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COMPUTING STARK UNITS FOR TOTALLY REAL 
CUBIC FIELDS 

DAVID S. DUMMIT, JONATHAN W. SANDS, AND BRETT A. TANGEDAL 

ABSTRACT. A method for computing provably accurate values of partial zeta 
functions is used to numerically confirm the rank one abelian Stark Conjecture 
for some totally real cubic fields of discriminant less than 50000. The results 
of these computations are used to provide explicit Hilbert class fields and some 
ray class fields for the cubic extensions. 

1. INTRODUCTION 

Let K/k be an abelian extension of number fields with Galois group G = 

Gal(K/k) and let S be a finite set of places of k that includes the Archimedean 
places of k and all the places of k ramified in K/k. For any a E G the partial zeta 
function (Ss(s, a) is defined for Re(s) > 1 by 

(s(5, a)= E N 
Qt integral 
(Q,S)=1 

r2t =0r 

where the sum extends over all integral ideals Q( of k whose Frobenius symbol au 
for the abelian extension K/k is the given element a of G. 

For a character X of G define Ls(s, x) to be the L-series for X with the Euler 
factors at S removed, which for Re(s) > 1 is given by the usual convergent Euler 
product: 

(pS)=1 ( Np) 
where X(P) = X(op) and the product is taken over all primes p of k not in the set 
S. 

Both (s (s, a) and Ls(s, X) have meromorphic continuations to the entire s-plane. 
The order r(X) of the zero of Ls(s, X) at s = 0 is one less than the number of places 
in S, ISI - 1, if X = 1 is the trivial character; and r(X) is the number of places v in 
S for which X is trivial on the decomposition group of v for the extension K/k if X 
is not trivial. 

In particular, suppose S contains at least two places, including one place v that 
splits completely in K. Then every Ls (s, X) has a zero of order at least one at s = 0 
and it follows that the same is true of the partial zeta functions. The abelian Stark 
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Conjecture, the first inklings of which appear in [20] and which was developed in 
the fundamental series of papers [22]-[25], is that the coefficient of s in the Taylor 
expansions of these zeta functions near s = 0 can be computed 'algebraically': 

Rank One Abelian Stark Conjecture. Under the hypotheses on K/k and S above, 
there exists an S-unit e in K such that 

* If S contains at least 3 places, then 1ej1X = 1 for all places w' of K not dividing 
the place v of k. In particular, e is a v-unit in K. 
If S = {v, v'}, then lc[ ,,, = 1el6J for all a E G and all places w' of K dividing 
V. 

* log 1&'W = -e(/(0,a) for all a E G, where e is the number of roots of 
unity in K, where w is a prime of K lying above the prime v of k that splits 
completely in K, and where the absolute values are normalized. Equivalently, 

LI (0, X) -e c GX(a) log VUK for all characters X of G. 
* The extension K(c1/') is an abelian extension of k. 

Remark. The statement above is stronger than the more conservative versions ac- 
tually conjectured (in print) by Stark, specifically with respect to the last abelian 
condition. The version above appears in [26]. A generalization of this Conjecture 
(again for -abelian extensions K/k) to higher-order zeros appears in [14], which is 
the reason we refer to this as the rank one situation. 

The purpose of this paper is to consider this conjecture in one of the first situ- 
ations for which it is not known, namely the situation of a totally real cubic base 
field k (the first section below indicates those situations in which the conjecture 
has been proved). This work was motivated by a computation of Stark. The meth- 
ods used to compute the relevant values of the partial zeta functions, described in 
Section 3, considerably improve upon Stark's original computations. In Section 4 
we use the results of these computations to indicate how Stark's conjecture can 
be used to compute explicit Hilbert class fields for some totally real cubic fields, 
very much in the spirit of Stark's interpretation of his conjecture as a step in the 
direction of solving Hilbert's 12th Problem. The complete numerical confirmation 
of Stark's conjecture for these cubic fields (to the accuracy of the computations, 
generally 10-30) is done in Section 5. An explicit interesting example is described 
in detail in Section 6 and the final section contains some relevant tables. 

2. PRELIMINARIES 

For a given abelian extension K/k, the hypotheses on the set S for the abelian 
Stark Conjecture St(K/k, S) of the previous section are that (1) S contains all the 
Archimedean primes of k and all the finite primes of k ramifying in the extension 
K/k, (2) S contains at least two primes, and (3) S contains at least one prime 
v decomposing completely in K/k. In this paper we shall be concerned with the 
situation where k is a totally real cubic field, K is a certain abelian extension of 
k unramified at all finite primes of k, and S consists precisely of the Archimedean 
primes of k. We first collect the known results regarding St(K/k, S) in this section 
(note, however, that the function field and local conjectures are not considered, nor 
are the connections with Kolyvagin Euler systems), and indicate the status of this 
Conjecture. The totally real cubic fields considered later are one of the first cases 
where the rank one Stark conjecture St(K/k, S) has not been proved. 
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(i) If S contains at least two primes totally split in K, then St(K/k, S) is true 
(for more or less trivial reasons: For X #4 1, L(s, x) has a zero at s = 0 of 
order at least 2, so we can take e = 1 if S has at least 3 elements. It remains 
to consider the case X 1 and S of cardinality 2, cf. [26], p. 91). 

(ii) In particular, if S contains at least 2 complex Archimedean primes, then 
St(K/k, S) is true, [26], p. 92. 

(iii) If St(K/k, S) is true, then St(K/k, S') is true for any S C S' (by induction: 
S' = U {V'} so ES, = 1-Fv where Fv is the Frobenius for v, cf. [26], p. 92). 

(iv) If St(K/k, S) is true, then St(K'/k, S) is true for k C K' C K, with unit 
given up to a root of unity by the norm: 4(NK/K (e) (this follows essentially 
formally from the functorial properties of the L-series, cf. [26], p. 92). See 
also [12]. 

(v) If k is totally real and v is a fixed (real) Archimedean place of k, then the 
field obtained by adjoining all Stark units e as K varies over fields in which v 
splits completely is essentially the full abelian closure of the embedding of k 
in JR defined by v ([26], p. 94). 

(vi) St(K/k, S) is true if k Q or if k is an imaginary quadratic field ([25], [26], 
p. 95, cf. also [7]-[9]). 

(vii) St(K/k, S) is true if IS] = 2, ([26], p. 98). 
(viii) St(K/k, S) is true if [K: k] = 2 (this follows from an analysis of the '? parts' 

of the classical formula for the residue at s = 0 of the Dedekind zeta functions 

([26], p. 104). 
(ix) St(K/k, S) is true if Gal(K/k) is of exponent 2 and order 2' with either K/k 

tamely ramified or ISI > m + 1, ([16], [17]). 
(x) St(K/k, S) is true if v is a finite prime, K is abelian over Q and S contains 

all primes dividing the discriminant of K over Q ([15]). 
(xi) If k is a totally real field and K is a CM field, then, under some mild additional 

assumptions on the set S depending on the field k, the first two parts of 
St(K/k, SU {v}) above (the "annihilation portion of the Brumer Conjecture") 
are true for all finite primes v whose order in the class group of k is odd ([28]). 

By (iii) it suffices, for a given abelian extension K/k, to verify St(K/k, S) with 
a minimal set S, i.e., for S consisting precisely of the Archimedean primes of k 
and the primes of k ramified in K. The minimal possible such set S would consist 
precisely of the Archimedean primes of k, which leads to a consideration of abelian 
extensions K/k that are unramified at all the finite primes of k. By (ii) we may 
take k either totally real or having precisely one complex Archimedean prime, and 
we may also assume that precisely one Archimedean prime of k splits completely 
in K. If this Archimedean prime is real, then all remaining real infinite primes of 
k become complex in K and this is the situation considered in this paper. (Note 
that to date no computations have been done in the situation where there is more 
than one Archimedean prime of k and the unique Archimedean prime of k splitting 
in K is complex.) Then, by (iv), we may assume that K is the maximal abelian 
extension K of k subject to these constraints. 

By (vi) the minimal fields k for which St(K/k, S) is not known to be true are 
real quadratic fields k and fields k with [k: Q] = 3. Stark considered the situation 
of real quadratic fields, publishing several examples but computing a number of 
others (also C. Fogel, [5]-, has computed a number of (unpublished) examples in 
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this case). Shintani, in [18] and [19], found some special cases of the Stark conjec- 
ture and computed the values of derivatives of certain L-series for real quadratic 
fields in terms of double P-functions, in particular computing a number of explicit 
examples (cf. also [1], [13], and [17] for some special cases). Hayes, in [10] and 
[11], has considered the real quadratic case in the situation where the prime v of 
k splitting in K is non-Archimedean. The next case to consider concerns cubic 
extensions k of Q which are either totally real (with one real Archimedean prime 

p(1) splitting completely in K and the other two ramifying) or have precisely one 
complex Archimedean prime (with the real prime ramifying in K). 

In this paper we consider the case where k is a totally real cubic field with 
Archimedean primes p jp(2, and p(3) . 

By the remarks above, the field K should be taken to be the maximal abelian 
extension of k unramified outside pj2) and p., (i.e., K is the ray class field of k of 
conductor p(2) (3)) and both p(2) and p(3) should ramify in K. The latter condition 
implies in particular that K, which contains the Hilbert class field H of k, should 
be in fact a proper extension of H. 

Because of the results of (viii) and (ix), it is of interest to consider the case where 
the class number of k is divisible by 3. Stark, in [21] and [25], (cf. also [26], pp. 
98-102) considered one numerical example of such a totally real cubic field having 
class number 3. In Stark's example the Hilbert class field H is obtained as the 
composite with k of an abelian extension of Q of degree 3 (i.e., H is a genus field 
over k). Discussion of this example between Stark and the first author a few years 
ago suggested consideration of a field k for which H is not a genus field, which 
led to the investigations of this paper. The first totally real cubic field with class 
number divisible by 3 for which the associated Hilbert class field is not a genus field 
has discriminant Dk = 28212. This field is considered in some detail in Section 6 
below. 

3. COMPUTING DERIVATIVES OF THE PARTIAL ZETA FUNCTIONS 

For the reasons indicated in the previous section, let k be a totally real cubic 
field of class number 3 and let S consist of the Archimedean primes fp 00, I Poo I } 
of k. Denote by Dk (resp., Sk) the discriminant (resp., different) of k over (Q. Let 
H be the Hilbert class field to k and let K be the ray class field to k corresponding 
to the conductor p (2),(3) with Galois group G = Gal(K/k). The ray class group 
of conductor p(2) (3) is isomorphic to G under the Artin map which maps the class 
b to the Frobenius symbol ab = a% for any fractional ideal Qt in the class b. 

We assume that K is a proper extension of H, i.e., that [K: H] = 2 (as indicated, 
this avoids the trivial situation (i) of Section 2), and let T be a generator for the 
Galois group Gal(K/H) (so that T generates the decomposition group in K/k for 
both p(2 and p3,)). For any ray class b of k let b denote the class with aT = Tab 

in G. 
For simplicity let ((s, b) = (s(s, ab). Define (following Stark [21],[24]): 

Ab(s) ( Dk)P(s)P( 2 )2[(( b) - [(( 
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The function Ab (s) is entire and taking the limit as s tends to 0 shows that 

Ab (0) = 27r[('(0, b) - (/ (0O b)] 

Since 7r generates the decomposition group for both Archimedean primes p(2) and 

POO , for every character X of G with x(7r) = 1 the corresponding L-series L(s, X) = 

Ls(s, X) has a zero at s = 0 of order at least 2. It follows that 

I 
((s, b) + ((s, b) = - E X(b)L(s) X) 

x(Tr)= 
xEG 

also has a zero of order at least 2 at s = 0. Hence ('(0, b) + ('(0, b) = 0 and it 
follows that 

(1) Ab (0) = 4ir('(0, b). 

This formula allows us to reduce the computation of the values at zero of the deriva- 
tives of the partial zeta functions involved in Stark's Conjecture to the computation 
of the value at zero of Ab (s). In Stark's original computations, these values were 
computed as values of a triple integral of a three-dimensional theta function. The 
numerical evaluation of these integrals allowed only a limited accuracy and involved 
in particular the use of an iterative integration scheme which is not proved to con- 
verge to the correct value. 

As indicated in the Introduction, one of the purposes of the computation of the 
Stark unit is to use this numerical information to recognize the conjectured algebraic 
integers and then to use these algebraic integers to construct the relevant ray class 
fields. For this purpose, much higher accuracy than Stark's original computations 
is required. Rather than compute the values Ab (0) as iterated integrals, we instead 
compute them in terms of certain line integrals, which allows for increased accuracy 
and has the additional advantage of providing provably accurate results. This 
method was first introduced to us by E. Friedman and the argument leading to 
Proposition 1 below is from his paper [6]. 

The analytic function Ab (s) satisfies the functional equation 

A6 (1 - s) = -Ab (s) 

where the 'dual' ray class b is the class b-1[ok] in the ray class group of conductor 
(2) (3) J 0o P 0. 

For simplicity let A(s) = A (s) and A(s) = A (s). Define 

A+(z) = A(z) - A(z), A_(z) = A(z) + A(z) 

and 
1 1 

p?(s, =z-s i(1-z)-s 

The line integral 

11 00~ 
I+(s) = 2i/ A? (z)pT(s,z) dz 

defines an analytic function of s that is independent of the choice of 6 in the region 
max(Re(s), Re(1 - s)) < 6. If 1/2 < Re(s) < 6, then the analyticity of the function 
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A(z) implies that moving the line of integration left to 6 = 1/2 picks up only the 
residue at z = s and shows 

1 1/2+ioo 
Ii (s) = A? (s) + 2-i/ A? (z)p: (s, z) dz. 

2w /2-to0 

The functional equation for A(s) shows that Aj(! + it) = A(' + it) ? A(' - it). 
It follows that A?(z)pT(s, z) is antisymmetric along the line Re(z) = 1/2, so that 
the integral along this line vanishes by symmetry. This shows 

I? (s) = A? (s) 

for all s with 1/2 < Re(s) < 8. It follows that the same equality holds for all s with 
max(Re(s), Re(1 - s)) < 6 by analytic continuation provided 6 > !. Hence 2 

1 1 
(2) Ab (s) = - (A+ (s) + A_ (s)) = (I+ (s) + I (s)) 2 2 

provided the line integrals are computed with a 6 with 6 > max(Q, Re(s), Re(1 -s)). 
For a fixed ray class b of k, let a, (b) denote the number of integral ideals of k 

of absolute norm equal to n lying in the class b and define similarly a (b)), a, (b) 
and an(b). 

Define 

An= an(b) -an() 

(3) 
Bn= an(b) -an (b) 

so that C(s, b) - ((s, b) - Zn=1 An/ns and the Bn are the coefficients for the 
Dirichlet series for the corresponding dual class. 

Proposition 1. With notations as above, 

00 I 2+to. +1 d 
4i<(O I b) Ab (0) = An 

. k1 
}r(Z)]( 1)2Z 

n=1 Jl-rioo 2 n2 z 

3 z~~~~~~~~~ 
-B 

2 
Vk/3 2d 

2rri J-to ( 2 Z- 

Proof. Applying equation (2) and the definition of 1?(s) with 6= 3/2 gives 

1 f2 (A(z)+ A(z) ) 
Ab (O) = 2wi ]3 \ + d , dz 

2vrz~~ ~~ 32io1z 

= 1 A(z) dzI- 1 J + A) d 

- 2rri 2rriz 
dz 

27r2itO z 27rZ z_ - I 

Using the series expansions for A(z) and A(z) and interchanging summation and 
integration gives the formula in the proposition. El 

By the proposition, the accurate computation of the values (/(0, L) to high pre- 
cision has been reduced to the accurate computation of line integrals essentially 
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independent of the field k of the form 

F(a)= 21 a F(Z)F(z~l2d 

These are computed by shifting the line of integration to the left and computing 
the residues: 

F(a) =r(-3-y - 4 In 2 + 2 In a) + 1:(pjl + Pj,2 in a)a-i + 
j=1 

2wi jazF(zF(Z Ml) 2 27r J- 1 -70+ 2 

2 

where J > 1 is an integer. Here -y is Euler's gamma constant and 
-- 

a 1) (j-1)/2 2+2 V 
___ 2 (j odd), 

Pj,2 - ___ 

0 U( even), 

[Pj2 ( + 
3-y + 

H(j-)/ 
+ H- 21n2) 1 -&y+H 112+ 2H-2n 

Pj, 2(+ 
2J 

) (j odd), 

PJi =lir(-l)l?J/24i(j/2 -1)! (j even) 

(with Hm = 1 + 1/2 + ... + 1/m) are residues arising from the gamma function 
factors. 

Number of integrals to compute. The estimate 

JF(a 2r a2/3e-3a-2/3 

for the integrals used in computing ('(0, b) (cf. [6], Prop. 2.3 and [2]) leads to the 
following estimate for the error obtained summing N terms: 

20 Dk 2/3 e(37/Dk 1/3 )N2/3 

It follows that to provide an accuracy of at least 10-M, it suffices to take 

N > 0.18 D (1 + 0.77M + In Dk)3/2 
9 

for the number of integral terms to compute. 

Number of residues to compute. The integral along the line Re(z) = -J - 1/2 is 
easily estimated by Stirling's formula to be at most 

|7jf2icJ c azF(i )3(Z +1)2 fh < 3 2 J/2 

2 z+12 dz 8(8ea- 
2 tor aJKJ 

For a given accuracy 10-M it is an easy matter to compute the number of residues 
to compute for a given value of a. The following table indicates some typical values 
of J corresponding to a given a to insure an accuracy of at least lO-m: 
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a\M 16 32 48 

100 7 13 17 
10 11 18 24 
1 20 29 38 
10-1 44 59 71 
10-2 140 160 178 
10-3 569 592 614 
10-4 2549 2573 2597 

It is straightforward to show that the individual residue contribution 
(Pj,1 + Pj,2 In a)a-i to the sum for the integral F(a) is maximal for j - 2a-2/3 

with value approximately ae3a 2/3 when j is even and for j - 2a-2/3 ? a-1/3 with 
value approximately a4/3e3a 2/3 when j is odd. Note that these maximal values are 
approximately the reciprocals of the values of the integrals F(a) being computed, 
so that typically it is necessary to sum a number of very large residues to accu- 
rately compute the very small line integrals of interest. In particular, this means 
that in computations with a final desired accuracy of at least 10-M the internal 
computations must be done with an accuracy of at least 10-2M. 

Example. For Stark's explicit cubic example Q(oa), a3 - a 2- 9 + 8 = 0, with 
Dk = 2597 (cf. [21], pp. 1073-4, and [26], pp. 98-102), the choices N = 1250, 
J = 200, and an internal computation precision of 10-70, computes the values of 
the zeta functions to a proved accuracy of at least 10-30: 

2('(0, co) = -2('(0, c3) = 2.6229258798145544647221697471032... 

2('(0, c1) = -2('(0, c4) = 0.5567427719936224099615684806856... 

2('(0, c2) = -2('(0, c5) = -0.7266809196046131328605974037158... 

(here c is the ray class containing the prime ideal p = (2, 3)). The values agree with 
the values predicted by Stark's units to 10-30, and agree with the values computed 
by Stark to 10-16, 10-15 and 10-15, respectively. Note that the values computed by 
Stark were not proved to be correct (but now have been, by these computations). 

The 'residue packets' for the line integrals above are themselves very interesting. 
As an example, in recomputing the values for Stark's example above, one encounters 
the following line integral (corresponding to a term with n = 994): 

1 V12+~o8 7H1 IF (Z r K1 + ZA dz 
27ri 994 2 2 z 

which has value approximately 6.95702479 (10-31). The plot in Figure 1 indicates 
the residues used in computing this value and indicates the reciprocal correlation 
between the value of the line integral being computed and the maximum residue 
involved (and also indicates the 'packet' nature of the data). 
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4. NUMERICAL CONFIRMATION OF STARK'S CONJECTURE 

We continue with the hypotheses on k, S and K in Section 3: k is a totally real 
cubic field with class number 3, S = {jp1 )P(2)O P.} consists of the Archimedean 

primes of k, K is the ray class field to conductor p)P(3)O a 
There are 113 totally real cubic fields k with class number divisible by 3 and 

having discriminant Dk less than 50000 (from the tables [4]). Each cubic field k is 
given explicitly as Q(F) where 13 is a root of an irreducible cubic polynomial f (x). 

The specification of the place p(1) amounts to a choice /31 of one of the three real 
roots of f (x) to define an embedding of k into R. Computing the orders of the 
appropriate ray class groups shows that, for a given choice of embedding defining 

POO , the signs of the fundamental units of k in the other two embeddings determine 
whether the ray class field K to conductor p.2)P., is strictly larger than the Hilbert 
class field of k: the condition translates into the condition that the product of the 
signs of the two fundamental units at p(2) and at p(3) is +1. 

Of the 113 totally real cubic fields, precisely 55 have an embedding P,,. satisfying 
the condition that K is strictly larger than the Hilbert class field, and for these 
fields the class number is precisely 3 (so [K : k] = 6), and the corresponding 



1248 DAVID S. DUMMIT, JONATHAN W. SANDS, AND BRETT A. TANGEDAL 

Archimedean prime jp( is unique. Since for these cases G = Gal(K/k) is cyclic of 
order 6, the conjectural Stark unit e would generate the ray class field K over k: 
Take X: Gal(K/k) (-: a faithful character. Then L'(0, X) $ 0. If e' = 6 for 
any a' E Gal(K/k), then 

-1 /-1 
L'(0, X) = 2 EX(aa')lnJle" | = X(a') 2 EX( ()l lIn w = X(5 L'(0,X) 

so x(W) = 1 which implies a' = 1 (cf. [26], p. 90). It follows that a numerical 
confirmation of Stark's Conjecture for these fields should produce explicit algebraic 
generators for the ray class fields K. Given these explicit elements, one can then 
prove they are indeed units generating the relevant class fields independent of any 
conjectures used to produce them. These algebraic computations, which are also 
necessary to complete the numerical confirmation of Stark's Conjecture for these 
fields, are described in Section 5. 

The Archimedean prime p is specified by the choice of real root 3 for the 
polynomial f(x) defining the field k, and the ray class of an ideal %( in the ray 
class group to conductor p(2) (3) is then determined by finding the signs at the two 
embeddings p(2) and p(3) of the generator of the principal ideal Va where a is the 
order of the ideal Q( in the usual class group of k. For our computations, this data 
was computed for the relevant prime ideals of k using the Pari-GP calculator, then 
this information was used to generate the ideals of k of norm less than N in the 
various ray classes using some symbolic manipulations in Mathematica. 

Using this norm data, the values at zero of the derivatives of the partial zeta 
functions ('(0, b) for each of the six ray classes modulo p(2)P(3) were computed 
using the results of the previous section. For most of the examples, the values were 
computed to a (proved) accuracy of 10-35, although in some cases more accuracy 
was required (10-70 for four of the examples). 

This conjecturally computes the six values keb I - e-24(Ob), where the absolute 
value is defined by a place over jp of k. Since e in Stark's Conjecture is defined 
only up to a root of unity, we choose e by 

e -2('(0,c0) 

(4) 6=e~~~~~~~~() 3 

where co is the principal ray modulo p(2)POO , i.e., so that e is positive in the embed- 
ding lying over jpo,2. The abelian condition in Stark's Conjecture then implies that 
all the conjugates god of e are positive in this embedding (since e6,-1 is a square 
in K, hence is positive, cf. [26], p. 93 and [25]). With this choice of 6, we have 
conjecturally computed the numerical values of the six Galois conjugates 

(5) at, = e-24/(0 b) 

of e with respect to the real embedding of K in R (conjecturally) defined by (4). This 
embedding defines an Archimedean prime of K lying over p(l) and the remaining 
primes of K over p(1) are the conjugates by the Galois group Gal(K/k) and these 
are the real primes of K. The remaining Archimedean primes of K are complex, 
lying over p(2) and p(3) and under the corresponding embeddings of K into C, 
the element e and its Galois conjugates should (conjecturally) be nonreal complex 
numbers of absolute value 1. 
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To determine the algebraic element c, we follow Stark and observe that ('(0, b) = 
-('(0, b) for every class b. It follows that the element T generating Gal(K/H) of 
Section 3 acts by inversion on the conjugates of e: (rb )T - (are )- It follows that 
the element 

A =6e + 1/c = TrK/H(0) 

should be an integral element of the Hilbert class field H (even a generator for H 
over k) and that 6 satisfies the equation 

(6) x2 - Ax + 1 = 0 

over H. The conjugates of A under Gal(H/k) should be the elements ct + 1/6 
where c is a class generating the ray class group and t = 0,1, 2 (the element A 
corresponds then to t = 0). Hence the element A of H satisfies the cubic equation 

(7) x3 -S1x2 +S2X-s3 =0 

over k, where si is the ith elementary symmetric function in the Gal(H/k)- 
conjugates of A above, and should be an algebraic integer in k. 

To determine A as an element of H it therefore suffices to determine the algebraic 
integers 

(8) si = ai + bio + ci,B21 i = 1, 2,3, 

in (7) in terms of the generator 1 of k. In Stark's example in [21], the approximate 
numerical values of the si in the embedding defined by p( were computed assuming 
the validity of (5). The absolute values of the si in the remaining two embeddings of 
k were then bounded using the fact that the Galois conjugates of e are conjecturally 
of absolute value 1 in these embeddings. This reduced the determination of ai, bi, ci 
(which are elements of Z in Stark's example) to a check of a small number of cases. 

We proceeded slightly differently, instead using a standard recognition algorithm 
to determine the monic polynomials in 2[x] satisfied by the real number si in 
the embedding defined by p(l). For most of the cases considered, an accuracy of 
10-35 in the values of the relevant partial zeta functions was sufficient to recognize 
the necessary monic cubics, but some of the more obstreperous examples required 
greater accuracy. Once the monic polynomial over Z satisfied by si in (8) was 
determined, the three roots could be determined to arbitrary precision. Equation 
(8) then gives 3 equations for ai, bi and ci corresponding to the three possible 
embeddings of k (i.e., corresponding to the three possible choices of roots pi, 12, 

03 of f(x)) and the three possible roots of the polynomial satisfied by si. The root 

si corresponding to the embedding p(l) defined by pi is the value used to recognize 
the polynomial satisfied by si, so in fact there are only two possible orderings of 
the remaining two roots of this polynomial (which correspond to 32 and 33) to 
consider. In all the cases considered, the index of 2[,3] in the ring of integers of k 
was quite small (dividing 6 in fact), so that ai, bi and ci in (8) should be elements 
of (1/6)2 and hence are easily determined as solutions to one of these two systems 
of 3 equations by rounding the numerical solutions (in fact it is easy to check that 
only one of the two possible orderings of roots for si can produce rational solutions 
ai, bi and ci). 

Once the coefficients in (8) are determined, it is an easy matter to find the 
equations over Q of the elements A and 6 defined by equations (8), (7) and (6). For 
example, the monic polynomial fA(x) in 2[x] of degree 9 satisfied by A is obtained 
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by multiplying together the three cubics x3 - SIX2 + s2X - 83 obtained from (8) by 
substituting the three values 31, 32, and 33 to sufficient precision, expanding and 
rounding the coefficients. Note also that c is a unit since by construction it satisfies 
a monic polynomial f (x) of degree 18 in 2[x] with constant term 1. 

In Stark's original cubic example, the Hilbert class field H and ray class field K 
were known explicitly beforehand and the unit c was constructed as an element of 
K. In our examples (which include Stark's), the algebraic element e is not (yet) 
known to lie in the appropriate ray class field. All that is known at this point is 
that 6 of 18 roots of a polynomial f, (x) satisfied by a unit c in some extension of 
k are real and agree with the exponentials of the 6 proved approximate values of 
the partial zeta functions for k. The only immediate numerical indication that e is 
indeed the required Stark unit is provided by a quick computation of the roots of 
f, (x) (to whatever precision one chooses), which shows that the remaining 12 roots 
are indeed all nonreal complex numbers of absolute value 1. A number of items 
therefore remain to be proved to complete the numerical confirmation of Stark's 
conjecture for these examples, which we state as 

Theorem 1. Let k be one of the 55 totally real cubic fields of discriminant Dk < 

50000 with class number divisible by 3 such that the ray class group of conductor 
P(2) o twof the Archimedean primes of k is strictly larger than the Hilbert 
class field--of k. Let c be a root of the polynomial f (x) constructed above, let 
A = e + 1/e, and set K = k(E), and H = k(A). Then: 

1. The field H = k(A) is the Hilbert class field of k. 
2. The field K = k(E) is the ray class field of k of conductor p)P(3) 
3. If the embedding of K into R extending the embedding of k into IR defined by 

the remaining Archimedean prime p of k is fixed by taking e to the real root of 
f, (x) that agrees numerically with the value computed in equation (4), then for each 
of the remaining five ray classes b the image of the Galois conjugate cab (E) agrees 
numerically with the value e-2'(? b) in (5) (i.e., the Frobenius automorphisms are 
acting as predicted by Stark's conjecture). 

4. The field K(vfi) is an abelian extension of k. 

The proof of Theorem 1 will be given in the following section. Since the computed 
values of the relevant partial zeta functions have, by the results of Section 3, been 
proved to be accurate, Theorem 1 immediately gives the following 

Corollary. The refined abelian (rank-one) Stark Conjecture is valid for the fields 
K/k in Theorem 1 to a proved numerical accuracy of at least 10-30. 

The properties in Theorem 1 are essentially completely algebraic in nature and 
are independent of Stark's conjecture. Note, however, that while they are algebraic 
we shall in fact use the analytic data given in Stark's conjecture as a 'catalyst' to 
verify them, in much the same catalytic manner that Stark's conjecture was used 
to produce them. 

5. USING STARK'S CONJECTURE TO COMPUTE HILBERT AND RAY CLASS FIELDS 

In this section we indicate the proof of the properties of Theorem 1 of the previous 
section for the 55 cubic examples. In particular this will indicate how Stark's 
conjecture can be used to provide explicit generators for Hilbert and certain ray 
class fields. Each of these cubic fields k has class number 3 (and associated ray 
class number 6). 
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In each of the computed examples, the monic polynomial of degree 18 satisfied 
by e was irreducible over Q. In particular, [K: k] = 6 and [H: k] = 3. It follows 
also that c in fact generates K = k(E) over Q, and not just over k. Similarly, the 
element A generates H = k(A) over Q. 

The roots of the polynomial fA(x) are all real, so the field H = k(A) is a totally 
real extension of k of degree 3. Computing the discriminant of H over Q (using 
Pari-GP) shows that DH = Dk, which implies that H is an unramified extension 
of k. If H were not Galois over k, then its Galois closure over k would also be an 
unramified extension of k, of degree 6, and having the symmetric group S3 as Galois 
group. The quadratic subfield of this extension of k would then be an unramified 
quadratic extension of k, which means that the class number of k would be divisible 
by 2, which it is not. It follows that H is in fact Galois over k, hence is the Hilbert 
class field of k. This proves (1) of Theorem 1. 

Remark. In computing field discriminants it was necessary in some instances to 
modify the algebraic integer generator for the field by multiplying by a unit in the 
field k to produce another integer ae, the discriminant of whose minimal polynomial, 
while larger, was nevertheless easier to factor. 

We next prove (4) of Theorem 1, which will in particular prove that K/k is an 
abelian extension. In all examples, the polynomial f (x2) is irreducible over Q, 
so [K(aJE) :-k] = 12 (and E is never a square in K for these examples). Since 
(Vfi? 1/fl)2 - A ? 2, we have 

K(V) = k( A?2, A-2). 

Hence K(\/-) is an abelian extension of k if (and only if) the extensions k( A ?) = 

H( A ? 2) are both abelian extensions of k (of degree 6, although this is not re- 
quired). The quadratic extension H(/A-? 2) of H will be Galois over k (hence 
abelian over k, since H is Galois over k) if and only if o(A ? 2)/(A ? 2) is 
a (nonzero) square in H for a generator a of Gal(H/k). This is equivalent to 
a(A ? 2)(A ? 2) = -c/la2(A ? 2) being a square in H where c is the constant 
term of the cubic polynomial satisfied by A ? 2 over k, which in turn is equiva- 
lent to -(A ? 2)/c being a square in H. Since the minimal polynomial for A was 
constructed in (7), it is an easy matter to find the minimal polynomial over k for 
the element -(A ? 2)/c, hence also the minimal polynomial of degree 9 over Q 
for this element. In all cases this polynomial factors over Q into a product of two 
polynomials of degree 9 when x2 is substituted for x, and this is a sufficient (and 
necessary) condition for the element to be a square. This proves (4) of Theorem 1. 

To complete the proof of (2) of Theorem 1 it suffices to check that the extension 
K/k is unramified outside the infinite primes of k. Because of the size of the fields 
involved ([K: Q] = 18), it was difficult to compute the discriminant of K over Q 
directly (confirming that DK - D6 would prove that K/k was unramified). Instead 
we determined the unique quadratic extension F of k contained in K and confirmed 
(by a discriminant calculation on this extension of degree 6 over Q, checking that 
DF = D2) that the extension F/k is also unramified at all finite primes of k. To 
determine the field F, observe that c satisfies the sextic 

(x2 - Ax + 1)(x2 - a(A)x + 1)(x2 -_ 2(A)x + 1) 

over k. Expanding and using the elementary symmetric functions si of the conju- 
gates of A in equation (7) shows that the minimal polynomial for E over k is the 
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sextic 

(9) X6 _ sIX5 + (S2 + 3)x4 - (2s, + S3)X3 + (S2 + 3)X2 - s1X + 1. 

The discriminant of this sextic differs by the square of -SS22 + 4s3 + 4SS3 - 

18sis2s3 + 27s3 from the element 

(10) A =-(8 + 4s + 2s2 + S3)(8-4s + 282 -83) 

and so F = k(vA) (note that the alternating group A6 does not contain a cyclic 
subgroup of order 6). This determines a polynomial of degree 6 over Q defining the 
field F and allows the determination of the discriminant of F, confirming that F/k 
is unramified and proving that K is the appropriate ray class field. 

It remains to prove (3) of Theorem 1, namely that the numerical values computed 
in equation (5) of the previous section do in fact correspond to the conjugates by the 
appropriate Frobenius elements of the algebraic element e. We proceed by using 
equation (5) to numerically produce an algebraic conjugate of c and then verify 
independently that this conjugate is indeed given by the appropriate Frobenius 
automorphism. Let c denote the generator of the ray class group of k of conductor 

(2) (3) 
POO P., used to compute the values of the partial zeta functions used in equation 
(5). Suppose ca is a generator of Gal(K/k). Then 

(I1) 
I 

a(e) = ao + aie + a2e2 + a3E3 + a4E4 + a5s5 

for some ao, ..., a5 E k. Conjugating this equation by a, J2, ..., Ca5 gives the system 
of equations 

(12) '+f (j) = ao + aia(e) + a29i (e)2 + a3oi (e)3 + a49Ji(E) + a i(E) 5 

for i = 0, 1, .., 5 (a6 = 1). Assume for the moment that Stark's conjecture in 
equation (5) is valid and take a = ac, the Frobenius element for the ray class c 
in Gal(K/k). Then we have the numerical values of the elements in the system 
of 6 equations in (12), from which we can solve numerically for the six coefficients 
ao, ..., a5. We then recognize the cubic polynomials satisfied by these elements and 
use these to determine the elements ao, ..., a5 as polynomials with Q-coefficients in 
the elements 1, ,3,,2. 

Remark. As a computational matter, the system of numerical equations (12) is 
rewritten in order to write each ai as the quotient of two algebraic integers in k 
since this provides an easy check on the recognition algorithm (namely, whether the 
resulting cubic polynomial is monic). Also, since the polynomial fe(x) e 2[x] has 
been determined, we can, under the assumption of the validity of Stark's conjecture, 
determine the numerical values in equation (5) to arbitrary precision by solving for 
the appropriate root of f,(x). In the computations of the Frobenius automorphism 
above, typically 500 digits of accuracy were required. 

We now use these exact elements ao, ..., a5 of k to define a(e) by equation (11). 
It is then immediate to verify that the resulting a(e) is again a root of the minimal 
polynomial of c over k in equation (9), so that the map c F-4 u(c) defines an element 
of Gal(K/k), and that this automorphism is of order 6. This proves that there is an 
algebraic automorphism a e Gal(K/k) such that the numerical values of the conju- 
gates of c agree with the values on the right hand side of equation (5). To complete 
the proof of Theorem 1 it therefore suffices to show that this automorphism ar is the 
Frobenius automorphism corresponding to the class c in the extension K/k (and 
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not its inverse, the only other possibility in this case). Let p (dividing the prime p 
in E) be a prime of k of absolute degree 1 lying in the class c (a list of such primes 
is produced in the original computation of the partial zeta function values), such 
that p does not divide the discriminant of the polynomial f, (x). If OK denotes the 
ring of integers of K, then OK = Z[E] + qP and OK/%3 = Z/pZ for any prime 3 of 
K dividing p (note that p splits completely in K). It follows that to confirm that 
a = ac it suffices to verify that 

(13) a(e) _=EP modp 

for the u(e) defined by equation (11). This is an elementary computation, since 
, _ b mod q3 for a (known) rational integer b, so that v(e) E Z[e] mod q3 and 
equation (13) becomes an equality of two polynomials in Z[x] in the quotient ring 
2[x]/(p, fE(x)). The confirmation that these equations are satisfied for all the ex- 
amples completes the proof of Theorem 1. 

In general it is of interest to know whether the element e in Stark's conjecture can 
be taken to be a square in K (for example, cf. [3]), and to examine the ramification 
properties of the extension K(fi)/k (cf. [27] ). As mentioned in the proof of 
Theorem 1, none of the polynomials f6(x2) factors over Q, and one similarly finds 
that also f,(-x2) remains irreducible. It follows that none of the elements ?te are 
squares in K for these examples. Also, since none of these fields has a totally 
positive system of fundamental units, the ray class field to conductor poo POO POO 
(the strict Hilbert class field) is the same as the field K. It follows that the quadratic 
extensions K( /?e) over K ramify at some prime above 2. We did not determine 
whether a particular choice of sign minimizes the different of the extension. 

Corollary. For the examples in Theorem 1, the elements ?IE are not squares in K 
and the two quadratic extensions K(?Xe) are both ramified at some prime above 2. 

It is not clear whether the fact that none of the Stark units for these 55 examples 
were squares in the corresponding ray class field K is significant (although in light 
of [3] it is suggestive). The group of units of K modulo squares of units is an 
elementary abelian 2-group of rank 12, so that the probability that a randomly 
chosen unit of K is a square is 1/212. The probability that of 110 randomly chosen 
units none of them is a square is then approximately 0.9735, so this sample size is 
too small to be predictive. 

6. EXAMPLE: DISCRIMINANT 28212 

As previously mentioned, in Stark's original cubic example the Hilbert class 
field H is obtained over k by composing with an abelian extension of Q (namely 
Q(cos(27r)/7)) and our numerical investigations originated in trying to construct a 
similar but more generic cubic example in which H is not a 'genus class field'. The 
first example of such a field occurs for a discriminant Dk = 28212. In this section we 
indicate some of the details of the computations described in the previous sections 
for this cubic field, in particular finding explicit generators for the Hilbert class field 
and using this to find the Galois closure of H and prove that H is not obtained 
by composing any cubic extension of Q (let alone abelian) with k. The example 
described here also serves as a paradigm for the abbreviated data for the other 
examples in the tables in Section 7. 

There are 3 nonisomorphic totally real cubic fields of discriminant 28212 = 22 
3 *2351, defined by the polynomials x3 - x2 - 37x - 47, X3 - X2 - 41x + 93, and 



1254 DAVID S. DUMMIT, JONATHAN W. SANDS, AND BRETT A. TANGEDAL 

X 3 -X2 -53x + 153. Up to isomorphism there is precisely one totally real cubic 
field of discriminant 7053 = 3 2351, defined by the polynomial x3 - X2 - 23x + 48. 

The field k = Q(C) with '33 - 32 - 41,3 + 93 = 0 satisfies the conditions at the 
beginning of Section 4: k has class number divisible by 3 (in fact equal to 3), and 
if p(1) is the Archimedean prime defined by the root 3 = 5.40269..., then the ray 
class field K of conductor p(2) (3) is strictly larger than the Hilbert class field. The 
ray class c containing the prime p = (5,3 -2) generates the corresponding ray class 
group. [The field defined by the equation x3 - X2 - 53x + 153 also satisfies the 
necessary hypotheses of Section 4. The corresponding data for this field appears in 
the tables in Section 7.] 

Using an internal accuracy of 150 digits and computing 350 residues to insure 
an accuracy of at least 10-55, one finds 

((0, c0)=4.62040289671991440543776590019223277624303967323957791671782... 

(I(0, cl) = -5.23781296974710843037213422039206497492945318572477673266825... 

('(0, c2) =2.259302064318993328125265486811196491695081900397339500930079... 

yielding potential Stark units 

61 = 10309.34241235303439168049341491290535905308263827742948201871... 

62 = 0.0800028215870927227640203451517278794044636382871473311203053... 

63 = 91.70749672416162340728363966075410917807739071597377629976299... 

The numerical values of the traces (e + 1/e) of these units are then 

Al = 10309.34250935243163759630564450029748610493408547697070477070... 

A2 = 35441.04675610630550032056420255885270767586064066439842279032... 

A3 = 91.71840095811981121163526964493461769139799224062807444575130 ... 

the elementary symmetric functions of which are: 

s, = 45842.10766641685694912850511670408481147219271838199720200678 ... 

82= 3.695700424453132417259675515402850795764644990380044622513860... 

83= 3.351150893335448884121299970610876103784771962239631343594939... 

Using a standard recognition algorithm, one finds that these real numbers are roots 
of the following cubic polynomials: 

P1(x) = -238095 - 234141x - 45837X2 + X3, 

p2(x) = 3826481704 - 164574444x - 369570042x2 + X3, 

p3 (x) = - 132604621897 + 189189597635x - 33511508939X2 + X3. 

Using these polynomials one finds 

s, = -22071 + 5644,3 + 1282132, 

82 = -177889957 + 45498408p + 10334235132, 

83 = -16130530946 + 4125659898p + 937077613132. 

Using these exact values we can now find the 9th degree equation satisfied by A: 
Take the cubic x3 - SIX2 + s2X - s3, substitute the 3 possible conjugates of 3 
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(computed numerically to high precision), multiply these cubics together and round 
the (integer) coefficients. The result is the polynomial 

fA(X) = X9 - 45837x8 + 369335901x 7- 31624086134X6 - 169410056472x5 

- 164382128003x4 + 465586425823x3 + 98052207795192 

+ 392287249570x - 132604621897. 

Applying "initalgred" in Pari-GP to this polynomial f(x) to find another field 
generator for H = k(A) gives the polynomial 

x9- x8 - 25x7 + 2x6 + 190x5 + 127x4 - 307x3 - 167X2 + 150x - 23 

with field discriminant DH = 22454408824128 = 263323513 = D 3, proving as in 
Section 5 that H is the Hilbert class field for k. 

The polynomial of degree 18 satisfied by e is determined by taking the product 
of x 2- Ax + 1 over all the 9 roots of fA(x) and gives 

fE(X) = x18 - 45837x17 + 369335910x16 - 31624452830x15 - 166824705129x14 

- 354127928243x13 - 373707802532x12 - 151370292943x1 

+ 107872718980x10 + 209661834717x9 + 107872718980x8 

- 151370292943x7 - 373707802532X6 - 354127928243x5 

- 166824705129x4 - 31624452830x3 + 3693359109 - 45837x + 1. 

The absolute values of the roots of fe(x) are given approximately by 

{1., 1., 1., 1. 1. 1 1. 1. 1. 1. 1. 1. 1., 35441.04672789043,0.0000969993972459158, 

0.0109042339581878,10309.34241235303,0.00002821587092722764, 

91.7074967241616}. 

The computed values of 61, 62, and e3 given by Stark's conjecture from the values 
of the partial zeta functions differ from the last three roots of fe(x) above by 
approximately 10-60, 10-68, and 10-61, respectively. 

The generator a, of Gal(K/k) E/62 (determined as described in Section 5 and 
verified by confirming that a, (E) _ 5mod p with p = (5, 3-2)) is given explicitly 
by 

c (E) = (ao + alE + a2E2 + a3TE3 + a4E4 + a5E5)/35626819129793805949 

with 

ao = -253021406556793673085768 + 63919617157029310621856/3 

+ 14582888259664145092184/32, 

a, = 2577370712090340691346989569 - 659208900700762693152742032/3 

- 14972857543490513754242938502, 
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a2 = -239408540778937420780089655905 + 6123283711746966868025206756213 

+ 13908059107414446684962003979132, 

a3= 2640222158834310099968203077 - 6752846922960644770881069581 

- 1533798950003301846335738141 

a4 -337418618277039567474827 + 8416329658496833516850613 

+ 19291389389815096078965132, 

a5 -3599270210410146021309 + 14445667506415274193613 

+ 9606258809185933302902. 

The Hilbert class field H here has an interesting Galois closure, which in partic- 
ular proves that H is not obtained by composing any cubic extension of Q with k 
(so H is certainly not a genus field for k). 

The Galois closure of k = Q(1) is the field Q(O, 7053) whose class number is 9, 
with class group isomorphic to E/32 x E/32. Since the polynomials X-X2 -23x+48 
mentioned previously has discriminant 7053 and defines a totally real cubic field, 
it is easy to see that the Hilbert class field L to Q(:, 7053) is given by L = 
H(a, 7053). The field L is a Galois extension of Q since Q(, 7053) is Galois 
over Q. The field diagram is the following: 

L 

Q(a, y) 
/ I\ 

H ~ Q(ay / I'\ 

H()~~~Q0 X753 '~a V7(4!053, 

H Q(0k ?3)) Q(a) 
Q(3 7053(() \ / Q 2(c o 75) 

\1 

13 +3?2 - 41p + 93 = c1 a 3 - a 2 23? + 48 0 
9 _25_7 + 2_Y6 + 190_Y5 + 127_4 - 307_y3 _ 167y2 + 150&y - 23 = 0 
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The subgroup Gal(L/Q(oa, 7053)) is a group of order 9. Analyzing the splitting of 
the prime 2 in L/Q shows that Gal(L/Q(oa, /053)) cannot be cyclic (otherwise the 
extension Q(ca, A, 7/052)/Q(oa, A705) would be unramified at 2, which it is not). 
The prime 31 splits in H( /7053) into 6 primes of degree 1 and 4 primes of degree 
3, so this extension is not Galois over Q and the subgroup Gal(L/H( 7053)) is a 
nonnormal subgroup of Gal(L/Q) of order 3. It is relatively straightforward from 
this to determine the structure of Gal(L/Q). Let (a) = Gal(L/H( 7053)), ('r) = 
Gal(L/Q(a, 0, 7053)), (', p) = Gal(L/Q(a, 7053)), and (7r) = Gal(L/H(oa)). 
Then Gal(L/Q) is a group of order 54, the semidirect product of the unique non- 
abelian group of order 27 in which every element has order 3 by a subgroup of order 
2: 

G = (oyr, p) x (ir) 

with ir inverting ar and p, and centralizing r (which generates the center of G). 
It follows easily that the field H = Q(-y) contains a unique cubic subfield, namely 

k = Q(3). In particular, H is not obtained by composing k with any other cubic 
extension of Q. 

It is interesting to note that the extension Q(ca, i3) is a non-Galois extension of 
Q of degree 9 containing 4 (non-Galois) cubic subfields (the maximum possible). 
In fact the four subfields are precisely the 3 (up to isomorphism) totally real cubic 
fields of discriminant 28212 and the unique (up to isomorphism) totally real cubic 
field of discriminant 7053 mentioned at the beginning of this section. The field L 
contains 12 cubic subfields (the Galois conjugates of these 4 cubic fields). 

7. TABLES 

The tables below give a complete list of all 55 totally real cubic fields of discrim- 
inant less than 50000 with class number divisible by 3 for which there is an abelian 
extension unramified at all finite primes strictly larger than the Hilbert class field, 
as in the statement of Theorem 1 in Section 4 (note there are a total of 113 such 
totally real cubic fields without the condition on the ray class field). These fields 
all have class number 3, and for each we give the following abbreviated data: 

1. The discriminant Dk. 
2. A cubic polynomial f (x) defining the field k. 
3. A root d of f(x) defining the Archimedean prime p(). 
4. A prime p of degree 1 in k whose class c generates the ray class group of 

conductor p(2)P(3) of k and with respect to which the partial zeta function 
values were computed. 

5. The first few digits of the computed Stark units Eco, Eci, and EC2 in equation 
(5) of Section 4, corresponding to the classes co, cl, and c2, respectively. 

6. The elementary symmetric functions s1, s2, and s3 of equation (7) in Section 
4 as elements in the field k = Q(3). 

As described in the example in Section 5, this data is enough to easily reconstruct 
most of the information required to numerically confirm Stark's Conjecture for these 
fields: 

(a) The reciprocals of the elements in item 5 above are the computed Stark units 
corresponding to the classes c3, c4, and c5, respectively. The computed values 
of the derivatives at 0 of the partial zeta functions are (-1/2) times the logs 
of the corresponding Stark unit values as in equation (5) of Section 4. 
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(b) The polynomials fA(x) and fe(x) in Section 4 are computed from equations 
(6) and (7). Alternatively, the sextic equation satisfied by e over k is given 
by equation (9) in Section 5. The polynomial fA(x) defines the Hilbert class 
field for k. The polynomial fe(x) defines the ray class field K of conductor 

POO P., of k and six of the roots agree to at least 10-30 with the numerical 
values of the Stark units. 

(c) The quadratic subfield F = k(VA) of K containing k is given by equation 
(10) in Section 5. 

Dk= 2597, f(x) = X3 x2-9X + 8 /3=3.07911886..., Ip =(2,i3) 
ECO = 0.0725901617213239..., Eci = 0.5730726554327768..., 

EC2 =2.0682046655250200...I 
S1 -132+ 3,3 s2=5i32+ 12i 3-11, s3= 6132+ 13 1-15 

Dk= 4212, f(x) = X3- 12x + 10, 1 = 2.93045374..., Ip=(7,1+?1) 
ECO = 0.0276040307201833..., Eci = 2.7719617903976693.... 

EC2 = 0.2889417781460776..., 
si= 3132?9 39, S2-=19132+5613-66, s3=31/32+911-107 

Dk= 6885, f(x) =x 3- 12x?1, 1 =-3.50503972..., Ip=(2,1+?1) 
ECO = 0.0122447097951284..., Ic = 0.6827644272956277..., 

EC2 = 2.1227821547518977 ..., 

s, =3132-1313+4, 4 2= 16132-543+?7, 83 = 18 02-65 0+6 

Dk = 9653, f(x) = X3- 14x + 7, 1 =-3.97027720..., p = (2,13 + 1) 
ECO = 0.0059776944016633..., Eci = 1.6671321960319223.... 

EC2 = 2.1686999050750842..., 
si = 5 32 - 21 ? + 10, 82 = 25 /32 98 3 + 42, 83= 30 32 -119 1 + 52 

Dk = 9800, f(x) = X3-x2- 23x -13, / = -0.58920487..., I = (3,0+?2) 
ECO = 0.1812901941037724..., Ic = 0.5401769290063933..., 

EC2 = 0.0115322865834235..., 
si = -9/2 f2 + 7 1 + 201/2, s2 = -69/2 32 + 55 1 + 1519/2, 

83= _57 12 + 91 1 + 1255 

Dk = 10309, f(x) = X3 - x2 - 17x - 14, 1 = -3.06021983..., p = (7,13) 
EC? = 0.0025511978534124 ..., Icc = 10.3857705742642579..., 

EC2 = 0.1673551471759631 ... 
si =2423- 9713-113, S2 382/2_15523-1746, 

83 = 1466 12 - 5952 1 - 6705 

Dk = 11417, f(x) = X3 - x2 - 30x + 71, 13=4.09084660..., p = (11, 1 + 1) 
E= 0.0023925102587428..., Eci = 1.6243927034232794..., 

EC2 = 0.3345168756484259 ..., 
si = 35 /2 + 108 / - 604, 82= 194 02 + 599 / - 3364, 

s3= 259/32 + 800 / - 4495 
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Dk = 13932, f(x) = X3- 30x + 44, 3 = 1.60430506..., p = (5, 3 + 4) 
lc? = 0.0668925269470244 ..., ci = 1.8978062750719885.... 

6C2 = 0.0030716822460823..., 
si = -31/2 '32 - 25 p3 + 423, s2 = -513/2 32 - 411 p3 + 7034, 

83 = -532 32 - 854 3 + 14593 

Dk = 14945, f(x) = x3 - X2- 16x + 15, )3 = 4.04089721..., p = (3,/) 
EC? = 0.0007604128277485..., ci = 0.7445644328054425..., 

6c2 = 2-4401900582120203..., 
si = 53,32+1613- 196, s2 = 261 132+794,3-971, S3 = 314 132+956 13-1166 

Dk = 15884, f(x) = X3- 38x + 76, 13 = -6.99080942..., p = (13,13 + 12) 
Eco = 0.0043912242828469..., Eci = 11.3388026056172075..., 

EC2 = 0.0005249315222867..., 
s1 = 20 /2 - 1373? + 209, s2 = 4219 /2 - 294903? + 45854, 

83 = 45642 /2 - 319075 / + 496199 

Dk = 18792, f(x) = X3- 21x + 26, 13 = 3.75073717..., p = (5,13 + 2) 
Eco = 0.0005204369733600..., Eci = 2.7335309120333468.... 

EC2 = 0.1380723504858949.... 
s1 = 91 32 + 34213 - 631, s2 = 951 32 + 3566 f-6594, 

83 = 2073 132 + 7775 / - 14371 

Dk = 19220, f(x) = x3 - x2 - 41x - 85, 13 = -3.92898670 ...I = (5,3 + 2) 
Eco = 1.6266922936142138(10-6)..., Eci = 7.3542800525782704..., 

EC2 = 0.3200410108360355.... 
s, = 46683/32 - 230100/3 - 1009947, s2 = 510464 /2 - 2516070 / - 11043414, 

83 = 1204452 /2 - 5936728 3 - 26057208 

Dk=19604, (X) = x3 - x2- 17x-1, = 4.67896190..., p = (3,3 + 2) 
Eco = 0.0003309402687830..., IEcl = 1.3869036022509526.... 

EC2 = 0.3686355957391244.... 
s= 77 /2+283 /+17, s2 = 399 /2+1468 ?+83, S3 = 499 ,2+1837 ,+107 

Dk = 19764, f (x) = X3- 36x + 18, 13 = -6.23590488..., p = (23, / + 21) 
Eco = 0.0027377950446671..., Ecl = 14.5965020626905298..., 

EC2 = 0.0002776131850798.... 
s, = 148/3 132 - 308 3 + 143, s2 = 51100/3 132 - 106218 3 + 49166 

83 = 717646/3 /2 - 1491724 / + 690497 

Dk = 20493, f (X) = x3 - 36x -9, = 6.12129697..., p = (2,13 + 1) 
Eco = 0.0000176516909529..., Eci = 0.1693103544097161.... 

EC2 = 30.8504905023698287.... 
si = 742 132 + 4541 3 + 1089, s2 - 27404 32 + 167747 3 + 40290, 

83 = 139113 132 + 851552 3 + 204536 

Dk = 21708, f (x) = X3 - 30x + 28, 3 = 4.93178949..., p = (5,/3 + 2) 
Eco = 0.0000558297063219..., Ecl = 46.7101476503325001..., 

EC2 = 5.5984057909592865(10-6)... 
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sl = 4575 /2+22563 /3-25971, 82 = 74674731 /2+368280054 /-423962226, 
83 = 3479677527 /2 + 17161037073 /- 19755703453 

Dk= 21805, f(x) - 3 - X2 - 30x - 20, / = -0.69384876..., p = (31,/3+ 17) 
co = 0.4621517145187437..., 6c1 = 0.4569752565642212..., 

(C2 = 0.0011044873232772..., 
sl = -67/2 /32 + 113/2 / + 966, 82 = -176 /2 + 298 / + 5071, 

83 = -463/2 /2 + 785/2 / + 6673 

Dk = 25137, f (x) = X3 - 21x + 21, / = -5.01842411..., p = (5,3 + 2) 
(co = 0.0001276177357691..., Eci = 5.5094459367718433..., 

EC2= 0.5976546993579983..., 
si = 144 /2 - 721 ? + 599, s2= 1144 /32 - 5740 ? + 4784, 

83 = 1856 /2 - 9316 / + 7772 

Dk = 26568, f(x) = x3 - 30x + 8, / = 0.26730330..., p = (59, / + 49) 

cc = 0.2230517161304252..., ci = 424.2073428894345372..., 
(C2 = 0.0006441139261552..., 

S1 = -133/2 32 - 18 / + 1991, 82 = -44847/2 /2 - 5994 / + 671102, 
83 = -104062 /2 - 27816 / + 3114425 

Dk = 27297, f(x) = X3 - 21x + 19, 3 = 4.03644491..., p = (13, / + 1) 

cc = 0.0000448038334809..., (cl = 10.6678617703943195..., 
(C2 = 0.1661315669787857..., 

81 = 801 /2 + 3234 / - 3768, 82 = 13570 /2 + 54775 / - 63874, 
83 = 53292 /2 + 215110 / - 250852 

Dk= 28212, f(x) = X3 - x2 - 41x + 93, 3= 5.40268750..., p=(5,/+3) 
sEo = 0.0000969993972459..., Ecl = 91.7074967241616234..., 

EC2= 0.0000282158709272..., 
si = 1282 /2 + 5644 / - 22071, 82 = 10334235 /2 + 45498408 / - 177889957, 

83 = 937077613 /2 + 4125659898 / - 16130530946 

Dk = 28212, f (x) = x3 - x2 - 53x + 153, / = -8.00644491..., p = (59,3 + 51) 

(co = 0.0046032173748599..., (cl = 43.8735851311032181..., 
(C2 = 0.0000977972023669..., 

S8 = 135/2 /2 - 608 / + 2583/2, 82 = 17253 /2 - 155387 / + 329690, 
83 = 1255585/2 /2 - 5654176 / + 23993705/2 

Dk = 28392, f(x) = X3 - X2 - 43x + 103, / = 2.67353762..., p = (3, 3 ? 2) 

cco = 0.2930997997303122..., (cl = 824.5691966980162811.... 
(C2 = 0.0613118204336775.... 

81 = -63/2 /2 - 53 /3 + 2423/2, 82 = -1235/2 /2 - 1033 /3 + 47581/2, 
83 = -1859 /2 - 3111 / + 71619 

Dk = 29204, f(x) = X3 - X2 - 37x - 69, / = 7.33096819..., p = (23,/3) 

cco = 0.0000648735003401..., (cl = 2.3361879218197433.... 
(C2 = 0.0263672975859719.... 

si = 141 /2 + 893 / + 1331, 82= 5729 /2 + 36272 / + 53929, 
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83 = 14759 02 + 93441 1 + 138919 

Dk = 29253, f (x) = X3 - X2 - 23x + 36, 3 = -5.01606238..., p = (2,43) 
Ec? = 0.0014598741857419..., cci = 44.7945699496937565.... 

EC2 = 2.9013984304867985..., 
si = 12 12 - 70 1 + 80, 2 = 529 02 - 3182 1 + 3797, 

83 = 1594 12 - 9590 1 + 11441 

Dk= 31425, f (X) = x3- 45x + 55, 13=1.26747038..., p = (23,1 + 15) 
Ec? = 0.0427743169524793..., cci = 8307.1941490400751050..., 

EC2 = 0.7968524924592291..., 
si = -622/3 12-788/3 1+26996/3, s2 = -15803/3 12-20029/3 1+685747/3, 

S3 = -29806/3 32 - 37778/3 1 + 1293386/3 

Dk = 31425, f (X) = x3 - x2 - 48x - 63, 1 = -5.57933674..., p = (31,1 + 29) 
Ec? = 0.0015977695061765..., Ici = 21.7862492585460858..., 

EC2 = 0.0000592918112393..., 
si = 929/3 02 - 6113/3 1 - 3495, s2 = 580294/3 02 - 3817951/3 1 - 2184162, 

83 = 4075580 12 - 26814613 1 - 46020083 

Dk = 32009, f (x) = X3 - X2 - 52x + 159, 1 = 5.07140430..., p = (19, + 1) 
Ec? = 0.0000251427208548..., c l = 3.4839361981696966..., 

EC2 = 0.0812275945801842..., 
si = 2650 32 + 10789 3 - 83082, 82 = 42819 32 + 174333 3 - 1342473, 

S3 = 123788 12 + 503991 1 - 3881033 

Dk = 32009, f (x) = X3 - x2 - 34x - 24, 13=-4.91954825..., p=(7,1+?3) 
Ec? = 1.0428085877586164(10-9)..., cci = 1451.3622675948953352.... 

EC2 = 0.0002529109862479..., 
si = 19794714 02 _ 117175765 f - 96568445, 

82 = 106996348778 02 - 633370049668 1 - 521981336034, 
83 = 113593937025472 02 - 672424791663003 f - 554167648627051 

Dk = 32009, f (x) = X3 - X2 - 20x -1, 13 = 5.02207043..., p = (3,13 + 2) 
c? = 0.0000288557420309..., Icl = 0.1589595262660890..., 

EC2 = 16-9403897177370225..., 
si = 760 12 + 3058 1 + 153, 82 = 17816 12 + 71656 1 + 3546, 

83 = 83292 02 + 335006 1 + 16583 

Dk = 32977, f (x) = X3 - 49x + 112, 13= -7.94352185..., p = (5,1 + 1) 
E= 43.5186255106119763..., c l = 242.9694122634366988..., 

EC2 =0.0014184046089037..., 
si = 7 12 - 56 ? + 105, s2= 1515 12 - 12036 1 + 21374, 

83 = 53163 12 - 422303 1 + 749583 

Dk = 33369, f(X) = X3 - x2 - 44x + 57, 13=6.45097717..., p = (11, 1 + 1) 
Ec? = 0.0011147115614020..., cci = 38020.1101794094551627..., 

EC2 =0. 1329717077954112..., 
Si = 573 132 + 3123 1 - 5067, 82 = 1519153/3 12 + 8280871/3 1 - 4474341, 
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s3 = 11525990/3 /2 + 62827907/3 3 - 33947388 

Dk = 34344, f(x) = x3 - 21x + 10, 3 = 4.32281044..., p = (5,13) 
eco = 7.9143403374984593(10-7)..., Ec = 0.9011584753497984..., 

EC2 = 0.7693392333716590..., 
si = 36039 132 + 155790 3 - 83367, S2 = 147039 /2 + 635622 / - 340146, 

s3 = 149949 '32 + 648201 3 - 346879 

Dk = 37093, f(x) =x3 x2- 37x+92, /=4.70835853..., p = (11,3+?2) 
eco = 1.9342610856319505(10-6)..., Ecl = 76.2091773933755997.... 

EC2 = 0.0253150764404159..., 
si = 25741 '32 + 95456 3 - 502975, s2 = 2978956 02 + 11047038 3 - 58207954, 

83 = 77535970 32 + 287531176 3 - 1515031025 

Dk = 37300, f (x) = x3 -9 2 - 33x - 53, f3= -3.95540135..., p = (11, +1) 
eco = 5.7630853467349060(10-6)..., Ecl = 212.0308814218894593.... 

EC2 = 0.0184275543104808..., 
si = 7955 32 - 39420 3 - 106595, S2 = 2115816 32 - 10484718 3 - 28350662, 

3= 91422596 32 - 453035656 3 - 1225007816 

Dk = 37300, f (x) = x3 - 40x + 90, /3= -7.24082353..., p = (11,3 + 5) 
eco = 0.0003034852478111..., Ecl = 442.7357955871181767.... 

EC2 = 0.0532732049548585.... 
si = 32 /2 - 232 ? + 399, 82 = 13038 /2 - 94406 / + 162054, 

83 = 234140 /2 - 1695366 / + 2910249 

Dk = 38612, f (x) = x3 - 2- 37x + 57, 3 = 5.72420126..., p =(5, + 4) 
Eco = 0.0038747037172735 .., ICO = 25488.1845429434402434..., 

EC2= 2.8094106755511608.... 
sl = 1033/2 /2 + 2440 / - 10283/2, s2 = 133592 /2 + 631115 / - 1330275, 

83 = 835383/2 /2 + 1973258 3 - 8318521/2 

Dk = 38612, f(x) = x3 - x2 - 23x + 29, / = -4.90069679..., Ip = (57, + 1) 
Eco = 3.5221554605445090(10-6)..., Icc = 358.1485856456480134.... 

6C2 = 0.0026042888625828..., 
si = 4837 /2 - 28541 / + 28619, s2 = 3582597 /2 - 21139820 / + 21200113, 

83 = 663455121 /32 - 3914847505 3 + 3926012837 

Dk = 40905, f (x) = x3 - 57x + 161, 3 - 4.94161480..., p = (7,/3) 
Eco = 8.5226378556771703(10-8)..., Icc = 0.6489640054446504..., 

6C2 = 1.8449553913583436..., 
si = 721674 /2 + 3566235 / - 23512458, 

82 = 3302997 /2 + 16322139 / - 107613108, 
83 = 3772326 /32 + 18641382 3 - 122904052 

Dk = 41332, f (x) = x3 - x2 - 53x + 111, 3 = 2.20485382..., p = (41,3 + 2) 
Eco = 0.0000563439070499..., ICO = 199.7464857636494957..., 

6C2 = 0.0187650721496930..., 
si = -1261/3 /2 - 1519/3 / + 21161, 
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82 = -315373/3 /2 - 379978/3 / + 5292323, 
S3 - -13239265/3 /32 - 15951379/3 3 + 222170195 

Dk = 41332, f (x) = X3 - x2 - 23x - 11, /3 = -4.02994887..., p = (43,3? + 19) 
ECO - 3.8671928208392439(10-6) ..., EC = 72.4492351915039984..., 

EC2 = 0.0042082408760932..., 
s- = 7664 /32 - 38549 3 - 20922, 82 = 2374197 32 - 11942090 / - 6480521, 

S3 = 131810698 /32 - 663001073 3 - 359785622 

Dk = 42817, f (x) = X3 - x2 - 34x - 55, 3 = -4.04429139..., p = (7,3 + 5) 
ECo = 2.4704459483878002(10-6)..., c = 0.3310534628842669..., 

6C2 =2.3551742091210306..., 
si = 17480 02 - 88174 / - 237718, 82 = 107177 /2 - 540632 3 - 1457548, 

83 = 162858 /32 - 821504 /3 - 2214772 

Dk = 42817, f (x) = x3 - 61x + 179, / = 5.06664816..., p = (5,3 + 3) 
Eco = 4.2783829075100269(10-6)..., c = 0.3117981935008191..., 

EC2 =4.7365340901421433..., 
si = 14597 /32 + 73958 / - 515696, 82 123586 /2 + 626167 / - 4366178, 

s3 = 254140 /32 + 1287638 /3 - 8978532 

Dk = 42817, f(x) = x3 - 25x + 27, /3 = 4.33215072..., p = (7,/3 + 4) 
ECO = 0.0000965911295757..., (cl = 0.6040946069277487..., 

IEC2 =0.2548024659913640..., 
s1 = 331 32 + 1434 3 - 2065, 82 = 2130 /2 + 9227 3 - 13277, 

s3 = 3123 32 + 13530 - 19460 

Dk = 43092, f(x) = x3 - 48x + 100, 3 = -7.79886983..., p = (5,/3) 
Ec? = 0.0000938348168504..., Ecl - 20.1213162265647249..., 

6C2 =4-3973361801708900(10-6)..., 

s, = 3541/2 /32-13809 /3+22707, s2 = 18058843 /2-140838567 3+231557182, 
s3 - 727089695/2 /32 - 2835238943 3 + 4661506793 

Dk = 45325, f(x) = x3 - x2 - 23x + 22, 3 = 4.82302529..., p = (2, 3) 
ECo = 1.1858683000629759(10-6) ..., Ici = 0.2584261425059976..., 

6C2 = 36.4228534293310583..., 
si = 22707 32 + 86809 /3 - 103578, s2 - 921368 /2 + 3522413 3 - 4202777, 

s3 = 3416477 /2 + 13061278 / - 15584097 

Dk = 45684, f (x) = x3 -36x+12, /3=-6.16019403..., p=(71,/3+11) 
eco = 0.0000574623007658 ..., IEC = 149.4620520604661553..., 

C2 =1-7884050665537613(10-6)..., 

si = 14817/2 /32 - 45638 /3 + 14433, 
82 - 126111691 /32 - 776872487 / + 245664386, 
s3 = 37368570923/2 /2 - 115098823906 3 + 36396812203 

Dk = 45717, f(x) = x3 -x2 - 23x -6, =-4.17025025 ... , p = (31,3+ 19) 
ECO = 8.5836296890863779(10-6)..., Eci = 0.0112315655600718.... 

EC2 = 2.6896613211917345..., 
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sl = 3108 '32 - 16069 3 - 4470, s2 = 286054 '32 - 1478970 3 - 411567, 
S3 = 846612 '32 - 4377195 3 - 1218079 

Dk = 46548, f (x) = x3- 60x + 174, 3 = 5.06271682..., p = (11,3 + 2) 
Eco = 2.6671937837242204(10-10)..., e 27.3003706065528768.... 

6C2 = 0.0080919034750920..., 
si = 221937571 132 + 1123607074 3 - 7627749828, 

-2= 33496017624 132 + 169580851862 3 - 1151221226200, 
83 = 749824123748 '32 + 3796147204096 3 - 25770629119676 

Dk = 46548, f (x) = x3 - 36x + 4, 3 = -6.05480244..., p = (5,13 + 3) 
Eco = 4.0234729424478067(10-10)..., cci = 48.5936439176364186.... 

6C2 =0.2505274973657315..., 
si = 33594908 '32 - 203410531 3 + 22193892, 

82= 1775703443 132 - 10751533544 3 + 1173087616, 
83 = 6928165268 132 - 41948671988 3 + 4576971972 

Dk= 46644, f (x) = - 3 2- 69x - 183, 3 = -5.49617539..., p = (3,13) 
Eco = 0.0007480433912605..., Eci = 233814.3715515913653399..., 

EC2 = 0.1200570746203687..., 
si = 7210 32 - 4683713 - 240064, s2 = 9644139 32 - 6265001813 - 321110103, 

83 80972747 132 - 526013167 3 - 2696058917 

Dk= 46813, f(x) = x3 - x2 - 43x + 116, 3 = -7.20403114..., p = (17,13 + 15) 
Eco = 7.6001787555541085(10-7)..., Ec = 0.0110341869090405..., 

6C2 = 3.1596420064362269..., 
si = 10353 132 - 84933 3 + 166692, s2 974274 132 - 7992972 3 + 15687845, 

83 3261609 132 - 26758344 3 + 52518751 

Dk = 47860, f(x) = x3 -x2 - 61x + 185, 3 = 6.02818494..., Ip = (5,13 + 2) 
Eco = 0.0004587112066891..., eCO = 385948.0096909855103361..., 

6C2 =0.0617103648674198..., 
si = 21587/2 132 + 54272 3 - 662485/2, 

82= 23572651 132 + 118527649 3 - 723425124, 
83 761174735/2 132 + 1913663670 3 - 23359821793/2 

Dk = 47860, f (x) =x3 - 2- 51x + 81, 1 1.62015373..., p = (13,3 + 1) 
Eco = 0.0001232507645705..., cci = 6.2253059695722683(106).... 

6c2 = 3.9468054300213463..., 
si = -403322/3 132 - 250123/3 3 + 6721396, 

82= -1089933841 132 - 675926540 3 + 54491520987, 
83 = -13726623098/3 132 - 8512616551/3 3 + 228755343506 

Dk = 49928, f (x) = x3 - x2 - 26x + 38, 1 = -5.28298405..., Ip = (11,3 + 8) 
cco = 1.6185294898537994(10-6)..., cc = 114.7730860004330705.... 

6C2 =0.0052121792756212..., 
sl = 9051 132 - 56868 3 + 65106, 82 2774423 132 - 17431656 3 + 19956159, 

83 = 199228431 132 - 1251749053 3 + 1433031081 
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It remains to compute explicitly the Frobenius element a,. This can be done with 
the data provided above, as described in Section 5, but is rather more intensive, 
unlike the simple computations in (a)-(c) above. As a result we include below the 
explicit Frobenius automorphisms only for the 5 fields with discriminant less than 
10000 and for the field of discriminant 28212 described in Section 6. The data for 
the remaining examples as well as electronic versions of the data in these tables can 
be obtained by email from the authors. 

Dk= 2597 
uc (e) = [(25328 - 1356,3 - 3364/32) 5 + 

(-137616 + 28858,3 + 25252/32) C4+ 

(318696 - 98190,3 - 69273/32) 3 + 

(-358073 + 112785,3 + 79331,32) E2+ 

(199168 - 39527,3 - 36246/32) e + (-51496 + 1845,3 + 6724/32) /3997 

Dk = 4212 
ac(e) = [(-340775 + 464198,3 + 320869,32) E5+ 

(40526716 - 34401038,3 - 11816512/32) C4+ 

(-235405572 + 202535726b,3 + 69063980,32) ?3+ 
(411620440 - 353633098,3 - 120602498/32) E2+ 

(-128401572 + 110581112,3 + 37797938/32) e+ 
(3039548 - 2230368,3 - 923186/32)] /610109 

Dk= 6885 
uc(e) - [(-154 + 747,3 + 225/32) E5 + (50 + 2991,3 + 905/32) E4+ 

(-969 + 5746,3 + 1547/32) E3 + (85 + 4743,3 + 1513/32) E2+ 

(-509 + 2517,3 + 710,32) e + (69 + 477,3 + 132/32)] /17 

Dk= 9653 
uc(e) = [(136280 - 62660,3 - 28884/32) 65+ 

(823150-1571890/3 + 310096/32) C4+ 

(-1646711 + 3813888,3 - 1079473/32) C3+ 

(1666493 - 3533513,3 + 788409,32) E2+ 

(-437163 + 794029,3 - 263140,32) E+ 
(130581 - 93101,3 - 8590,32)] /191681 

Dk= 9800 
ac (e) = [(22571911 + 36645874,3 - 1370309,32) 65+ 

(-63256308 - 33101528,3 + 6061580,32) ?4+ 
(-219770863 - 5441722,3 + 16330639,32) E3+ 

(2852220080 + 204247608,3 - 133579400,32) e2+ 

(-2000686116 - 103046736,3 + 89250564/32) E+ 
(280105064 - 14215168,3 - 10318120,32)] /47722922 
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Dk= 28212 
auc () = [(-3599270210410146021309 + 144456675064152741936/3? 

96062588091859333029/32) E5 + 
(-337418618277039567474827 + 84163296584968335168506/3? 

19291389389815096078965/32)64+ 

(2640222158834310099968203077- 
675284692296064477088106958/3- 
153379895000330184633573814/32) C3 + 

(-239408540778937420780089655905+ 
61232837117469668680252067562/3? 
13908059107414446684962003979/32) e2+ 

(2577370712090340691346989569- 
659208900700762693152742032/3- 

149728575434905137542429385/32) 6+ 

(-253021406556793673085768+ 
63919617157029310621856/3? 
14582888259664145092184/32)] /35626819129793805949 

REFERENCES 

1. T. Arakawa, Generalized eta-functions and certain ray class invariants of real quadratic fields, 
Math. Ann. 260 (1982), 475-494. MR 84b:12016 

2. B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes- 
integrals, Comp. Math. 15 (1963), 239-341. MR 29:4923 

3. D. S. Dummit and D. Hayes, Checking the refined p-adic Stark Conjecture when p is 
Archimedean, Algorithmic Number Theory, Proceedings ANTS 2, Talence, France, Lecture 
Notes in Computer Science 1122 (Henri Cohen, ed.), Springer-Verlag, Berlin-Heidelberg-New 
York, 1996, pp. 91-97. 

4. V. Ennola and R. Turunen, On totally real cubic fields, Math. Comp 44 (170) (1985), 495-518. 
MR 86e:11100 

5. C. Fogel, personal communication. 
6. E. Friedman, Hecke's Integral Formula, Seminaire de Theorie des Nombres de Bordeaux No. 

5 (1987-88) (1989). MR 90i:11136 
7. F. Hajir, Elliptic units of cyclic unramified extensions of complex quadratic fields, Acta Arith- 

metica 64 (1993), 69-85. MR 94h:11102 
8. F. Hajir, Unramified Elliptic Units, M.I.T. Thesis, 1993. 
9. F. Hajir (with F. Rodriguez-Villegas), Explicit Elliptic Units I, Duke Math. J. (to appear). 

10. D.R. Hayes, Brumer elements over a real quadratic base field, Expositiones Mathematicae 8 
(1990), 137-184. MR 92a:11142 

11. D.R. Hayes, The partial zeta functions of a real quadratic field evaluated at s = 0, Number 
Theory (Richard A. Mollin, ed.), Walter de Gruyter, Berlin, 1990, pp. 207-226. MR 92j:11134 

12. D.R. Hayes, Base Change for the Brumer-Stark Conjecture, preprint. 
13. J. Nakagawa, On the Stark-Shintani conjecture and cyclotomic Zp-extensions of class fields 

over real quadratic fields, J. Math. Soc. Japan 36 (4) (1984), 577-588. MR 87a:11108a 
14. K. Rubin, A Stark Conjecture "over E" for abelian L-functions with multiple zeros, Ann. 

Inst. Fourier, Grenoble 46 (1996), 33-62. CMP 96:11 
15. J. W. Sands, Abelian fields and the Brumer-Stark conjecture, Comp. Math. 53 (1984), 337- 

346. MR 86c:11102 
16. J. W. Sands, Galois groups of exponent two and the Brumer-Stark conjecture, J. Reine Angew. 

Math. 349 (1984), 129-135. MR 85i:11098 
17. J. W. Sands, Two cases of Stark's conjecture, Math. Ann. 272 (1985), 349-359. MR 

87a:11117 
18. T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo 

24 (1977), 167-199. MR 57:277 



COMPUTING STARK UNITS FOR TOTALLY REAL CUBIC FIELDS 1267 

19. T. Shintani, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan 30 
(1978), 139-167. MR 58:16599 

20. H. M. Stark, Class fields for real quadratic fields and L-series at 1, Algebraic Number Fields 
(A. Fr6hlich, ed.), Academic Press, London, 1977, pp. 355-375. MR 56:11963 

21. H. M. Stark, Hilbert's twelfth problem and L-series, Bull. A.M.S. 83 (5) (1977), 1072-1074. 
MR 56:314 

22. H. M. Stark, Values of L-functions at s = 1. I. L-functions for quadratic forms, Advances in 
Math. 7 (1971), 301-343. MR 44:6620 

23. H. M. Stark, Values of L-functions at s = 1. II. Artin L-functions with rational characters, 
Advances in Math. 17 (1975), 60-92. MR 52:3082 

24. H. M. Stark, L-functions at s = 1. III. Totally real fields and Hilbert's twelfth problem, 
Advances in Math. 22 (1976), 64-84. MR 55:10427 

25. H. M. Stark, L-functions at s = 1 IV. First derivatives at s = 0, Advances in Math. 35 
(1980), 197-235. MR 81f: 10054 

26. J. T. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s = 0, Birkhhuser, Boston, 
1984. MR 86e:11112 

27. F. Y. Wang, Conductors of fields arising from Stark's conjecture, Ph.D. Thesis, MIT, 1991. 
28. A. Wiles, On a conjecture of Brumer, Annals of Math. 131 (1990), 555-565. MR 91i:11164 

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF VERMONT, BURLINGTON, VER- 

MONT 05405 
E-mail address: dummitOmath.uvm.edu 


	Cit r384_c388: 


