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A FAST ALGORITHM TO COMPUTE CUBIC FIELDS 

K. BELABAS 

ABSTRACT. We present a very fast algorithm to build up tables of cubic fields. 
Real cubic fields with discriminant up to 101l and complex cubic fields down 
to -1011 have been computed. 

The classification of quadratic fields up to isomorphism is trivial: they are 
uniquely characterized by their discriminant, and we can compute tables as soon 
as we know how to test if an integer is squarefree and how to check some simple 
congruence modulo 16. We intend to show that cubic fields are essentially as easy 
to deal with, and we will get a canonical representation for them. Contrary to the 
quadratic case, the treatment depends on the signature but, the fundamental ideas 
being the same, we shall expose as much as we can before splitting cases. 

Almost all results in this paper are either ancient or elementary. I would like to 
thank Professor H. Cohen for his interest when I first mentioned what I thought 
was a trivial application of some well known results. Moreover, his careful reading 
of successive drafts of this work and the many questions he had about it were most 
helpful in giving it its present shape. 

1. PRELIMINARIES 

Let (a, b, c, d) denote the integral binary cubic form F(x, y) = ax3+bx2y+cxy2 + 

dy3. We call as usual disc(F) its discriminant: 

disc(a, b, c, d) = b2c2 - 27a2d2 + 18abcd - 4ac3 - 4b3d 

We shall say a form F is complex whenever disc F < 0, and real otherwise. We call 
roots of F, the complex roots of F(X, 1) = 0. 

A form is said to be primitive if gcd(a, b, c, d) = 1, and irreducible if it is so in 
Q[x, y]. The usual change of variables gives an action of GL2 (Z) on the set of binary 
cubic forms, which preserves discriminants, irreducibility and primitivity. We call 
4D the set of classes of integral, binary cubic forms under this action. Please note 
that, contrary to the quadratic case, we do not restrict to SL2(Z). 

Let Vp be the subset of 4D given by the following congruence conditions: 
* If p = 2: discF _1 (mod 4) or disc F -8,12 (mod 16). 
* If p5#2: p2tdiscF. 

So that forms in V = n Vp have fundamental discriminants (we call an integer A a 
fundamental discriminant either if A = 1 or if it is the discriminant of a quadratic 
field). Now we put U = n up, where Up C 4D is given by: F E Up if 
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* it belongs to VP, or 
* it factors as A(x + 03y)3 modulo p, with A E Fp, and ae, in 1Fp not both zero. 

Furthermore, there exists an e E 1F such that the equation 

F(x, y) _ ep (mod p2) 

has a solution in x, y E 2/p22. 

Let C denote the set of non-isomorphic cubic extensions of Q. Given K E C and 
x E K, we call D(x) the discriminant of the minimal polynomial of x, and denote 
by x, x', x" the three conjugates of x in K. Now put 

FK( y) = Norm[(C - a)x - - )y] _ 
ax - 0y) 

where [1, ar, A] is any 2-basis of the maximal order of K whose first element is 1, 
and UK is its absolute discriminant. 

The key ingredient is the following result establishing the link between cubic 
forms and fields: 

Theorem 1.1 (Davenport-Heilbronn [6]). Consider the following maps: 

Ocu: conjugacy class of K class of FK(X, y) 

,UC : {Q(01), Q(02), Q(03)} ' class of F(x,y) 

where the O are the zeros of F(O, 1) = 0. These are well defined inverse maps, and 
induce a discriminant preserving bijection between the sets U and C. 

This rather abstract statement has a very nice algorithmic translation. First, 
reduction theory enables us to efficiently single out a canonical representative in 
each equivalence class of irreducible cubic forms. We shall discuss this in great 
detail in ?3 (positive discriminants) and ?4 (negative discriminants). We will call 
such forms reduced in the sequel. For the time being, we only need to know that if 
F = (a, b, c, d) is reduced, then any reduced form equivalent to F is equal to F (see 
Corollary 3.3 and Lemma 4.3). Hence, to a given field, we can associate a unique 
companion form. And second, we shall see that, as their names imply, the reduced 
forms have rather small coefficients, bounded in terms of their discriminant. 

Denote by HF the Hessian form associated to F: 

92F 92F 

HF =- 1a a PXY 2 + Qxy + RY2 
4 &F &F 

axay ayay 

where 

P = b 2- 3ac, Q = bc-9ad, and R = c2-3bd 

One can easily see that the Hessian is covariant with respect to GL2 (Z): we have 
HFQM = HF o M for all M E GL2 (Z). Moreover, a simple calculation shows that 
disc HF = -3 disc F. 

We summarize in the next lemma the elementary properties of the set U, which 
enable us to test easily whether a given form is associated to a cubic field or not. 

Lemma 1.2. Let F = (a, b, c, d) be a cubic primitive form, and (P, Q, R) its Hes- 
sian. We write (F,p) = (I3) whenever, up to a scalar factor, F is a cube modulo 
P. 
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1. (F,p) = (13) if and only if pl gcd(P, Q, R). 
2. If (F,p) = (I3) and p :& 3, then F E Up if and only if p3 t disc(F). 
3. If F E U3, then 36 t disc(F). 
4. If (F, 3) = (13), the analogue of part 2. is completely described by the following 

algorithm: 

if 31a, FE U3 --?9ta and3td, 
else if 31d, F E U3 - 9 t d, 
else if 31(a-d), FEU3 - ~a-b+c-d=O (mod9), 
else if 31(a+d), FEU34=*a+b+c+d=-0 (mod9). 

5. If a reduced form F belongs to U, then it is irreducible. 

Proof. 

* 1. One first notes that p divides disc(F) if and only if (F,p) = (121) or (13), 

with evident notations. This is clear when the point at infinity is one of the 
roots, i.e. F(x, 1) has degree at most two, so we suppose this is not the case. 
As the finite field ]Fp is perfect, disc F 0_ (mod p) implies that F is reducible 
modulo p, two of the roots in IFP being equal. As the sum of the roots is in 

FFp, they all are (if p = 2, one uses their product instead). 
If F splits as 

F(x, y)=(ax + 3y)2(YX + 6y) (mod p) 

one finds that H(x, y) _ (ax + /3y)2(ca& - %y)2 (mod p). As F is primitive, 
a and /3 are not both zero modulo p, thus 

H(x, y) _ 0 (mod p) Xc af-fly _ 0 (mod p) X (F, p) = (13) 

* 2. and 3. are exactly [6, Lemma 6]. Replacing F by an equivalent form, 
we can write F = (a, b, c, d), with F =_ ax3 (mod p). So disc F = -27a2d2 
modulo p3. The form F is primitive, thus p t a, and as p :& 3, p31 disc F is 
equivalent to p2 1 d. Now F(x, y) _ ep (mod p2) implies that p divides x, 
thus F(x, y) = dy3 (mod p2) and our claim follows. The case p = 3 is left to 
the reader. 

* 4. is trivial once one remarks that 3 must divide b and c and thus F(x, y) 
only depends on (x, y) module 3. 

* 5. This last assertion will be proven later (Corollary 3.3 and Lemma 4.3). El 

We can now propose an efficient algorithm to test if a given cubic form is in the 
image of the Davenport-Heilbronn map: 

Algorithm 1.3. 
Input: a cubic form F = (a, b, c, d). 
Output: true if and only if F corresponds to a cubic field. 

1. If F is not reduced, false. 
2. If F is not primitive, false. 
3. Compute (P, Q, R), the Hessian of F. Set D = 4PR - Q2 = 3disc(F) and 

fH = gcd(P, Q, R). Check whether F belongs to U2 and U3, else false. 
4. If p2 21fH with p > 3, f alse. 
5. Set t = D/fH. Remove all powers of 2 and 3 from t: at most 23 and 32. If 

gcd(t,fH) > 1, false. 
6. If t is squarefree, true, else false. 
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Proof. We have to check that F is primitive, reduced, and belongs to Up for all p, 
which implies it is irreducible. Steps 1 to 3 are straightforward, and we only have 
to check that a form satisfying steps 4 to 6 belongs to Up, for all p > 5. 

The prime divisors of fH are exactly the ones for which (F. p) = (13). For all of 
them we check in steps 4 and 5 whether p3 divides disc F or not. Finally, in step 6, 
we check the other prime divisors of disc F, p > 5: F must belong to Vp for all of 
them, which is the case if and only if t is squarefree. El 

Remark 1.4. Step 2 is only necessary, as an "early-abort" strategy: if a prime p 
divides all the coefficients of F, then p21fH and step 3 (if p = 2, 3) or 4 (if p > 3) 
would f alse just as well. On average, if one uses the techniques described hereafter, 
this step slows down the algorithm. 

Remark 1.5. There is a real problem lying in steps 4 and 6. Squarefree factorization 
of integers is presently as difficult as complete factorization, so we need to factor 

fH and t and check all prime divisors for greater than one valuation. But our aim 
here is to compute tables of fields and, calling X the discriminant bound, we will 
need to factor X discriminants of size about X, which is not acceptable. We shall 
see in ?5 that simple hashing techniques reduce this to a sensible amount. 

The discriminant of a cubic field K can be uniquely factored as f2ZA, where A is 
a fundamental discriminant. The fH appearing in step 3 of the algorithm is closely 
related to this one: it is known that a prime p is totally ramified in K if and only if 
p divides f (see [8]). Lemma 1.2 and Proposition 2.2 imply that this is equivalent 
to PIfH. Thus f and fH have the same prime divisors, but they may differ by a 
factor 3, if 311A. The precise result is as follows: 

Lemma 1.6. Let K be a cubic field, FK its companion reduced cubic form, and 
Af2 their common discriminant. Let (P, Q, R) be the Hessian of FK, call fH 

its content and put (P, Q, R) = fH(PI, Q1, RI), where (P1, Q1, R1) is primitive. 
We have fH = f if and only if _I(Q2 - 4P1R1) is fundamental, and fH = 3f 
otherwise. The latter only happens when 3 divides both f and /\. It always happens 
when v3(f) = l. 

Proof. Straightforward given the preceding discussion, except for the prime 3. 
Lemma 1.2 tells us that 33 t f, and an easy computation shows that 31fH if and 
only if 9IfH. Now write that 

- - 4P Rl) = -3zAf2 

and compare the valuations at 3. I 

2. PROPERTIES OF THE DAVENPORT-HEILBRONN CUBIC FORM 

First and foremost, adjoining a root of F(X, 1) to QD yields a representative of 

the class of cubic fields associated to F, in the sense of Theorem 1.1. But what 
we want to stress here is the ease with which one recovers the simple invariants 
associated to K from FK. 

Proposition 2.1. Let FK = (a, b, c, d) be a representative of the class of cubic 

forms associated. to the cubic field K by the Davenport-Heilbronn bijection. For 

instance, the reduced one. 

1. We have disc K = disc FK. 
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2. If 0 is a root of FK belonging to K, then [1, aO, a02 + bO] is a basis of the 
maximal order ZK 

Proof. 1. is part of the Davenport-Heilbronn theorem, and can be easily checked 
from the definition of FK anyway. 

As for 2, we use an idea attributed to H. Lenstra by H. Cohen [3, Exercise 15, 
p. 216]. Let 0 be an algebraic number, and P(X) = a0X' + a1X'-1 + .. + a, be 
its minimal primitive polynomial, with integral coefficients. One defines 

ES = Z[ao0, ao02 + al, ... ., aoOn-1 + * + a,-20] 

Then Zo is easily seen to be an algebra of finite type over Z, and thus is an order 
in ZK. Now, if we denote the roots of P by 01,..., On, then a Vandermonde-type 
calculation gives 

disc Zo = a 2n-2 fl(0i-j) =disc P 
i7j 

Here, we have disc FK = disc K, SO EO = ZK El 

The next proposition is an algorithmic restatement of [6, Lemma 11]: 

Proposition 2.2. Call 0 a root of FK belonging to K. A prime p E Z decom- 
poses in K as FK = (a, b, c, d) factors in IFp [X, Y]. More precisely, if we take an 
irreducible decomposition 

FK (XI Y)f Tie* (XI Y) (mod p) I 

we have 

PZK = 1 pie with pi prime in ZK 

Moreover, we can take: 

* Ifpta, then 

Pi = P + Ti (Oi1)ZK 

* If pIa but ptd, then 

pi = PZ+ Ti, (O ) /Odeg T* K 

* If pla and pad, but p :4 2 or F(X, Y) X XY(X + Y) (mod 2), there exists 
u E Z such that u 0 0 (mod p), and, in the case p t c, u 0 -b/c (mod p). 
Then we take: 

p2 = pi + T2(0, 1)/(1 -U)deg TZK 

* Finally, if p = 2 and F(X, Y) XY(X + Y) (mod 2), then 2ZK = P1P2P3, 

with 

pi = 2ZK + aOZK, P2 -2 K + (a2 + b0 + 1)7K and 

p3 = 2ZK + (aO + (a + b)0)7K 
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Proof. 
1. We suppose first that p t a and consider 

f(X) = a2F(X/a, 1) = (1, b, ac, a2d) 
It is a monic irreducible integral polynomial with a root af in K. Localizing at 
p above p in ZK, we find that af generates ZK, over Z(p). Indeed Z[ac] C ZK 

and 

disc(Z[ca]/Z) = a2 disc(ZK/Z) 

with gcd(a,p) = 1. Thus, if f(X) = flUqe%(X), we get 

PZK~fl~e, with pi=~+U( PEK = rl Pi Xwithp = PZK + Ui(al)ZK 

Now, we can take af = aO and Ti(XY) = sYdegUiU (aX/Y), with E E F> 
Hence, we have 

Pi = PZK + Ti (Oi 1)ZKv 

2. When this is not the case, we look for an M E GL2(Z) such that we can apply 
1. to FoM. If p d, we take 

M= (1 0) 

else F has at most one non-zero root af in Fp . If we are not in the last special 
case of the theorem, there exists u E Fp, U-1 & al, so that F(1,u) is not 
O mod p. Then we take 

M (1 O 

As F(1, u) is exactly the coefficient of x3 in G = F o M, we are back to the 
preceding case. Of course, G is not reduced anymore, but still generates the 
field K. 

3. In the last case, p divides the coefficient of x3 in all forms equivalent to FK. 

Thus, from the definition of FK, p2UKID(x) for all x E ZK. This makes 
of p a "non-essential divisor" which, in our cubic setting, happens if and 
only if p equals 2 and is totally split in K/Q (see [9]). As 2 is unramified, 
disc FK = disc K is odd. We know as well that 21a and 2 d, so finally, we get 
a _ d_ O (mod 2), b _ c_ 1 mod 2, and FK still factors asp. 

To find an explicit decomposition, one has to split the tale algebra 

A = ZK/2ZK (Z/2Z) 

whose elements are all idempotents. Now, if we put e1 = 1, e2 = aO, e3 = 

a02 + bO, we find e2e3 = a203 + abO2 = -acO - ad = aO = e2 in A, as aO E ZK 
and c_ 1 (mod 2), ad _ O (mod 2). 

So e2, e1 + e3, and e2 + e3 are the orthogonal idempotents giving the three 
factors. D 

3. REAL CUBIC FIELDS 

If F is a class of positive discriminant, then disc(HF) is negative. It is well 
known that there is a nice reduction theory for definite binary quadratic forms. 
Recall that the Hessian is covariant with respect to the action of GL2(Z). We 
shall get a canonical representative for F by specifying that its Hessian should be a 
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reduced quadratic form, with some extra care for those forms lying on the boundary 
of the fundamental domain. This approach was initiated by Hermite, see [10, 11]. 

We call a quadratic form with real coefficients (P, Q, R) reduced if 

IQI < P < R. 

and R > 0 to exclude the trivial form. Beware that this is not exactly the stan- 
dard notion. For instance our definition implies that (1, -1, 1) is reduced, as well 
as (0, 0, 1) ! If H = (P, Q, R) is a definite binary quadratic form, we call H-1 the 
quadratic form (P, -Q, R) and Aut(H) the set of matrix in GL2 (Z) stabilizing H. 
Furthermore, we set 

t1 0A or t -2y 
Lemma 3.1. Let H = (P, Q, R) and H' = (P', Q', R') be two reduced definite 
binary quadratic forms, such that there exists M E GL2 (Z) with H o M = H'. 
Then, either H' = H and M E Aut(H), or H' = H-1 and M belongs to Aut(H)ca. 
Moreover, the only elements of Aut(H) are +Id, except in the following special 
cases, which can occur simultaneously: 

* IfP=R, addi (? ) . 

*If Q = O. di 1 ? 
*IfQ=0, ~~add (? 0k). 

*IfP=RandQ=0, add ?(_1 O) 

*IfP=eQ, add (? -1) 

*IfP= eQ=R, add +(-1 O)?(O -1) (E 1) 

where, in the last two cases, E is either 1 or -1. 

Proof. Being equivalent, H and H' represent the same numbers and share the 
same discriminant. As they are reduced, their first and last coefficients respectively 
correspond to their minimum over Z2 - {(0, 0)} and their next minimal value. Thus 
they are equal. Equality of discriminants then yield Q2 = Q/2. Hence H' = H or 
H' = H-1 = H o a, and we only need to compute Aut(H). 

We call as usual S and T the following two generators of the modular group: 

(1 ? )( 1) 

and let 

M (a b) 
c d 

be an automorphism of (P, Q, R). We call F the usual fundamental domain for 
SL2 (Z) in Poincare's half-plane. If M E PSL2 (Z), it fixes a point in F, and so 
is either Id, S if H = (P,0,P), ST or (ST)2 if H = (P,P,P), TS or (TS)2 if 
H = (P,-P, P). 



1220 K. BELABAS 

If det M =-1, then M swaps the two complex roots r and ' of H. That is 

aT +b= ar + b = CTTf + dT-. 
CT + d 

Taking imaginary parts, we get a = -d and then bP = aQ + cR, the determinant 
value giving a2 + bc 1. Putting things together we get: H(a, c) = P. On the 
other hand, H(a, c) ? (P - IQI + R) min(a2, c2), and, as H is reduced, we have 

IQ I P ?f R. It follows: 
* If ac :4 0, then a2 = c2 1 and P = IQI = R. We have a =-d = +1 and 

b = 0. If P = eQ, we have a = -ec, where E = +1. 

* If c = 0, then a2 - 1, and bP - aQ. This implies either b = 0, Q = 0, or 
b = ea, P = eQ, with e = +1. 

* If a = 0, then Rc2 = P. so R = Pi c2 = 1. We deduce b = c = +1, a = d = 0, 
which concludes our proof. D 

Definition 3.2. A binary integral cubic form F = (a, b, c, d) of positive discrimi- 
nant is called reduced whenever its Hessian (P, Q, R) is so and 

* a > 0, b ? 0, where d < 0 whenever b = 0. 
If Q=0,d<O. 

* If P=Q,b< 3a-bl. 
* If P = R, a < Idl, and b < IcI whenever Idl = a. 

It then comes as no surprise that: 

Corollary 3.3. 
1. Two equivalent reduced real cubic forms are equal. 
2. A reduced real cubic form belonging to U is irreducible. 
3. Any irreducible real cubic form is equivalent to a unique reduced one. 

Proof. 
1. Tedious but straightforward: as their Hessians are equal, or inverse of one 

another, one only needs to check the possible automorphisms as listed in 
Lemma 3.1. Some side notes though: it is well known that the automor- 
phisms of positive determinant of a quadratic form correspond to units in the 
quadratic field defined by its discriminant. These in turn act on the cubic 
form according to the cube of the unit. Thus TS and (TS)2, which correspond 
to cube roots of unity, act trivially on any cubic form. A brute force calcula- 
tion readily confirms this anyway. Also, P = Q = R, resp. P -Q = R, if 
and only if F is of the form (a, b, b - 3a, -a), resp. (a, b, -b -3a, a). 

2. Suppose F is reducible. Then there exists a form G = (a, b, c, d) equivalent 
to F, with a = 0, b ? 0, and 0 < c < b, which of course belongs also to U. 
We are going to show that the Hessian of this last form is reduced; checking 
its automorphisms will then lead us to a contradiction. We compute the 
discriminant of G, A = b2c2 - 4b3d, and its Hessian 

(PI Q, R) = (b2, bc, C2 - 3bd) 

We see that b21A, thus for all odd primes p dividing b, we have pI gcd(P, Q, R) 
by Lemma 1.2/1. So p divides (C2 - 3bd) and b, hence pfc, and p3f A. We must 
then have p = 3 by Lemma 1.2/2. But 91a so G cannot belong to U3\V3, thus 
3 t b. 
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Now, if 21b, then A -= b2c2 (mod 16) thus G does not belong to V2. We 
must then have 21c, hence 161 A, which is absurd. Moreover, b 7 0 else A = 0 
and G does not belong to Up, for all p. Thus b = 1, and c- 0or c = 1. 
It follows that the Hessian of (a, b, c, d) is either (1, 1, 1 - 3d) or (1,0, -3d). 
But A = c2-4d > 0, so d < -1 and thus both 1 - 3d and -3d are greater 
than 1. Thus both our possible Hessians are reduced, and whichever is the 
correct one is equal to the Hessian HF of F or to its inverse. This implies 
that G is obtained from F by an automorphism of HF, modulo a. As the 
only automorphisms of HF, as well as a, fix a which is 0, we see that the 
first coefficient of F is 0, which is forbidden for a reduced form. Here is our 
contradiction. 

3. Any real cubic form is equivalent to a form F whose Hessian H is reduced. 
Now, if this Hessian has one of the aforementioned special forms, the pa- 
tient reader will check that either F or F o M is reduced, where M is an 
automorphism of H. Note that it is vital that F be irreducible here. More 
precisely, we need the trivial fact that F is reducible whenever a or d equals 
0, Q=b=0, P=Qandb= 13a-bl, orP=R, a=Idl andb =cl. D 

Remark 3.4. In those cases where the Hessian has some non-trivial automorphisms, 
we needed to fix a representative in the corresponding orbits of cubic forms. There, 
all the possible choices are equivalent. Furthermore, Lemma 3.5 will imply that 
these special cases, as listed in Lemma 3.1, occur at most O(X3/4) times. But there 
is another choice we had to make, taking into account that we needed GL2(Z) and 
not SL2 (Z) to operate on our set of forms. There are two natural ideas: b ? 0 as we 
have just seen, or Q ? 0. The latter one was aesthetically more pleasing because 
we did not have to bother with E or a, and things were a little more "canonical". 
They still are, but not in a very natural way. 

In both cases, the algorithm would run roughly as follows: execute four enclosed 
loops for the four coefficients of the form, taking advantage of every possible in- 
equality, testing each time if we had a field or not. And the choice Q ? 0 now 
became awkward. For instance the condition Q ? 0 could not be exploited before 
at least three of the four defining coefficients had been set. In fact, the general 
algorithm was much more complicated in this case, because the sign of b had to be 
considered at times, and disregarded at others. The most obvious example would 
be the computation of b2 which should only be done once. Thus, the b-loop had to 
actually be on the absolute value of b, sometimes executing two instructions, some- 
times one, depending on whether the sign of b had any importance. This led to a 
rather obscure and slightly less efficient program. Thus, the opposite choice was 
made, but it should not be considered as the "right" one. In fact, the normalization 
Q > 0 being best-suited for theoretical purpose, we shall use it in Proposition 3.9. 

We can in a very explicit way find bounds for the coefficients of a reduced form: 

Lemma 3.5. Let F = (a, b, c, d) be a reduced form whose discriminant lies in 
]0,X]. We have: 

(1) faj?< 3 

3a 27a2 
(2) 0 <,b <-+ X 

2 4 
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Call P2 the unique positive real solution of the equation 

-4P + (3a + 2b)2P+ 27a2X =0 

then 

(3) 
b P2 

< c < b-3a 
3a 

Proof. Let H = (P, Q, R) be the Hessian of F, 3A = 4PR - Q2. Recall that 

IQI < P < R. 

As in the classical quadratic case, we remark: 

(4) p2 ?PR A? (X 

On the other hand, the formulas defining H yield: 

p2 = Pb2 - 3Qab + 9Ra2. 

This quadratic equation in b has discriminant 

9a2(Q2 - 4PR) + 4P3 = 4P3 - 27a2D 

Thus it has a solution if and only if 

2 4p3 4P 4 V' 
27D 27 27 

and (1) is proved. 
The largest of these two solutions is 

3Qa + V4P3 -2 27aD _3aQ 27a2D <3a 27a2D 
b= Q +22P 2P 4P2 2 4p2 

This is an increasing function of P, which is thus maximal when p2 - D. As the 
resulting expression increases with D, we finally obtain 

3a 27a2 
b _< - + \4 

24 

which is (2). Note that these two bounds are actually sharp, as they are reached 
whenever P = Q = R. 

The last one is a little more intricate: given a, b, P and D, we need to know at 
what condition there exists Q such that: 

(5) f(Q) = Pb2 - 3Qab + 9a P2 0 

(6) -P? Q < P 3D + Q2 

Of course, (3D+Q2)/4P is equal to R, but we do not want too many variables in 
there. Given (5), and if we recall that both a and b are non-negative, the rightmost 
inequality in (6) becomes 

Q >, aP(b2 + 9a2 _ P) =: U 
3ab 

Let's study (5) as a quadratic equation in Q: its discriminant is 

A = 4P3 - 27a2DI 
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and we have 

f(-P) = P2(3a + 2b)2 - A 

f(P) = P2(3a-2b)2 _ A 
p2 

f(U) = _ b2_ 2+p2_ 

Finally, its minimum is reached at Qm~i = 2bP/3a > 0, the sign of the minimal 
value being opposite to the sign of A, and thus negative. 

Call respectively Pi(D) and P2(D) the positive real solution of the equations: 

-4P3 + (3a - 2b)2P2 + 27a2D = O 

-4P3 + (3a + 2b)2P2 + 27a2D = 0 
(these always exist) and P3(D) < P4(D) the two positive solutions of 

P2(b2 - 9a2 + p)2 - 4b2p3 + 27a2b2D = O 

Both P3 and P4 only exist when 4p2 > 3D, otherwise the left-hand expression 
remains positive. Of course, these three equations correspond to F(P) = 0, 
F(-P) = 0 and F(U) = 0 respectively. There are two cases: 

* 0 ? b < 3a/2. Then Qmji < P. There is a solution in [-P, Qmjin] if and only 
if f(-P) > 0, U < Qmin, and f(U) ? 0. And a solution in [QminP] if and 
only if f(P) ? 0, and either f(U) < 0 or U < Qmin. 

* b > 3a/2. Now Qmin > P, thus any solution will lie in [-P, Qminj. The 
corresponding statement from the preceding case holds verbatim, save that 
U < Qmin can be replaced by U < P, which is a little more precise but is a 
consequence of the other two inequalities. 

Because of the trivial equality c = (b2 - P)/3a, we only need to bound P. This 
will involve the quantities P (D) defined above. Applying the implicit function 
theorem yields that P,(D), P2(D), and P3(D) are increasing with D, while P4(D) 
decreases. Recalling that p2 < D < X, we call Pi(X) = Pi, for all 1 < i < 4. We 
have Pi(p2) = P3(P2) = 9a2 - 3ab + b2 and p2(p2) = P4(p2) = 9a2 + 3ab + b2. 

Remark first that, in the case U < Qmin, i.e. P + b2 - 9a2 ? 0, we have 
f(-P) < f (U) if and only if P < 9a2 + 3ab + b2, i.e. c -3a -b. Now we 
enumerate. 

Suppose first that b > 3a/2. 
As U ? Qmin, we have P + b2 - 9a2 2 0, that is c < 2b2/3a - 3a. But U < P 

yields c b - 3a which is better. We see that P2(b2- 9a2 + p)2 ? b2P2(3a + 2b)2 
if and only if c < -3a - b, in which case only f (-P) is involved. 

* If -3a - b < c < b - 3a, we have P < P3 or P ? P4 and this implies P < P2. 
* If c <-3a-b, we have P < P2. 

Now, we consider 0 < b < 3a/2. 
* If c > -3a + 2b2/3a, then U > Qmin. And we have f (U) < 0 < f (P), that is 

P3(P2) ? p ? P4(p2), i.e. -3a - b < c < b - 3a, and P ? P1, which implies 
that P < P2. 

* If -3a - b < c < -3a + 2b2 /3a, we need f(U) ? 0, i.e. P < P3 or P ? P4. 

* If c <-3a-b, we still have P ? P2. 

All of these imply that P < P2. 
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Remark 3.6. As far as c is concerned, we proved a much more precise statement 
than (3). But we will have no use for it, as it would only affect a small range of c, 
of the order of b, that is at most X1/4. And we would then have to solve several 
extra equations involving cube roots. It turns out this is not a fair trade. 

We now recall some of the densities computed by Davenport and Heilbronn in 

[4] and [6]: 

Theorem 3.7. Let H +(X), resp. N+(X) denote the number of classes of equiv- 
alent cubic forms, resp. of isomorphism classes of real cubic fields, with positive 
discriminant less than X. As X tends to +oo, we have: 

(7) H3 (X) 72+ C+ . X516 + o(X2/3+6) 0.137 X 

X X 
(8) N+(X) = 12((3) log2 0.0693X 

Remark 3.8. The non-principal part in (7) is actually due to Shintani [15], improv- 
ing on Davenport's original result [4]. The error term in (8) was proved in [2]. 

Once a, b, c are set as in Lemma 3.5, the coefficient d satisfies: 

(9) (-27a2)d2 + 2(9abc - 2b3)d + (b2c2 - 4ac3 -X) (0 

as well as 

(10) Ibc - 9adl < b2- 3ac < C2- 3bd 

and the number of such (a, b, c, d) is then about H+ (X). Now, due to 

H+(X) _12(3)1r2 1.97 
N+ (X) 72 

as X tends to infinity, only about half of these quadruplets will be eliminated for 
congruence reasons. So there is very little waste among the polynomials we produce. 

Our reduction theory being so explicit, it is very easy to characterize subclasses 
of cubic fields: 

Proposition 3.9. Let K be a real cubic field, FK be the associated reduced form, 
with the normalization Q ? 0, and HK = (P, Q, R) its Hessian. Then 

1. K is cyclic (i.e. disc(K) = f2) if and only if HK = fH(1, 1,1). 

2. disc(K) = 5f2 if and only if HK = fH(l, 1, 4) or HK = fH(2,1,2). 
3. disc(K) = 8f2 if and only if HK = fH(l, O, 6) or HK = fH(2,0,3). 
4. disc(K) = 12f2 if and only if HK = fH(l,0,9) or HK = fH(2,2,5), or 

HK = fH(l, O. 1) 
5. Let A2 > 0 be a fundamental discriminant, then disc(K) = ZAf2 if and only 

if HK is a multiple of a primitive reduced form whose discriminant is -3/\ 

(f = fH) or-ZA/3 (fH= 3f and 31 f ). 

Proof. Part 5 is a simple consequence of Lemma 1.6 and our definition of reduced 
forms. The other assertions follow easily from this one. D 

Due to the trivial equality 

(11) H(b,-3a) = p2 
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we can "easily" build back the fields from a given discriminant. The preceding 
proposition gives all the possible Hessians. For all of them equation (11) has finitely 
many solutions, and given a, b and the Hessian, the cubic form is completely de- 
termined. An explicit study of the Hessian's automorphisms would even yield a 
complete one-to-one parametrization for the fields whose discriminant has the form 
Aff2. 

4. COMPLEX CUBIC FIELDS 

In the complex case, our version of Hermite reduction does not work anymore: 
there can be many reduced forms in a given class of indefinite quadratic forms, 
and selecting one among these is awkward. We use instead an even simpler idea 
of Mathews and Berwick: if an irreducible cubic form F = (a, b, c, d) has negative 
discriminant, it has a unique real root 0 , Q, and we can factor F (in R[x, y] !): 

F(x, y) = (x-Oy) (Ax2 + Bxy + Cy2) 

One easily computes 

disc F = (B2 - 4AC) (A02 + BO + C)2 

As disc F < 0, the "quadratic factor", QF = (A, B, C), has negative discriminant 
and we can impose A ? 0 by changing the signs of x and y. We have: 

a=A, b=B-OA, c=C-OB and d=-OC . 

Apart from a proportionality factor, (A, B, C) is covariant under GL2 (R). Indeed 
given 

M=(a b) M (c d) 

we have 

QFoM = la - c QF o M 

We define: 

Definition 4.1. An integral binary complex cubic form F is reduced if 0 < JBI < 
A < C, and 

* a >0. 
* b ? 0, with d > 0 if b = 0. 

Note that if F is irreducible, then 0 is an irrational number, and this excludes 
our former special cases: B = 0, A = JBI or A = C. Another nice feature is that 
we do not have to factor F at all: 

Lemma 4.2. A complex cubic form F = (a, b, c, d) is reduced if and only if: 

(12) d2 - a2+ ac-db > 0 

(13) -(a-b)2 -ac<ad-bc< (a+b)2 + ac, 

(14) a>0, b0 andd>O wheneverb=0 

Proof. See [13]. E 

Lemma 4.3. 
1. A reduced complex cubic form belonging to U is irreducible. 
2. Any irreducible complex cubic form is equivalent to a unique reduced one. 
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Proof. 

1. Just as in the proof of Corollary 3.3, a complex reducible form belonging to 
U is equivalent to G = y(x2 + 6y2) or G' = y(X2 + xy + 5y2), with 6 ? 1. If a 
reduced form F = (x - Oy) (Ax2 + Bxy + Cy2) is equivalent to G or G', then 
(A, B, C) is equivalent to a multiple of either (1, 0, 6) or (1, 1, 6). As both are 
reduced, (A, B, C) is equal to one of them or their inverse, thus B = 0 or 
A = ?B, all of which are forbidden. 

2. We only need to show that two reduced irreducible equivalent forms are equal. 
Let F = G o M, M E GL2 (Z) be two equivalent reduced forms. Then there 
exists A E IR* such that AQF = QG o M. We deduce AQF = QG, thus M 
is an automorphism of QF. The proof then goes as before save that, as the 
forms are irreducible, all special cases are excluded. 

The equivalent of Lemma 3.5 is much simpler: 

Lemma 4.4. Let F = (a, b, c, d) be a reduced form whose discriminant lies in 
[-X, 0[. We have: 

(16X)1/4 
(15) 1 a 27) 

3a X 1/23a2 
(16) 0 2 + 3 - 4 

(17) 1 - b < c < U(a, b) + (4a)l/ 

where U(a, b) = b2/3a if a ? 2b/3, and b - 3a/4 otherwise. 

Proof. Write F = (x - Oy) (Ax2 + Bxy + C), and recall that 

a=A, b=B-OA, c=C-OB. 

Setting 3A = 4AC - B2, we have 

IBI < A < C and A2 <A/ 

We set D = discF/. From the equality D = 3 A(A02 + B1 + C)2, we get 

2a0 =-B 4a ( -3A 

The expression under the square root must be positive, so we obtain 

(18) 16a2D > 27A3 ? 27a6 

and, recalling that D < X, we get (15). From b = B - AO, we derive 

3B (D 1/2 3A 
2 3A 4 

The square root is a decreasing function of A. Hence, using JBI < a and A ? a2, 
(16) follows. 
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We have c = R - OB > A - C > A - 01A. From JBI < A, we get lb + Oal < a, 
which implies 0al < a + b. Thus c > -b, which is the left-hand side of (17). To 
get the right-hand side, we use the explicit formulas for b and c, which yield 

4ac =-3B2 + 4bB + 3Z =: Q(B) . 

The quadratic form Q(B) reaches its maximum 4b2/3 when B = Bo = 2b/3. But, 
as we must have B < A = a, this has to be replaced by U(a) whenever Bo > a, 
and we are done. D 

As before, we get a linear number of loops, and the corresponding theoretical 
values, as given in [2, 5, 6, 15], are as follows: 

Theorem 4.5. Let H37 (X), resp. N3 (X), denote the number of classes of equiv- 
alent cubic forms, resp. of isomorphism classes of cubic fields, with negative dis- 
criminant greater than -X. As X tends to +oo, we have: 

(19) H-(X) = rX x56 4 411 X 
24 
X _ _ 

(20) N3 (X) = 4((3) +o(lo .2O08 -X 

Remark 4.6. If we want an equivalent to Proposition 3.9, the complex situation is 
not as favorable as the real one. The possible quadratic covariants are difficult to list 
directly in a practical computational sense: their coefficients are not even rational. 
Thus we resort to Hermite reduction. Let K be a complex cubic field and suppose 
that disc(K) = Zf 2 (A\ negative). We choose a system S of representatives for 
the classes moduleo GL2(Z)!) of quadratic forms of discriminant -3Z\ and -//3. 
Then the canonical form FK is equivalent to a cubic form whose Hessian HK is a 
multiple of a primitive form H in S. 

Now another problem arises: (11) has positive discriminant, and thus an infinite 
number of solutions. This can be circumvented as we only need to find the solutions 
(a, b) modulo the cubes in Aut H. Namely, a simple computation shows that when 
M belongs to Aut H, replacing F by F o M multiplies (b, -3a) by M3. The cubic 
forms obtained can now easily be reduced in our former sense. 

5. IMPLEMENTATION 

Let P be some integer. Using an elementary sieve, we need to precompute the 
list of "non-squarefree" numbers n ? X, such that there exists a prime p > P, with 
p2in. One can trivially bound their number by: 

Z4X +0cdi7rt) E 2 <_ x j 2 

The following well-known inequalities, due to Rosser and Schoenfeld [14, Theo- 
rem 1], give us a simple uniform bound: 
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where the left-hand side is valid for x > 59, and the right-hand side for x > 1. 
Thus, if P > 59: 

/+? daf& t) 7(P) [+00 27r(t)dt 
Jp t2 p2 OP t 

1 1 + "O? 2 dt [+00 3dt 
< - P logp(1+ 2?logp) + t2ilogt+ t2 log2t 

+00 2 dt 

P log Px 2 log P) t2 log2t 

1 1i 
P log P 2log P 

Thus, depending on available memory and X, one can fix a P such that we can 
test if an integer bounded by X is squarefree in at most ir(P) divisions and a quick 
binary search, which can itself be optimized with hashing techniques. For instance, 
we can sort the lists according to the high-order bits of the discriminant; as we now 
only need to store the low-order bits, a careful implementation will keep to 32-bit 
integers far beyond the practical range of the algorithm. Having decided to use at 
most 32Mo in RAM for the hashing lists, we took P = 97 to compute a table up 
to X = 1010 and P = 661 up to X = 1011, trial division up to P still taking most 
of the computational time. 

Call M the maximum memory one is willing to spend for the hashing lists, i.e. 
we will keep at most M 32-bit integers in RAM. We use the following initialization 
routine: 

Sub-Algorithm 5.1 (init). 

1. [Initialize primes] Input X, the discriminant bound. Compute a table of 

primes up to +/X, p [ ], as well as their squares pp []. Using a binary search, 
find the minimal prime p such that: 

p log p 2 log p 3 

If p ? 53, find the minimal prime p such that 

-2 -2 3M 1I1' 
X log 59 2 log 59 

If p < 5, set p = 5. Set index such that p [index] =p. 
2. [Initialize sieve] Put in list [] all the integers less than X, prime to 6, and 

admitting a divisor pp [i], i > index. Fill in boolean array sqfull [ ] up to 
n = 3X, such that sqfull En] is true if and only if p21rn for some prime 
p 5. 

The primes 2 and 3 are special cases anyway and can be readily suppressed from 
the discriminant factorization: a single division modulo 72 is enough. Thus, one 
can restrict the lists to integers prime to 6, and there are then 6/p(6) = 3 times 
less numbers to keep in memory. Hence the 3 M instead of M in Step 1, as well as 
the test for p < 5. The bound 3X in the definition of sqfull was chosen because 
we primarily want to test fH with it. 

The following common subroutine checks whether a reduced form belongs to Up, 
forp > 2. 
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Sub-Algorithm 5.2 (test(fH, a, b, c, d, /\)). 
Input: (a, b, c, d) a reduced cubic form belonging to U2, fH and /\ respectively the 
content and discriminant of its Hessian (recall that A = -3 disc(a, b, c, d)). 
Output: F if it belongs to U, nothing otherwise. 

1. If (a, b, c, d) does not belong to U3, as in Lemma 1.2, or sqfull [fH] is true, 
then return. 

2. Set t = z\/fH, and t = t/ gcd(t, 72) so that now t is prime to 6. If gcd(t, fH) > 

1, return. 
3. Return if t is not squarefree. The test should be done as follows: if n is 

small enough (n ? 3X) return if sqfull En] is true. Else search the sorted 
by construction list for n, then trial divide n by pp [i], 2 < i < index, 
returning as soon as n is found or one pp [i] divides n. 

4. Output (a, b, c, d). 

5.1. Real cubic fields. The actual algorithms are now simple to write: 

Sub-Algorithm 5.3 (is-real-field(a, b, c, d, PI Q, R)). 
Input: a real cubic form F = (a, b, c, d), and its reduced Hessian (P, Q, R). 
Output: F, if it corresponds to a real cubic field. 

1. [Check special cases] 
* if P = Q: if bI b 13a - bj, return. 
* if P = R: if a > dl, return. If a = Idl and Jbj > Icl, return. 
* if Q- = R: if 41P return. Execute test(P, a, b, c, d, 3P2), then return. 

2. Set /\ = 4PR - Q2. If 161/\ or [A \12 (mod 16) and either P or R is odd], 
return. 

3. Set fH = gcd(P, Q, R), then execute test(fH,a, b, c, d, A). 

Algorithm 5.4 (CRFCRF1). 

1. Execute init. 

2. [Special case b = 0] Execute three embedded loops on a, c, d in this nesting 
order. Set the bounds using the reduction inequalities a > 0, b ? 0 and (10), 
as well as (9) and Lemma 3.5. Compute the Hessian (P, Q, R), then execute 
is-real-field (a, 0, c, d, P, Q, R). 

3. [General case] We now have four loops on a, b, c, d in this order, with the 
additional inequality b > 0. Compute the Hessian (P, Q, R), then execute 
is-real-field (a, b, c, d, P, Q, R). 

Remark 5.5. Great care must be taken in setting the bounds for the various loops 
to avoid round-off errors. Also, many computations can be done at an early stage. 
For instance, P - b2 - 3ac can be computed before d is known. This is tedious 
but straightforward, so we chose not to hide the simplicity of the algorithm behind 
scores of auxiliary variables and explicit complicated bounds. 

5.2. Complex cubic fields. Though it is now easier to test whether a form cor- 
responds to a field, the general algorithm is a little more complicated than the 
previous one. First, because our reduction inequalities now involve solving (12) 
which is quadratic in d. And second, they do not imply anymore that the form 
discriminant has the expected sign: a test run of the algorithm after removing the 

stands for Cubic Real Fields Counting Reduced Forms. 
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sign condition will produce scores of counterexamples. Thus, we will have to deal 
with three quadratic inequalities instead of one. 

Sub-Algorithm 5.6 (is-complex-f ield(a, b, c, d, PI Q, R)). 

1. Set A2 = Q2 - 4PR. If 161 A or [/\- 4 (mod 16) and either P or R is odd], 
false. 

2. Set fH = gcd(IPI, IQI, IRI), then execute test(fH, a, b,c, d,i /). 

The shape of the algorithm is the same: 

Algorithm 5.7 (CCFCCF2). 

1. Execute init. 

2. [Special case b = 0] Execute three embedded loops on a, c, d in this nesting 
order. The bounds are set using the reduction inequalities a > 0, b > 0 and 
Lemma 4.2, and the discriminant ones arising from -X < disc F < 0 and 
Lemma 4.4. Compute the Hessian (P, Q, R). 
Execute is-complex field (a, 0, c, d, P, Q, R). 

3. [General case] We now have four loops on a, b, c, d in this order, with the 
additional inequality b > 0. Compute the Hessian (P, Q, R), then execute 
is-complex-f ield (a, b, c, d, PI Q, R). 

5.3. General remarks. All these algorithms have been implemented in ANSI C on 
a DEC alpha (64-bit machine) with the help of the PARI library - see [1] for details 
on this useful number theory package. 

* One can sensibly compute the number of (isomorphism class of) cubic fields 
up to X : 1011 in this way. As one can see from Table 6.1, the overhead compu- 
tations in subroutine init take a negligible time, thus the algorithm can easily be 
distributed. 

* The intermediate results all fit in single precision long integers on 64-bit ma- 
chines for reasonable X: say, less than 1012 in the real case, and 5.1010 in the 
complex case. 

* It might happen that for given (a, b, c) satisfying our bounds, there does not 
exist d such that the form (a, b, c, d) is both reduced and has a discriminant in the 
expected range. One can prove the number of these "empty loops" is a O(X314). 

* If one compares with methods originating from Hunter's theorem, the gain 
is gigantic: no irreducibility check, no discriminant factorization, no search for 
automorphisms and thus, no need to keep all the fields found so far in memory. We 
get an essentially linear algorithm. The main loop is executed less than C.X+o(X) 
times, with C = 7r2/72 in the real case and C = 7r2/24 in the complex case. And all 
the rest is overhead computations, dominated by the main loop, save for the time 
spent searching the lists for non-squarefree numbers, or trial dividing to locate small 
square factors, which remains reasonable for the practical range of the method. As 
a matter of fact, sorting the fields by increasing discriminant takes much more time 
than actually computing them. 

* It is feasible to compute fields whose discriminants lie in an interval [X, X + Y], 
for very large X, say 1015, when Y is small enough, say 106. We incorporate the 

2stands for Cubic Complex Fields Counting Companion Forms. 
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relevant discriminant inequality in the loops and, instead of using lists of precom- 
puted numbers, we factor the discriminant using a suitable probabilistic factoriza- 
tion method. The running time is then more or less the time needed to factor 
around Y numbers of size X. Of course, the empty loops become a problem if X 
is too large. 

6. RESULTS 

The following tables give an idea of computational time and memory usage. 
First, we consider the init routine, which does not depend on the signature. Most 
of the time in there is spent building sieves. We call P = p [index] the prime chosen 
to build the hashing lists. For instance, P = 5 means that no trial division actually 
takes place in sqfree. The "Square-full ints" column corresponds to the number 
of 32-bit integers stored in the lists: 

Next, we give the data corresponding to the computation of real and complex 
cubic fields. Here, a is the maximal value for the first coefficient of the cubic form. 
They happen to be the ones given by the bound in Lemma 3.5 in the real case. 
And one less than the ones in Lemma 4.4 in the complex case, with the exception 
X = 104 where we get the exact bound. As was expected, we get a roughly linear 
behavior as long as P = 5, which quickly "diverges" as P increases. Up to the same 
discriminant bound, time spent for the complex computations compared to the real 
ones should be in the same ratio as the number of fields found: slowly decreasing 
in the given examples, equal to 3 at infinity due to Davenport-Heilbronn's result 
(not exactly so, the initializing step being exactly the same). But, as pointed out 
at the beginning of ?5.2, the complex situation is a little worse, due to the extra 
square roots. 

Such tables had previously been given by Fung-Willams [7] in the complex case 
(discriminant greater than -106) and Llorente-Quer [12] in the real case (discrim- 
inant lower than 107). Our results are in accordance with the former but disagree 
by one field with the latter. As these authors already pointed out, the density of 
cubic discriminants slowly increases up to the Davenport-Heilbronn limit. Recall 
that it is respectively 1/12((3) 0.0693 and 1/4((3) 0.2080 in the real and com- 
plex case. Thus in our computations, up to X = 1011, the third decimal is already 
wrong. 

TABLE 6.1. Overhead computations 

X P Square-full ints Sieving time 

104 5 290 0.001 s 
i05 5 2935 0.01 s 
106 5 29370 0.1 s 
I07 5 293674 I-Os 
108 5 2936998 7.0 s 

P > 5 109 17 5474664 43s 
1010 97 6409864 356s (5 min 56 s) 
1011 661 6644929 3427s (58 min 15 s) 
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TABLE 6.2. Real cubic fields 

X # of fields Elapsed time a 

101 0 0.000 s 0 

1o2 2 0.000 s 1 

i03 27 0.000 s 2 

i04 382 0.005 s 3 
i05 4,804 0.05 s 6 

106 54,600 0.5 s 12 

I07 592,922 5.7s 21 
108 6,248,290 64s (I min 04 s) 38 

P > 5 109 64,659,361 774 s (12 min 54s) 68 

1010 661,448,081 18,641 s (5h 1min) 121 

1011 6,715,824,025 714,488 s (8 days 7 h) 216 

TABLE 6.3. Complex cubic fields 

X # of fields Elapsed time a 

101 0 0.000 s 0 

102 7 0.000 s 1 

i03 127 0.004 s 3 

i04 1520 0.04 s 7 
i05 17,041 0.3 s 14 

106 182,417 2.2 s 26 

I07 1,905,514 21.3 s 49 
1o8 19,609,185 224s (3 min 44 s) 86 

P > 5 109 199,884,780 2,575 s (42 min 55 s) 155 

1010 2,024,660,098 58,247 s (16 h 11 min) 276 

1011 20,422,230,540 2,207,413 s (25 days 13 h) 492 

But not so slowly if one considers the best proven error term in (8) or (20): 
O(X/ log2 X). In fact, if we write the experimental remainder as X/ log' X, and 
use the least square method to guess a "correct" value for a, we obtain an unstable 
behaviour: a increases steadily with the bound X, up to a 3.9 when X = 1011. 

Thus, for all we know, this error term might even decrease faster than all negative 
powers of log X. 

APPENDIX A. TABLE OF REAL CUBIC FIELDS 

The following lists the first hundred real cubic fields sorted by increasing dis- 
criminant. We give the following data from left to right: the discriminant, the 
canonical defining cubic form (instead of the binary form F(x, y), we give F(x, 1)), 
its Hessian written as fH(P1, Q1, R1), with (P1, Q1, R1) primitive, and the factor f 
from the discriminant (Disc=f2 A2, with zA2 a fundamental discriminant). Up to 
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a factor 3, f corresponds to the content fH of the Hessian. Starred discriminants 
denote cyclic fields, i.e. the ones whose Hessian is of the form (P, ?P, P). 

Disc F(X) Hessian f 
49* X3+X2-2X-1 7(1,1,1) 7 
81* X3-3X-1 9(1,1,1) 9 

148 X3+X2-3X-1 2(5,3,6) 2 
169* X3+X2-4X+1 13(1,-1,1) 13 
229 X3-4X-1 (12,9,16) 1 
257 X3+2X2-3X -1 (13,3,15) 1 
316 X3 +2X2 -3X -2 (13,12,21) 1 
321 X3+ X2 -4X -1 (13,5,19) 1 
361* X3 + 2X2 - 5X + 1 19(1, -1, 1) 19 
404 X3+X2-5X +1 2(8,-7,11) 2 
469 X3+2X2 -4X -1 (16,1,22) 1 
473 X3-5X -1 (15,9,25) 1 
564 X3+2X2-4X -2 2(8,5,14) 2 
568 X3+4X2- X -2 (19,14,25) 1 
621 X3+3X2-3X -2 9(2,1,3) 3 
697 X3+3X2-4X -1 (21,-3,25) 1 
733 X3 +2X2 - 6X + 1 (22,-21,30) 1 
756 X3-6X-2 18(1,1,2) 6 
761 X3+X2-6X+1 (19,-15,33) 1 
785 X3+2X2-5X-1 (19,-1,31) 1 
788 X3+4X2-2X-2 2(11,5,14) 2 
837 X3-6X-1 9(2,1,4) 3 
892 X3 +5X2 -2 (25,18,30) 1 
940 X3+3X2-4X -2 (21,6,34) 1 
961* 2X3+ X2 -5X -2 31(1,1,1) 31 
985 X3+ X2-6X -1 (19,3,39) 1 
993 X3+2X2-5X -3 (19,17,43) 1 

1016 X3+ X2 -6X -2 (19,12,42) 1 
1076 X3 + 3X2 - 5X - 1 2(12,-3,17) 2 
1101 X3 +5X2- X -2 (28,13,31) 1 
1129 X3+3X2-4X -3 (21,15,43) 1 
1229 X3 + 2X2 - 6X -1 (22,-3,42) 1 
1257 X3 + 2X2 - 7X + 1 (25, -23,43) 1 
1300 X3 + 3X2 - 7X + 1 10(3,-3,4) 10 
1304 2X3 + 3X2 - 4X - 2 (33, 24,34) 1 
1345 X3-7X -1 (21,9,49) 1 
1369* X3+4X2-7X +1 37(1,-1,1) 37 
1373 X3+3X2-5X -2 (24,3,43) 1 
1384 X3+5X2-2X -2 (31,8,34) 1 
1396 X3+2X2-6X -2 2(11,3,24) 2 
1425 X3+4X2-3X -3 5(5,3,9) 5 
1436 X3+6X2+ X -2 (33,24,37) 1 
1489 X3+4X2-5X -1 (31,-11,37) 1 
1492 X3+4X2-4X -2 2(14,1,20) 2 
1509 X3 +2X2 -6X -3 (22,15,54) 1 
1524 X3+ X2-7X -1 2(11,1,26) 2 
1556 X3+5X2- X -3 2(14,11,23) 2 
1573 X3+ X2-7X -2 11(2,1,5) 11 
1593 X3+3X2-6X -1 9(3,-1,5) 3 
1620 X3 + 6X2 - 2 18(2,1,2) 18 
1708 X3+4X2-3X -4 (25,24,57) 1 
1765 X3 +5X2 -3X -2 (34,3,39) 1 
1772 2X3+ X2-6X -2 (37,30,42) 1 
1825 X3+2X2-7X -1 5(5,-1,11) 5 
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1849* 2X3+ X2-7X +2 43(1,-1,1) 43 
1901 X3 +4X2 -4X -3 (28,11,52) 1 
1929 X3 +5X2 - 2X -3 (31,17,49) 1 
1937 X3+ X2-8X +1 (25,-17,61) 1 
1940 X3-8X -2 2(12,9,32) 2 
1944 X3+3X2-6X -2 27(1,0,2) 9 
1957 X3 + 2X2 - 8X + 1 (28, -25,58) 1 
2021 X3 - 8X -1 (24,9, 64) 1 
2024 X3+4X2-5X -2 (31,-2,49) 1 
2057 X3 + 3X2 -8X + 1 11(3,-3,5) 11 
2089 2X3 + 3X2 - 5X - 2 (39,21,43) 1 
2101 X3+4X2-6X -1 (34,-15,48) 1 
2177 X3+2X2-7X -3 (25,13,67) 1 
2213 X3+7X2+3X -2 (40,39,51) 1 
2228 2X3+2X2-6X -1 2(20,3,21) 2 
2233 X3+X2 -8X -1 (25,1,67) 1 
2241 X3+3X2-6X -3 9(3,1,7) 3 
2292 2X3 + 4X2 - 4X - 3 2(20,19,26) 2 
2296 X3+7X2+2X -2 (43,32,46) 1 
2300 X3+ X2 -8X -2 5(5,2,14) 5 
2349 X3+6X2-3 9(4,3,6) 9 
2429 2X3 + X2 -7X + 1 (43, -25,46) 1 
2505 X3 +4X2 -5X -3 (31,7,61) 1 
-2557 X3+ X2 - 9X + 2 (28, -27,75) 1 
2589 2X3 + 5X2 - 3X - 3 (43,39, 54) 1 
2597 X3+2X2-8X -1 7(4,-1,10) 7 
2636 2X3-7X -1 (42,18,49) 1 
2673 X3 -9X -3 27(1,1,3) 9 
2677 X3 +3X2 - 7X -2 (30, -3,67) 1 
2700 X3+6X2-3X -2 45(1,0,1) 15 
2708 X3 + 4X2 - 6X - 2 2(17, -3,30) 2 
2713 X3 +6X2- X -3 (39,21,55) 1 
2777 X3+5X2-6X -1 (43,-21,51) 1 
2804 X3+ X2 -9X +1 2(14,-9,39) 2 
2808 X3 -9X -2 9(3,2,9) 3 
2836 X3+2X2-8X -2 2(14,1,38) 2 
2857 X3 + 2X2 - 9X + 1 (31, -27,75) 1 
2917 X3 +5X2 -5X -2 (40,-7,55) 1 
2920 2X3 + 4X2 - 5X - 2 (46,16,49) 1 
2941 2X3+ X2-7X -1 (43,11,52) 1 
2981 X3 +5X2 -3X -4 (34,21,69) 1 
2993 X3+5X2 -4X -3 (37,7,61) 1 
3021 X3+2X2-8X -3 (28,11,82) 1 
3028 X3+3X2-7X -3 2(15,3,38) 2 
3124 2X3+6X2-2X -3 2(24,21,29) 2 
3132 2X3+3X2-6X -2 9(5,2,6) 3 

APPENDIX B. TABLE OF COMPLEX CUBIC FIELDS 

The following gives the corresponding data for complex cubic fields. 

Disc F(X) Hessian f 
-23 X3+ X2+2X +1 (-5,-7,1) 1 
-31 X3+ X +1 (-3,-9,1) 1 
-44 X3+2X2+2X +2 2(-1,-7,-4) 2 
-59 X3+2X +1 (-6,-9,4) 1 
-76 X3+ X2+3X +1 2(-4,-3,3) 2 
-83 X3+ X2+ X +2 (-2,-17,-5) 1 
-87 X3+2X2+3X +3 (-5,-21,-9) 1 
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-104 2X3+2X2+3X +1 (-14,-12,3) 1 
-107 X3+ X2+3X +2 (-8,-15,3) 1 
-108 X3+3X2+3X +3 18(0,-1,-1) 6 
-116 X3+ X2+2 (1,-18,-6) 1 
-135 X3+3X +1 9(-1,-1,1) 3 
-139 X3 + 2X2 + 2X + 3 (-2,-23,-14) 1 
-140 X3+2X+2 2(-3,-9,2) 2 
-152 2X3+3X2+4X +2 (-15,-24,-2) 1 
-172 2X3 + 2X + 1 2(-6,-9,2) 2 
-175 X3+ X2+2X +3 5(-1,-5,-1) 5 
-199 X3+ X2+4X +1 (-11,-5,13) 1 
-200 X3+2X2+3X +4 5(-1,-6,-3) 5 
-204 X3+ X2+ X +3 2(-1,-13,-4) 2 
-211 2X3+ X2+3X +1 (-17,-15,6) 1 
-212 X3 + X2 + 4X + 2 (-11,-14,10) 1 
-216 X3+3X +2 9(-1,-2,1) 3 
-231 X3+2X2+ X +3 (1,-25,-17) 1 
-239 X3 + 3X2 + 2X + 3 (3,-21,-23) 1 
-243 X3+3X2+3X +4 27(0,-1,-1) 9 
-244 2X3 + 2X2 + 3X + 2 (-14,-30, -3) 1 
-247 X3 + 3X2 + 4X + 5 (-3,-33,-29) 1 
-255 X3+ X2+3 (1,-27,-9) 1 
-268 2X3 + 4X2 + 4X + 3 2(-4,-19,-10) 2 
-283 X3 + 4X + 1 (-12,-9,16) 1 
-300 2X3+2X2+4X +1 10(-2,-1,1) 10 
-307 X3+2X2+4X +5 (-8,-37,-14) 1 
-324 2X3 + 3X + 1 9(-2,-2,1) 9 
-327 3X3+3X2+4X +1 (-27,-15,7) 1 
-331 X3+ X2+3X +4 (-8,-33,-3) 1 
-335 X3 + 2X2 + 5X + 5 (-11,-35,-5) 1 
-339 X3+ 2X2 + 3 (4,-27,-18) 1 
-351 X3 +3X +3 9(-1,-3,1) 3 
-356 2X3 + X2 + 2X + 2 (-11,-34,-2) 1 
-364 X3+4X +2 2(-6,-9,8) 2 
-367 X3 + 2X2 + 3X + 5 (-5,-39,-21) 1 
-379 X3+ X2+ X +4 (-2,-35,-11) 1 
-411 X3 + X2 + 5X + 2 (-14,-13,19) 1 
-419 2X3 + X2 + 3X - 1 (-17,21,12) 1 
-424 3X3 + 4X2 + 5X + 2 (-29,-34,1) 1 
-431 2X3 + X2 + 3X + 2 (-17,-33,3) 1 
-436 X3 + 3X2 + 4X + 6 (-3,-42,-38) 1 
-439 X3 +2X2 - X + 3 (7,-29,-17) 1 
-440 2X3+ X +2 (-6,-36,1) 1 
-451 2X3+3X2+5X +3 (-21,-39,-2) 1 
-459 2X3+3X2+3X +3 9(-1,-5,-2) 3 
-460 X3+ X2+5X +3 2(-7,-11,8) 2 
-472 2X3 + 4X2 + 5X +4 (-14,-52,-23) 1 
-484 X3+2X2+5X +6 11(-1,-4,-1) 11 
-491 X3 + 2X2 + 2X + 5 (-2,-41,-26) 1 
-492 X3 + 2X2 + 4X + 6 2(-4,-23,-10) 2 
-499 X3+4X +3 (-12,-27,16) 1 
-503 2X3 + 5X2 + 5X +4 (-5,-47,-35) 1 
-515 X3+4X2+4X +5 (4,-29,-44) 1 
-516 3X3+3X2+4X +2 (-27,-42,-2) 1 
-519 3X3+5X2+6X +3 (-29,-51,-9) 1 
-524 X3 + X2 + 3X + 5 2(-4,-21,-3) 2 
-527 X3 + 5X + 1 (-15,-9,25) 1 
-543 X3 + X2 + 2X + 5 (-5,-43,-11) 1 
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-547 3X3 + 2X2 + 4X + 1 (-32,-19,10) 1 

-563 X3 + X2 + 5X + 4 (-14,-31,13) 1 
-567 3X3 + 3X + 1 9(-3, -3,1) 9 
-588 X3 + 2X2 + 6X + 6 14(-1, -3,0) 14 
-620 2X3+4X +1 2(-12, -9,8) 2 
-628 2X3 + 5X2 + 6X + 5 (-11, -60, -39) 1 
-643 X3 +3X2+ X +4 (6,-33,-35) 1 
-648 2X3 + 3X + 2 9(-2, -4,1) 9 
-652 2X3 + 2X2 + 4X + 3 2(-10, -23, -1) 2 
-655 X3 +2X2+ X +5 (1,-43,-29) 1 
-671 X3 + 3X2 + 2X + 5 (3, -39, -41) 1 
-675 X3+3X2+3X +6 45(0,-1,-1) 15 
-676 2X3+2X2+5X +2 13(-2, -2,1) 13 
-679 X3+3X2+4X +7 (-3,-51,-47) 1 
-680 2X3 + 2X2 + 5X + 1 (-26, -8,19) 1 
-687 X3+2X2+5X +7 (-11,-53,-17) 1 
-695 X3 + 4X2 + 5X + 7 (1, -43, -59) 1 
-696 X3 +2X2- X +4 (7,-38,-23) 1 
-707 X3 + 3X2 + 5X + 8 (-6, -57,-47) 1 
-716 3X3 + X2 + 3X - 1 2(-13,15,6) 2 
-728 X3+ X2+6X +2 (-17,-12', 30) 1 
-731 X3 + 2X2 + 4X + 7 (-8,-55,-26) 1 
-743 X3+5X + 3 (-15,-27,25) 1 

o-744 2X3+ X2+4X -1 (-23,22,19) 1 

-748 X3 + 2X2 + 2X + 6 2(-1,-25,-16) 2 
-751 X3+ X2+6X +1 (-17,-3,33) 1 
-755 X3+2X2+6X +7 (-14,-51,-6) 1 
-756 2X3 + 3X2 + 6X + 3 9(-3, -4, 1) 3 
-759 X3+ X2+6X +3 (-17,-21,27) 1 
-771 X3+ X2 +3X +6 (-8,-51,-9) 1 
-780 X3+4X2+4X +6 2(2,-19,-28) 2 
-804 X3 + X2 + 4X + 6 (-11, -50,-2) 1 
-808 X3+ X2+2X +6 (-5,-52,-14) 1 
-812 2X3 + 4X2 + 6X + 5 2(-10,-33,-12) 2 
-815 3X3 + 4X2 + 5X + 3 (-29, -61, -11) 1 
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