holds. The examples for the exceptions 5 and 7 are given by the points
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FIGURE 2

(0,0,0,5894441280) and (0, 139216, 14628704256, 0) respectively. The correspond-
ing modular forms are given as follows.

(24)
1 + 5894441280 ¢* + 2998421066833920 ¢° + 4163820540080947200 ¢
+ 2214108303283082606400 ¢° - - - ,

(25)
1+ 139216 ¢% + 14628704256 ¢> + 2819801455167488 ¢° + 50313952102979520 ¢°
+ 2340778665780864018752 ¢ + - - - .
Thus we can conclude that
(26) Tos € {1,2,3,4,5,7}.
5.7. Dimension 104. First we will give the extremal theta series corresponding
to the point (0,0,0,0) given by
(27)
1 + 91508901120 ¢° + 1000989033408000 ¢° + 2598412027506048000 ¢” + - - - .

In this case the intersection of Rso with as2(1) < 21424, which is the theta bound,
is given by the hyperplanes as2(i) > 0 for ¢ = 1,2,3,4,6,8,11 and as2(1) < 21424.
It turns out that as2(8) = 0 has no integer points within the above intersection. On
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the other hand, as2(6) = 0 and as2(11) = 0 meet both asz(1) = 0 and as2(3) = 0.
The points

(0,176,0,61392071210) and (0,10226341170,0, 3421557772412480)
provide the above examples which are given as follows:

(28)
14176 ¢ + 61392071210 ¢* 4 8936030463136 ¢° + 2646041231718049664 ¢”

+ 2355670193686679378944 ¢& + - - - |

(29)
1+ 10226341170 ¢* + 3421557772412480 ¢* + 728799703895900160 ¢°

+ 340289802570745622520 ¢° + 141143564585883328839680 ¢

+ 14278746426172898992300080 ¢® + 513768402318552455404584960 ¢°

+ 5632618326414854488471195420 ¢'° 4 1659754425886884680776487919360 ¢'2
+ e,

Thus we have established the following

(30) Ti04 €{1,2,3,4,6,11}.

5.8. Dimension 112. In this case the theta bound is asg(l) < 24864. The in-
tersection of R with the above theta bound is determined by the hyperplanes
as6(i) >0fori=1,2,3,4,7,9,13 and as6(1) < 24864. Surprisingly ase(z) = 0 does
not contain any integer solution within the above intersection for i = 7,9 and 13.
However, the extremal theta series corresponding to the point (0,0, 0, 0) is given by
the following

(31)
1 + 10888335360 ¢° + 247006775232000 ¢° + 1187911731935232000 ¢”

+ 1837981772066610324000 q8 + 1195996575532999166976000 q9 4.
and hence we conclude that
(32) T112 c {1)2a3a 4} .

For the cases 48 < k < 56, the intersection of the region Ry and the theta bound
ax(1) < 4k(2k —1), which determines the theta series, denoted by R, is described
in the following theorem.



THETA SERIES 1179

Theorem 5.2. The vertices of the theta regions ROy for k = 48,52 and 56 are
given below (till 2 places of decimal).

Rfss = {(0,0,0,0), (0,0,0,5894441280), (18240, 0,0, 0),
(0,0, 12614144664.75, 0), (0, 3601816952.37, 0, 0)
(0,0, 6964566561.77, 13944603843854.61),
(0, 3322024322.88, 48084789484013.79, 0), (18240, 10648632684.22, 0, 0),
(18240, 0,0, 1459597604100), (18240, 0, 407484492799.86, 0),
(18240, 0, 274398365105.19, 550633625566510.44),
(0, 1016441408.97, 7983281454886.97, 16631106800143051.34),
(0, 3338965322.77, 48093210771703.07, 584304379350694.12),
(18240, 10851560256.94, 0, 6978897092842250.04),
(18240, 9818966810.89, 142585274438314.78, 0),
(18240, 11835294977.10, 143587581249066.18, 69544264557157929.33),
(18240, 15721580248.04, 9124369598956.39, 192723120061352710.98),
(18240, 6482452166.70, 51144121143672.27, 106528172648557419.64) };

Ros, = {(0,0,0,0), (0,0,0,60976427473.68), (21424, 0, 0, 0),
(0,0,39444111190.24, 0), (0, 10148246959.65, 0, 0),
(0,0, 18863892686.74, 60901994524500.01),
(0,4785626155.20,112401071188911.52, 0),
(21424, 0, 1324844283433.62,0), (21424, 0,0, 11060702100568.42),
(21424, 32008124692.88, 0, 0), (0, 10726422165.82, 0, 25331709762254341.85),
(0,15262003594.92, 165652531174434.16, 570315999727721311.20),
(21424, 0,6.32140973570.78, 2049881694754144.18),
(21424, 33831983038.20, 0, 79909082503073183.67),
(21424, 15067112985.54, 355085308539255.31, 0),
(21424, 4.8159872916.59, 523295912960355.89, 1801513029902004325.15) };

Rfss = {(0,0,0,0), (0,0,0,411737373812.95), (24864, 0, 0, 0),
(0,0,107704808659.76, 0), (0, 4825805535.56, 0, 0),
(0,0, 46137170678.58, 229817154206183.53),
(0,47871219805.95, 0, 323099945047827426.23),
(0, 65839375988.63, 2483815260738911.22, 0), (24864, 96190731207.35, 0, 0),
(24864, 0, 3202149087039.08, 0), (24864, 0, 0, 58180356733205.82),
(0, 48708626693.12, 750199216594397.32, 4058927835430575857.01),
(24864, 0, 1366417232008.17, 685234458625464.33),
(24864, 95419600219.03, 0, 644078291488442190.06),
(24864, 131263680466.63, 4954959210855910.32, 0),
(24864, 97090214081.45, 1496635900684609.96, 8096997483949549504.52) }.
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APPENDIX A. ON NORMALIZED MODULAR FORMS OF WEIGHTS 20, 24,28 AND 32
WITH NON—NEGATIVE INTEGRAL FOURIER COEFFICIENTS

by
M. MANICKAM AND B. RAMAKRISHNAN

In this appendix, we determine exactly the number of modular forms of weight &,
(4]k), for the group S Ly (Z), which behave like theta series for the cases 20 < k < 32.
We will first prove the following main lemma.

Lemma A.1. Letdim M (1)=m. Then we can find a basis { fo(2) =Y r ae(n)q"|
0<e< m—l} for My (1) such that ag(n) € Z for alln >0, 0<{<m—1 and
ag(j) = 6g,5, 0 < L, 5 < m—1, where 6y ; is the Kronecker delta function.

Further, if f(z) = Y nepar(n)q™ € My (1) is such that ap(n) € Z for 0 < n <
m — 1, then ag(n) € Z for all m > 0.

Proof. Let gi(1) = 3_,5 bi(n)g" (1 < i < m — 1) be a basis of S(1) such that all
the b;(n)’s are integers and b;(j) = 6; ;. (See [1, Chapter X, Theorem 4.4].)
Set

Ey(2)F/* if k=0,4,8 (mod 12),

(2) = E14(2)Ey(2)R=19/4 if k=2 (mod 12),
I =N By(2)k/ ifk=6 (mod 12),

E10(2)Es(2)*-10/4 if k=10 (mod 12).

Then g(2) = 3_,5¢b(n)q™ € My(1) such that all the b(n)’s are integers. Clearly,
{9,901, "+ ,gm—1} form a basis of My(1). Now to find the required basis, put

m—1

fo(z) = g(2) — Zb(z 9i(2) and fi(z) =gi(z) (1<i<m-1).

i=1

It follows that {fo, f1, "+, fm—1} is the required basis of My(1). The remaining

part of the lemma is now clear since f(z) = Zi=11 ay (i) fi(2). O

A.1. The case k = 20. We know that the space My(1) is spanned by FEogo(2)
and A(z)Ey(z). Let ¢(z) = >, 50a(n)g™ be a modular form in Mag(1) which has
constant term unity and all other Fourier coefficients are integers; i.e., a(0) = 1 and
a(l) = X (say) with X (> 0) € Z. Then Lemma A.1 implies that all the a(n)’s are
integers. a(n) can be written as

(33) a(n) = 5o = (o10(m) — B(m) + BV X,

where A(2)Ey4(z) = )_,,»; b(n)q™.

Using the Ramanujan—Petersson estimate (proved by Deligne) for b(n) (i.e.,
|b(n)| < v/3n19), one can prove from (33) that a(n) > 0 if and only if a(4) > 0 and
X > 0. Since a(4) > 0 and X > 0 imply 0 < X < 65686, we have the following:
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Theorem A.2. The number of modular forms in Mag(1) which behave like theta
series 1s 65687.

A.2. The cases k = 24,28,32. In these cases dim My(1) = 3. The space M(1) is
spanned by Ey(z), A(z)Ex_12(2) and A%(2)Ex_g4(2).

Let
By(2) =1+ A Y ox1(n)g",
(34) n=1
A'(2)Eg_12i(2 Za’k (n)g™ (i=1,2).

Let ¢r(z) =14 307 ; ax(n)g™ € M(1) be such that
(35) ax(n) 2 0; ar(n) €Z forall n>1.
Then our problem is to find all ¢x(2) satisfying (35).

Letting ax(i) = Xx; € Z, 1 <1 <2, we get

2

(36) ax(n) = AxBi(n) + > _ o k(n) Xr.,
where a; x(n) = a1,1(n) — a1,6(2)az,k(n) € Z and az x(n) = agx(n) € Z and Bi(n)
is defined by
(37) By (n) = ok-1(n) — ox-1(2)az,k(n) — a1,k(n)

Since ax (i) = Xk € Z, 1 <i <2, and ax(0) = 1, from Lemma A.1 we see that
ar(n) € Z for all n > 0. This implies that AxBy(n) € Z.
Using (35) and (36) we get the following bounds for X ;,

(38) 0 < X < Iy,

where I ; are given in the table below.

k Iy 1 Iy 2

24 | 901973 3117528477

28 | 3053422 | 22151903688
32 | 12066084 | 151617872159

(39)

Let gr(2z) € Sk(1) be a normalized Hecke eigenform. Then using the Ramanujan
— Petersson estimate proved by Deligne, we have

(40) bk (n)| < V3 nk/?

where gi(2) = Y52, bi(n)q"

Expressing A(z)Ex—12(z) and A%(2) Ex_24(2) as a linear combination of the basis
elements g; x(z), 1 <14 < 2, which are normalized Hecke eigenforms in Sk (1), and
using (40) we get estimates for the Fourier coefficients a; x(n) as follows.

(41) laik(n)] < pein®/2,
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where
k 24 k 28 k 32
(42) k1 2.74 Mok, 1 5.57 Lk,1 3.84
L2 | 3.8 x 107 || g2 | 1.96 X 1074 || pg o | 3.37 x 107°

Using the bounds from the table (39) and the estimate (41), we can prove that
ak(n) > 0 for all n except for the following cases:

(k,n) € {(24,3),(24,5), (24,6); (28,4), (28,7), (28,8);(32,5), (32,9), (32,10)} .
We have thus the following theorem.
Theorem A.3. ax(n) > 0 if and only if ax(ix) > 0 where

1,2,3,5,6 if k=24,
=14 1,2,4,7,8 ifk=28,
1,2,5,9,10 f k = 32.

The following theorem is obtained using the Simplex method for solving a Linear
Programming problem following the present work in the paper.

Theorem A.4. ax(ix) > 0 and ax(ix) € Z, where iy, is as in Theorem A.3, if and
only if X (1 <1 < 2) belong to the following convex region, denoted by Ry, in
R? given by the following vertices :
Ry4 = {(0,0), (0,1092000), (395935.3361, 1615023413.7759),
(901973.05768614149406, 3117528477.5604), (445623.6915,0)} ;

Rys = {(0,0), (0,4463440.4348), (3004644.4353, 22151903688.7315),
(3053422.7929, 5108328206.416), (2378265.7383,0) } ;

Rsy = {(0,0), (0,13898141.4518), (11533050.8143, 151617872159.7915),
(12066084.8402, 107182839332.9432), (8056296.7887,0)} .

In the above, the vertices are given till 4 places of decimal.

Remark A.1. Noticing that to each lattice point in the region Ry one gets a modular
form which behaves like a theta series, the number of modular forms in M (1) which
behave like theta series, denoted by N(k), can be obtained and we give below the
numbers.

N(24) = 806022416212942,
(43) N(28) = 32642069239095156,

N(32) = 566165632956673500.

Remark A.2. A view of the convex region Ry (X coordinates scaled down by 100
and the Y coordinates scaled in logarithms for the nonzero entries) is given in
Figure A.
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