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THE PRACTICAL COMPUTATION OF AREAS ASSOCIATED 
WITH BINARY QUARTIC FORMS 

MICHAEL A. BEAN 

ABSTRACT. We derive formulas for practically computing the area of the region 
IF(x, y)I < 1 defined by a binary quartic form F(X, Y) E R[X, Y]. These 
formulas, which involve a particular hypergeometric function, are useful when 
estimating the number of lattice points in certain regions of the type IF(x, y) I < 
h and will likely find application in many contexts. We also show that for forms 
F of arbitrary degree, the maximal size of the area of the region IF(x, y)I < 1, 
normalized with respect to the discriminant of F and taken with respect to 
the number of conjugate pairs of F(x, 1), increases as the number of conjugate 
pairs decreases; and we give explicit numerical values for these normalized 
maxima when F is a quartic form. 

1. INTRODUCTION 

Let F(X, Y) = aoXn + aXn-lY + ... + anYyn be a binary form with real 
coefficients and let AF denote the area of the region IF(x, y)I < 1. (That IF(x, y)I < 
1 defines a region with area is clear from the polar form r < IF(cos 0, sin 0)1-/nof 
this inequality.) Let DF denote the discriminant of F. If F has the factorization 
H>I (aiX - 1iY) with ai, /3i E C (every binary form has such a factorization), then 

DF = f7i<j(3 (j i _ - j/c32)2. Let B(x, y) denote the Beta function with arguments 
x and y. 

In [2], we showed that if F has degree n > 4 and discriminant DF /& 0, then 

(1) IDF 11/n(n-1)AF < 27/6B (1, 2) 11.77; 

moreover, we showed that the bound 27/6B(1/4, 1/2) is attained, for example, when 
F(X, Y) = XY(X2 - y2). This result improved an earlier estimate for AF given 
in [3]. There we showed that if F has degree n > 3, then IDFI1/n(n-1)AF < 
3B (1/3,1/3) 1 15.90, with equality holding when F(X, Y) = XY(X - Y); in fact, 
we showed that the sequence {Mn} defined by Mn = max IDF II/n(n-1)AF (the 
maximum being taken with respect to forms of degree n) is a decreasing sequence, 
but we did not determine the values of Mn for n > 4 1 
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The quantity IDF I 1/n(n-1)AF actually has only two possible values when F has 
degree three or two. To be precise, if F has degree three, then 

r3B I I 
if DF>O, 

(2) IDF A /AF =- I 31I 
(v/-BB3,3) if DF<O, 

while if F has degree two 

(3) IDF 1/2 AF = 

o if DF >O, {2w if DF' < 0. 

(See ?6 of [3] for the derivation of IDFI1/6AF when DF > 0; the other derivations 
are entirely analogous.) This stands in marked contrast to the situation in general. 
Indeed, if n > 4, then IDFI1/n(n-1)AF assumes all real values between 0 and Mn 
as F runs over the forms of degree n (see [5]). 

Equations (2) and (3) enable us to calculate the value of AF in a direct and ele- 
mentary manner when F is a cubic or a quadratic form with non-zero discriminant. 
It is natural to ask whether there are elementary formulas (necessarily dependent 
on quantities besides DF) which give the exact value of AF in general. Such for- 
mulas would likely find application in many contexts since the regions IF(x, y) I < h 
are among the most basic and natural that one could consider in two dimensions. 

Our primary motivation for seeking formulas for AF actually arises from a par- 
ticular theorem of Mahler concerning lattice points in certain regions of the type 
IF(x, y)I < h. Mahler [8] showed that if F has integer coefficients, degree n > 3, 
and is irreducible over Q, then the number NF(h) of lattice points in the region 
IF(x, y)I < h and the area AFh2/n of this region are connected by the relationship 

INF(h) - AFh2/n I< CFhl/(n-1) 

where CF is a number depending only on F. 2 From this relationship, it is clear 
that a general formula for AF would be very useful in the study of NF (h). 

In this paper, we will derive formulas for calculating AF when F is a quartic 
form. The formulas which we give will involve a particular hypergeometric function 
and will be practical for computation. Our analysis will divide into three cases 
according to the number of pairs of complex conjugate roots possessed by F(x, 1). 
For quartic forms with real coefficients, the number of such pairs is zero, one, or 
two. 

This division of cases is quite natural to consider since the number of pairs of 
complex conjugate roots of F(x, 1) determines (and is determined by) the number 
of singularities in the polar integral representation of AF. To be precise, if F(x, 1) 
has k pairs of complex conjugate roots, then the graph of IF(x, y) I = 1 (in the real 
affine plane) has n - 2k asymptotes (each one arising from a different real linear 

2Mahler's result does not hold for all forms with real coefficients; indeed, if even one of the 
roots of F(x, 1) is a Liouville number, then NF(h) is infinite while AF remains finite. On the 
other hand, the stated conditions are stronger than necessary to ensure the finiteness of NF(h) 
and can likely be relaxed. 
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FIGURE 1. Sample graphs for the three types of quartics 

factor of F(X, Y)), and so the calculation of AF involves the treatment of 2(n - 2 k) 
singularities. 3 Figure 1 provides an illustration of these cases when n = 4. 

A similar division of cases was implicitly used in the derivation of equations 
(2) and (3); indeed,. for cubic and quadratic forms F, the sign of DF indicates 
the presence (or absence) of a conjugate pair. In general, we should expect the 
calculation of AF for forms of degree n to involve [n] + 1 cases (as determined by 
the number of conjugate pairs of F(x, 1)). Hence, the task of finding elementary 
formulas for forms of higher degree could become increasingly more complicated. 

Although we are unable to derive formulas for AF in all4 the [ n] + 1 cases de- 
scribed above, we can still prove an important relationship among these cases. 
In particular, we will show that for forms of degree n, the maximal value of 
IDF 1/n(n- 1)AF taken with respect to the number of conjugate pairs decreases as 
the number of conjugate pairs increases. A brief glance at equations (2) and (3) 

3Since F has real coefficients, the number of asymptotes of IF(x, y)I = 1 must be n - 2k for 
some k (the number of pairs of complex conjugate roots). For forms with complex coefficients, 
this need not be true since the non-real roots of F(x, 1) need not come in conjugate pairs. 

4Formulas for AF when F has a complete factorization over R were given in [2]. 
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indicates that this result is clearly true for cubics and quadratics; however, its truth 
in general is not at all obvious since IDF I1/n(n-1) AF assumes all real values between 
0 and Mn. We will prove this result by appealing to the maximum principle for 
plurisubharmonic functions from the theory of several complex variables. 

With this general result in hand, we will then return to the special class of quartic 
forms to compute explicit numerical values for the maxima of JDF I 1/n(n- 1)AF (in 
each of the three cases determined by the number of conjugate pairs of F). We will 
conclude with two minor results which show that the computed maxima are in fact 
the true maxima. 

2. STATEMENT OF RESULTS 

Let F(X, Y) = a0X4 + a1X3Y + a2X2Y2 + a3XY3 + a4Y4 be a binary quartic 
form with real coefficients and non-zero discriminant, and let k be the number of 
pairs of complex conjugate roots of the polynomial F(x, 1). Note that k is the 
number of definite quadratic factors in the factorization of F(X, Y) over JR and has 
the value zero, one, or two. 

Suppose that F(X, Y) has the factorization 1471 (aiX - 13iY) with the fractions 
ai //3i arranged such that 

a1 a2 ae3 a4 
< - < <- < if k =0, 

13, /32 /33 /34 

(4) a1 a2 ifk=1 
3, /32 /33/3 

a1l = 2 l3 = O if k = 2. 

-31 T2 '33 /3 4 

(Here Ol denotes the complex conjugate of a.) Put 

(5) PF - (a4/13 
- aI134)(a3/32 - 

a2/33) 
(Ca4/32 - a2/34)(a3/31 - a1/33) 

and define CF E (0, 1) by 

PF if k = 0, 

(6) (= - 2 2 ifk=1 

2 

( 'vs) if k = 2. 

(The notation o- k) while logically redundant, emphasizes the dependence of 0F 

on k and will be particularly useful when considering collections of forms with a 
given k value. Note that the arrangement of the fractions ai//3i assumed in (4) 
is not uniquely determined by F; in particular, this arrangement is not invariant 
under complex conjugation. However, all arrangements of type (4) associated with 
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a specific F give rise to the same value of crF; 5 moreover, the assumptions of (4) 
guarantee that 0F E (0, 1).) 

Let I be the function 
1 ~~dz 

(7) I(x) =1 1/2 (1 - )l/2( )l/2 

and define functions Jo, J1, J2 by 

(8a) Jo(x) = 2x1/6(1 - x)1/6 (I(x) + I(1 -x)) 

(8b) J_ (x) = 21/3X1/12(1- x)1/12 (I(x) + I(1 -X)) 

(8c) J2(x) = 21/3X/112(1 - X)1/31(1 _ X) 

for x E (0, 1). 
We will derive the following representation for AF in ?3. 

Theorem 1. Let F(X, Y) be a binary quartic form with real coefficients and non- 
zero discriminant DF, and let k be the number of pairs of complex conjugate roots 
of the polynomial F(x, 1). Then, with the notation above, we have 

Jo (<()) IDFI1/12 ifk=O, 

(9) AF - l if k = 
IDFI11/12 ik1 

l2 '0 (2I) 
F 

if k =2. 

(The absolute value operation on the discriminant is unnecessary in the cases k 0 
and k = 2, but is included for consistency.) 

This representation has several desirable properties: 

(I) It is practical for computation (as we will soon explain). 
(II) It expresses the quantity JDF11/12AF in each of the cases k = 0, 1, 2 as a 

function of a single parameter cF which itself has the following desirable 
properties: 
(a) UF is invariant under GL2(R) (in the sense to be defined in ?3); 
(b) UF E (0, 1), so that IDFI1/12AF (when considered as a function of UF) is 

defined on a fixed bounded interval; 
(C) oF is invariant with respect to interchanging any single pair of complex 

conjugate roots ai//3i, ai//3i (so we need not be concerned with an a 
prior arrangement of the non-real roots). 

(III) It is "straightforward" to derive using real linear fractional transformations 
and real quadratic transformations. 

By contrast, the "standard" representation 

(10) AF = dO 2J F(cos0, sinO0) 2/n 

5This is not true of PF which is only unique up to conjugation. 
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(which follows directly from the polar form r = jF(cos0,sin0)j-1/n of the curve 
IF(x,y)l = 1) is not practical for computation and does not describe AF in a 
meaningful way. It is quite conceivable that there are many other representations 
of AF which have the properties (I), (II), (III). However, for our present purposes, 
the representation given in Theorem 1 is certainly satisfactory. 

An alternative representation which we will find particularly useful in our dis- 
cussion below is the representation given by 

Jo0(7 (0?)) DF1/12 if k=O 

IDFI11/12 
( AF = X DF I/I) if k = 1, 

l1 f, '(2') 

where J2 and &(2) are defined by 

(12) J2(x) 2x1/ (1 - x)1/I(x), X E (0,1), 

(13) F - (0,1) 
PF 

and where it is assumed that the ai/fi are arranged to satisfy (4) and the additional 
condition 

(i') (a) > 0 

in the case k = 2 (so that &F2) E (0, 1)). Note that this representation differs from 
the representation of Theorem 1 only in the case k = 2, but is "less desirable" since 
it fails to satisfy property (JIc) (in that case). We will not prove the correctness of 
the formula AF = J2 (8(2))/IDFI1/12 in the case k = 2 since this formula is not used 
in the demonstration of any of our results. However, it can be derived without too 
much difficulty using complex integration techniques and complex fractional linear 
transformations. 

We will now explain why the representation of Theorem 1 is practical for compu- 
tation and how it can be implemented in practice. It is clear that this representation 
reduces the calculation of AF to the following basic computations: 

(i) the algebraic computation of DF and UF; 
(ii) the numeric computation of z1/12 for z > 0 and of Jk(x) for x E (0,1). 

We claim that each of these basic computations can be easily performed using 
standard mathematical software. 

Consider first the algebraic computation of DF and CF. If a factorization 

Hi7=41 (eiX -f3iY) of F(X, Y) is given, then we can compute DF and UF directly 
from their definitions using elementary algebraic operations. On the other hand, 
if a factorization of F(X, Y) is not given, we can always (effectively) obtain one 
from the coefficients of F(X, Y) using the formula for solving quartic polynomial 
equations if necessary to first find the roots of F(x, 1) - and then calculate DF 
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and UF as before. In the latter case, i.e., the case where 

F(X, Y) = aoX4 + aX3Y + a2X2Y2 + a3XY3 + a4Y4, 

it is usually better to compute the discriminant DF using the well known formula6 

DF = -80Oaaja2a3a4 + 144a2a2a~a4- 6aoa2a~a4 + 18aoala2a3 

(14) 
- 

192a~aja3a4 
+ 144a0a1a2a4- 128aOa2a4- 27aOa3 

+ 16aoa4a4- 4aoa3a2 + 18a3a2a3a4- 27a 4a2 

- 4a 2a3a4- 4a3a3 + a 2a2a2a + 256a3a3 

since this avoids the complexity of factoring F(X, Y). In principle, it should also 
be possible to express UF in terms of the coefficients of F. However, it is not 
clear that the resulting expression would involve any fewer computational steps 
than the routine of factoring F(X, Y), computing PF, and then computing cF 
with (6). Indeed, it is not at all clear to us that PF (and hence UF) could even be 
effectively computed (using only elementary algebraic operations) if there were no 
formula for solving quartic polynomial equations. This suggests that there may be 
significant complications in the calculation of AF for forms of higher degree (see [2, 
Theorem 3]). 

Now consider the numeric computation of z1/12 and Jk(x). Clearly the only 
potential difficulty here lies with the evaluation of the integrals I(x). A glance 
at (7) reveals that each of the integrals I(x) has singularities at the endpoints 
z = 0, z = 1 of the integration interval, but is otherwise well suited for numerical 
evaluation. We can easily remove the singularities of I(x) by splitting the integral 
into two parts at the point z = 1/2 and applying the respective substitutions z = w2 
and z = 1 - w2. After doing this, we obtain the expression 

(15) 11~~~~I/ 
vf dw 

((x) = (1-w2)1/2(XW2)112 

JX (1 - w2)1/2(1 - X + XW2)1/2 

which can be readily evaluated using a standard numerical integration package. 
Combining these observations with the earlier ones concerning the calculation of 
DF and aF, it is then a straightforward matter to construct an algorithm for 
computing AF in practice. 

It is worth mentioning that the function I(x) is actually a scalar multiple of a 
complete elliptic integral of the first kind, and is the integral representation of a 
particular hypergeometric function. To be precise, 

(16) I(x) = 2K(x) = ir 2F, (2 ;1; X) 

where K(m) = f 2(i - m sin2 O>1/2 dO is the complete elliptic integral of the first 
kind with parameter m and 2F1 (a, b; c; x) is the ordinary hypergeometric function 
with coefficients a, b, and c (see [1, p. 591]). Many commercially available software 
packages contain built-in elliptic integrals and hypergeometric functions. Hence 
(16) provides an alternative way to evaluate I(x) in practice. It has been our 
experience, however, that these built-in functions sometimes fail to converge for 

6This formula can be easily obtained using a computer algebra software package [6]. 
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values of x close to 1. In such cases, (15) can still be numerically integrated to 
obtain a value for I(x). 

While the representation of Theorem 1 is satisfactory for most purposes, it does 
have a couple of drawbacks. The most obvious drawback is the omission of the case 
DF= 0. However, this is not too serious since for such forms F, the area AF is 
infinite unless F(X,Y) = Q(X,y)2 for some definite quadratic form Q in which 
case AF = 21r/IDQ 11/2. The other drawback, which may be unavoidable, is the use 
of three separate formulas to describe AF. It would be very satisfactory to have 
one 7 formula for AF which covered all cases and exhibited properties similar to 
the properties (I), (II), (III) stated above. In light of equations (2) and (3) from 
?1, we suspect that this is not possible for the collection of quartic forms with real 
coefficients; however, it may be possible for the collection of quartic forms with 
complex coefficients. 

Now let us consider the quantity JDF 1/12AF in greater detail. We already know 
from equation (1) of the Introduction that the maximum value of IDF11/12AF over 
the class of quartic forms is 27/6B(4, 2) and that JDF11/12AF assumes all values 
between zero and its maximum. In light of equations (2) and (3), it is natural to 
ask how the maximum varies with the number of conjugate pairs of F(x, 1). To 
facilitate this discussion, we introduce the following notation. Put 

M? k = max JDF 1/n(n 1)AF 

where the maximum is taken over all binary forms F of degree n with real coeffi- 
cients, non-zero discriminant, and with the property that the polynomial F(x, 1) 
has exactly k pairs of complex conjugate roots. 

From the representations (9) and (11) of AF, it is clear that in the case n = 4 
we have 

M4,2 <M4,1 and M4,2 < M4,0 

since it is certainly true from the definitions of (8) and (12) of the functions Jo, J1, 
J2, J2 that 

J2(x) < Ji (x) and J2(x) < Jo (x) 

for all x E (0,1). Together with equations (2) and (3) of the Introduction, this 
suggests that 

M4,2< M4,1 <M4,0- 

In fact, we will prove a much stronger result in ?4. 

Theorem 2. Put 

Mn,k = max JDFI 1/n( )AF 

where the maximum is taken over all binary forms F(X, Y) of degree n with com- 
plex coefficients, non-zero discriminant, and with the property that the polynomial 
F(x, 1) has exactly k pairs of complex conjugate roots. Then for each n > 2, 

MnO > Mn > ... >Mn,[n] 

Moreover, for each k = 0, 1,... , [n], Mn,k is attained by a form of degree n with 
precisely n -2k real linear factors, the greatest number possible. In particular, Mn,k 
is attained by a form with real coefficients. 

7Such a formula need not contain DF explicitly. 
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Since the M,,k are attained by forms with real coefficients, Theorem 2 remains 
true if we restrict our attention to this class of forms: 

Corollary 1. Put 

Mn,k = max IDF| / ( )AF 

where the maximum is taken over all binary forms F(X, Y) of degree n with real 
coefficients, non-zero discriminant, and with the property that F(X, Y) has exactly 
k definite quadratic factors in its factorization over R. Then for all n and k, 

Mnk = Mnk. 

Consequently, for each n > 2, 

> > M Mn*, 0>Mn*,>' Mn, [2- 

In particular, 

M4*,2 < M4, I < M4, 0 

Theorem 2 also has the following consequence, which is essentially a restatement 
of Theorem 3 from [3]: 

Corollary 2. The maximal value Mn of the quantity IDF11/n(n-1)AF over the class 
of forms of degree n with complex coefficients and non-zero discriminant is attained 
by a form F- with real coefficients for which the polynomial F(x, 1) has n distinct 
real roots. That is, 

Mn = Mn,0 

for all n. 

Consequently, Theorem 2 can be viewed as a generalization of this earlier result. 
Theorem 2 raises several interesting questions regarding the nature of the se- 

quences {Mn,k }k=0 
* What are the values of Mn,k? 
* Are there canonical classes of forms Fn,k for which 

Mnk = IDFn kk 1/A( )AFn k? 

* Is there a relationship among the sequences {Mn,k}jL]? 
* What is the "limiting behavior" of the Mn,k as n becomes large? 

While we are unable to give complete answers to these questions at this time, we 
can give an indication of what the answers might be. 

From equations (1), (2), and (3) of the Introduction, we clearly have 8 

M2,0 = 00, 

M2,1 = 27r - 6.28318, 

M3,- = 3B (3, 3) 15.89974, 

M3,1-= VB ( ) 9.17972, 

M4,0 = 27/6B ( -Id) 11.77264; 

8Numerical approximations are chopped, not rounded. 
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moreover, we have a complete characterization of the forms Fn,k for which these 
values of M,,k occur. We will show in ?5 that 

(17) M4,1 9.10746, 

(18) M4,2 7.00758, 

using the formulas for IDF 1/12AF given in Theorem 1 and properties of the hyper- 
geometric function. Unfortunately, we have not been able to determine canonical 
forms F4,1, F4,2 which give rise to these values. Consequently, the given values of 
M4,1 and M4,2 are numerical approximations only.9 

When n > 5, we do not even have numerical approximations for the Mn,k. 
However, we do have some indication of what the values might be when k = 0. 
From Theorem 2 and the fact that {MJ} is decreasing, it is clear that the sequence 
{Mno} is also decreasing. On the basis of this fact and a correspondence between 
forms and equiangular polygons, we conjectured in [2] that 

Mno =-DFn* 1/n(n 1)AFn I n > 5, 

where 

F (XI Y) =7J (xsin (2T)Y cos (-)). 

We also conjectured that limnno Mn,O = 2ir. If these conjectures were true, then 
the sequence {Mno} would have a very natural characterization. 

Unfortunately, there are no obvious candidates for Mn,k when k $8 0. Indeed, 
our analysis of the situation for quartic forms indicates that determining the values 
of Mn,k in general could be quite difficult. It would appear from the known values 
of Mn,k that {Mno} is the only sequence among those defined by fixing a value of 
k which is decreasing. 

It is not clear whether knowledge of the values of Mn,k for k =A 0 would have 
any immediate application. Nevertheless, it would be interesting to know the 
values of the sequence {Mn,[n1n1}?=2, if only to compare them with the sequence 
{Mno}?? 2. It is clear that limn,+ Mn, [ n ] 7& 0; in fact, an examination of the 
forms Xn + yn indicates that limno Mn,[n] > 4. One is tempted to conjecture 
that limn, oM,[o]M = 2rr, although at present there is not enough evidence to 
confidently predict that this is so. If one could show that limnO Mn,O = 27r and 
lilnno Mn,[n] = 27r, then it would necessarily follow that limnO,0 Mnkn = 27r for 
every sequence of integers kn satisfying 0 < kn < [n]. 

3. FORMULAS FOR CALCULATING AF 

In this section, we will derive the formulas given in the statement of Theorem 1 
for calculating AF when F is a quartic form. The practical implementation of these 
formulas was discussed in ?2. 

We begin by recalling some notation and some elementary facts from [3]. The 
facts stated below are actually true in the more general context of forms of degree 
n with complex coefficients, and will be used in the proofs of both Theorem 1 and 
Theorem 2. (The proof of Theorem 2 will be given in the next section.) 

9Nevertheless, the methods presented in ?5 allow us (in principle) to determine the values of 
M4,1 and M4.2 to any desired accuracy. 
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Let GL2 (R) denote the group of 2 x 2 real invertible matrices. For any form 

F(X, Y) E C[X, Y] and any T =(a ) E GL2(IR), let FT denote the form given 

by FT(X, Y) = F(aX + bY, cX + dY). We will say that two forms F and G are 
equivalent under GL2 (R) if G = FT for some T E GL2 (R)I). 

In [3], we showed that the quantity IDF 11/n(n-)AF is invariant under transfor- 
mations in GL2(R), i.e. IDFTI1/n(n-1)AFT = IDFI1/n(n-1)AF for all T E GL2(R), 
and is invariant with respect to replacing F by yF for any complex number -y. 10 
We also showed that AF has the integral representation 

00 du __ F(1 
(19) AF = 

IF(u, 1)12/n'= / IF(1 V)12/n 

Moreover, we made the observation that a GL2(R) transformation can be specified 
(up to multiplication) by indicating its action on any three independent linear 
factors of a form F(X, Y). Indeed, we noted that a GL2 (R) transformation applied 
to any form F(X, Y) induces a real fractional linear transformation of the roots of 
the polynomial F(1, y), and that any real fractional linear transformation may be 
defined by the rule 

(w - wi)(w3 - W2) (z - Z1)(z3 - Z2) 

(w-w2)(w3- wI) (z-Z2)(Z3---Z1) 

where the z's and w's are real numbers such that z1, Z2, z3 are mapped to w1, w2, 
W3 respectively. From these three facts, we concluded that a formula for calculating 
AF can be obtained by simply specifying three of the roots of FT(1, y), using (19) 
to calculate AFT, and then multiplying the result by IDFTIDF 1/n(n-1). 

Now suppose that F(X, Y) = 74 1(aiX - OiX) is a binary quartic form with 
real coefficients and non-zero discriminant, and let k be the number of pairs of 
complex conjugate roots of the polynomial F(x, 1). (k is also the number of pairs 
of complex conjugate roots of F(1, y).) Suppose further that the fractions ai/oi 
are arranged according to (4) in ?2, and let the quantities PF and a k) be defined 
by (5) and (6) respectively. Let the functions I and Jk be defined by (7) and (8) 
respectively. We will derive the representations for AF stated in Theorem 1 by 
separately considering the cases k = 0, k = 1, and k = 2. 

In each of these three cases, our strategy will be the same. First, we will use 
a suitable transformation from GL2 (IR) to reduce the calculation of IDF 1/12AF in 
general to its calculation over a class of "canonical" forms F(t) which depends on 
a single real parameter t. Then, we will use the integral representation given in 
(19) above to obtain an explicit formula for DF(t) 11/12AF(t). Finally, we will use 
a suitable quadratic or linear fractional transformation to transform the resulting 
integrals into integrals of hypergeometric type. In each case, the initial GL2(R) 
transformation will be chosen to ensure that the subsequent calculations lead to 
the desired representation of AF. 

Case 1: k = 0. In this case, the polynomial F(x, 1) has four real roots (counting 
any root at infinity). 

10Note that JDF i/n(n-1)AF is not invariant with respect to GL2(C). See, for example, 
equation (2) of ?1. 



1280 MICHAEL A. BEAN 

There is a real fractional linear transformation of the roots such that 
ai a2 a3 a 
o!3 

' _: 00 IS -401 - t, ,4 t I 1 , t E (0, 1) 
01 0~/2 33 /34 

and so every form F in this class is equivalent under GL2 (R) to a form of the type 

F(t) (X, Y) = XY(Y - X) (Y - tX) , t e (0,1). 

(Note that the statement t E (0, 1) is actually a consequence of our assignment of 

al/i31, a2/32, a4//4 since real fractional linear transformations preserve or reverse 
the cyclic order of the real numbers.) Under such a transformation 

(20) PF = t. 

Using the representation (19), we find that 
[0 dv [1 dv 

AF(t J 
(-V)1/2(1 - V)1/2(( - tV)1/2?]o 1/2(1 - v)1/2(1 tV)-12 

J1/t dv f dv 
+ V1/2(V-1/2/2(1-tV)1/2?+Lt V1/2(V - 1)1/2(tv - 1)1/2 

- [1 dw Li dw 
-2 J 1 w/2(1 - W)1/2 (1 - tW) 1/2 + 2 1w/2(1 w)1/2(1 - (1 -t 1/2 

(The latter integrals follow from the former by applying the respective substitutions 

v = -w/(l - w), v = w, v = (1 - (1 - t)w)/t, v = 1/(tw).) Hence 

I1DF ) 11/12 AF(tO = 2 t1/6 (I _t)1/6 (I(t) + I(1-_t)). 

Now from (20) and the definition of oFO) we have 10O) - t Consequently, if F is 

any form in the class k = 0, then 

IDF 1/12AF = JO (F 

where 

JO(X) = 2x1/6(1- X)1/6 (I(X) + I(1- X)). 

(This formula is actually a special case of Theorem 3 from [2]. The derivation is 

presented here for completeness.) 

Case 2: k = 1. In this case, the polynomial F(x, 1) has two real roots and one 

pair of complex conjugate roots. 
There is a real fractional linear transformation of the roots such that 

al ~a2 Oa3 Oa4 
-F---1 - F- 1 - F-I it) -F --it) t > 0O 

01 ~~32 /33 /34 
and so every form F in this class is equivalent under GL2(IR) to a form of the type 

F(t) (X, Y) = (y2 _ X2) (y2 + t2X2), t > 0. 

Under such a transformation, 

1 -it 2 
(21) P= I +.It 
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By the symmetry of F(t), and using the representation (19), we have 
[1 ~~~dv 0' dv 

AFt 2 + 2I AF (0= 2J ( 1-V2)1!2 (V2 + t2 )l/2 J (V2 - 1)1/2(V2 + t2)1/2 
Further 

[1 dV 1 v dw 

(1- v2)1/2 (V2 + t2)1/2- 2(1+ t2)1/2 w1/2( - w)1/2(1 + t2w) 

(using the substitution v = 1/ w) and 

[?? dv dw 
I (v2 - 1)1/2(V2 + t2)1/2 2(1 + t2)1/2 t2w1/2(1-w)1/2(1-1 + 

(using the substitution v = 1/v1 - w). Hence 

ID 11/12A 21/3tl/6 I 
1 

+ 
t2 

I(0 F(t) ( - t)1/ 1 +t2) ?i1 +t2) 

- 21/3S1/12(1 - s)1/12 (I(S) + 1(1 - S)) 

where s = 1/(1 + t2). 
We claim that s = 2(1 ? l(1 + +RpF)/2). From (21) we have PF = ei for some 

e (-7r, 7r) and so (1 - it)/ (1 + it) = . Suppose that (1-it)/(1 + it) - 

Then t =-i(l - e(/2)/(l + e'(/2) =-(sin ()/(1 + cos () and so s = 1/(1 + t2) - 

(1+cos )/2. On the other hand, if (1-it)/(1+it) =-ei(/2 then s = (1-cos ()/2. 
Now cos _ - (1 + COS()/2. Consequently, s = (1 ? 2(1 + ~RpF)/2) as claimed. 

Now s = 2(1? i (1+ RpF)/2) if and only if 1 - s = (1 T V(1 + RPF)/2). 
Hence a ,1) which is defined to be 2 (1 + l(1 + RpF)/2), is either s or 1 - s. Since 
IDF(0 11/12AF(t) is invariant with respect to interchanging s and 1 - s, it follows 
that 

ID 11/12 
AFt= 21/3 (07())1/12 (1 _ 7(l))1/12 1(at(l)) + I(1 

_ 
(1))) 

Consequently, if F is any form in the class k = 1, then 

IDFI1/12AF - J (F) 

where 

JI(x) = 2113X112(1 - X)1/12 (I(X) + 1(1 - X)) 

Case 3: k = 2. In this case, the polynomial F(x, 1) has two pairs of complex 
conjugate roots. 

There is a real fractional linear transformation of the roots such that 
?el . ?ey2 . 3 a4 ,-, ZI, >-zt 't) t E (0, 1), 

01 0~/2 33 /34 

and so every form F in this class is equivalent under GL2(IR) to a form of the type 

F(t)(XI Y) - ?(y2 + X2)(Y2 + t2X2) t E (0,1). 
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Under such a transformation, 

(22) PF= t)>1 

By the symmetry of F(t), and using the representation (19), we have 
00 ~dv 

AF(t) = 2J (v2 + 1)1/2(v2 + t2)1/2 

[1 dw 

- Jo w1/2(l -w)1/2(l - (1 -t2 12 

(The latter integral follows from the former using the substitution v = 17w 1.) 
Hence 

IDF(t) 11/12AF(t) = 21/3tl/6(I - t2)1/3i(l - t2). 

From (22) and the definition of 7 (2) ,it is straightforward to show that 

2( 12 + 

Consequently, if F is any form in the class k = 2, then 

IDF 112AF = J2 (F 

where 

J2(x) = 21/3X1/12(1 - X)1/31(1 - X). 

This completes' the proof of Theorem 1. 

4. THE NATURE OF THE SEQUENCES {Mnk} 

Put 

Mn,k = max IDFIl/n(n-1)AF 

where the maximum is taken over all binary forms F of degree n with complex coef- 
ficients, non-zero discriminant, and with the property that the polynomial F(x, 1) 
has exactly k pairs of complex conjugate roots. In this section, we will show that 
for each n > 2, 

MnO > MnJ > ... >Mn[] 

We will also show that for each k = 0, 1,... ,n[ ], Mn,k is attained by a form of 
degree n with precisely n - 2k real linear factors, the greatest number possible. 
Theorem 2 and its corollaries will then follow. 

We remarked in the previous section that the quantity IDF I1/n(n-1)AF is in- 
variant with respect to GL2(R) and with respect to replacing F by yF for any 
complex number y. Hence, when analyzing I DF I /n(n- 1)AF, we need only consider 
the quantity 

(-, -Y) = IX 1ij - Y, i2/n(n-L1) j dv 
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over all n-tuples (-11, , -yn) of distinct complex numbers. We will adopt the 
convention that if one of these -y's is infinite, say yn, then 

Q(tYl, '-Y_) =y Yi12/n(n-1) dv Q~~~yi,... ,Yr ~ ~ ~ ~ 00 ( -)V 
liii 2/ 

1<i<j<rn-1 

To simplify the discussion which follows, we introduce the following notation. 
Let Cnk be the collection of n-tuples (,... ,i yn) of complex numbers with the 
following properties: 

(i) the numbers -yl,... , fyn are all distinct; 
(ii) there are exactly k complex conjugate pairs among the numbers yi,... , ~ 

Further, let Cnk be the subset of Cnk whose elements (yi, ... , yn) satisfy the fol- 
lowing additional property: 
(iii) any component rj of (yy,... ,n) whose complex conjugate is not one of the 

other components of (yl,... -yn) must be a real number. 
Then 

Mnk - max Q y -,. mn) 
(71yX rn,)ECn~ 

and 

Mn k = max Q(Y1,, ,y4n) 

(Recall that Mnk was defined in ?2 to be the maximum value of JDFJ1/n(n-1)AF 
over all binary forms F of degree n with real coefficients, non-zero discriminant, and 
for which the polynomial F(x, 1) has exactly k pairs of complex conjugate roots.) 
We will show that 

(23) (,-i ,-yn) E Cn, k + 1 = Q (71, me-n) < Mn, k 

and that 

(24) (i. F a n) E Cn,)k\Cnk \=k Q(IY,. F < Mn k 

and Theorem 2 will follow. 
Before discussing the details of the proof, let us recall the following terminology 

from the theory of complex functions. A continuous real-valued function u of a sin- 
gle complex variable z = x + iy is harmonic if it has continuous partial derivatives 
of the second order and satisfies Laplace's equation 02u/&x2 + 02u/&y2 = 0. A 
continuous real-valued function v of a single complex variable is said to be subhar- 
monic if, in any region of the complex plane, v is less than or equal to the harmonic 
function u which coincides with v on the boundary of the region. A subharmonic 
function need not be continuous; however, this assumption allows one to simplify 
the definition to some extent. 

An important property of subharmonic functions is that they satisfy a maxi- 
mum principle. The maximum principle for subharmonic functions states that a 
non-constant subharmonic function has no maximum in its region of definition. 
Consequently, the maximum of a subharmonic function on a closed bounded set is 
attained on the boundary of the set. 

The generalizations of these concepts to functions of several complex variables are 
respectively the notions of pluriharmonicity and plurisubharmonicity. A continuous 
real-valued function of several complex variables is said to be plurisubharmonic if 
its restriction to any complex line is subharmonic on that line. The function is 
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pluriharmonic if its restriction to any complex line is harmonic on that line. (A 
complex line in Cn is a set of the form {a + b(: ( E C} where a, b E C n.) There is 
also a maximum principle for plurisubharmonic functions analogous to the one for 
subharmonic functions. (For details, see [7].) 

Now consider the quantity Q(yi, . . . , yn). In [3], we showed that Q(-Y, .... , Yn) 

is plurisubharmonic on the region 
n 

R= C \ U_{(- . ,Yn) (E Cny I} 
i=1 

We will prove (23) and (24) by successively applying the maximum principle for 
plurisubharmonic functions. 

First suppose that (-Y,... n, Y) E Cnk+l. To distinguish between the yi's which 
belong to a conjugate pair and those which do not, we will write c,, c, ... , ak+1 , 

0ak+1 for the conjugate pairs and p1,... , /n-2(k+1) for the rest; if we wish to em- 
phasize that a number (such as a 3j) is real, we will write rj. By re-arranging the 
-yi's, if necessary, we may assume that 

(-yi,. . v Yn) = (a,, v , ... ,* Xk Xk , ak+1 , Ohk+l X 1 v * * n-2(k+1)) 

(since Q(yi,... , yn) is invariant under all permutations of Y1,. .. , n). 

Suppose that we fix a1,... , ak , 01,... , /n-2(k+1) and consider the quantity 

Q(al, a,, ... , ak, ak, ,/3 6i 01 * * * Xn-2(k+1)) over all -y, 6 E C distinct from the 

ai, Oj (Note that y, 6 need not be a conjugate pair here.) Then by the maxi- 
mum principle for plurisubharmonic functions, 

Q(al , a,1, ... , aek, hk , "Yi 6i 01v * * * X i n-2(k+l)) 

< Q(al, a,1, ... , tk, )?k, 'rl, r2 , 01 v .. * * On-2(k+l) ) 

for some real numbers r1, r2; moreover, the inequality is strict if at least one of Y, 
6 is non-real. Consequently, 

Q(al , a,1, .. , aek, hk) , k+1 X ?hk+l X 01 v .. * * On-2(k+l)) 

< Q(ai, a, o, ... , tk , tk , ri , r2 , 01 , .. v On-2(k+l) ) 

< Mn, k- 

Hence, if (,.. , Yn) E Cnk+l, then Q(y,... , Yn) < Mn,k as claimed in (23). 
Now suppose that (>,.. ., Yn) E Cnk \ Cnk. As in the previous paragraph, we 

can assume that (yi,... ,yn) = (aq,Qi,. . k kl ,13n-2k) where the ai 
are all non-real and the Oj do not have conjugates among the other components. 
Suppose that we fix all the cai, Oj except for i1. Then by the maximum principle 
for subharmonic functions, 

Q (at, ? t-,, ... , atk X Zhk X 01 X O n-2k) < Q(tl , a,1, .. , tk, Xa?k, ri, 02, .. * * On-2k) 

for some real number r1. Continuing in this way, we find that 

Q (a,, a,, ..., atk, hk, 01v * On-20) < Q(tl , a,1, .. ak,a?k) )ri, .. rn-2k) 

< Mnk 

(for some real numbers r1, ... , rn-2k). Consequently, if (-y,.. , Yn) E Cn,k \ Cnk, 

then Q(-yi,, * ,Yn) < Mn k as claimed in (24). 
Now from (23), it follows, by induction on k, that 

MnO > MnJi > > Mn,[4]; 
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and from (24), it follows that each Mn,k is attained by a form F of degree n with 
real coefficients for which the polynomial F(x, 1) has precisely n - 2k real roots 
(counting any root at infinity). 

This completes the proof of Theorem 2. Corollary 1 and Corollary 2 follow 
immediately. 

5. NUMERICAL VALUES FOR {M4,k} 

We conclude this paper by giving numerical values for {M4,k} 2=O. In particular, 
we will show that 

M4,1 9.10746 

and 

M4,2 7.00758. 

(The value of M4,0 was previously determined in [2] to be 27/6B(4, 2) 11.77264.) 
Unfortunately, we have not been able to determine canonical quartic forms F4,1, 
F4,2 which give rise to these values. Hence, the values of M4,1 and M4,2 given are 
numerical approximations only. Nevertheless, we will see that M4,1 and M4,2 can 
be determined (in principle) to any desired accuracy. 

In view of Theorem 1, we have 

M4, k = max Jk(X) 
xE(O.1) 

where 

Jo(x) = 2x1/6(1 - x)1/6 (I(x) + I(1 -X)) 

JI(x) = 21/3xI/12(1 - x)1/12 (I(x) + 1(1-x)) 

J2(x) = 21/3xI/12 (1- x)1/31(1 _ 

and where 

I(x) = j 1/2(1 z) 1/2 (1XZ) 1/2 

Hence, to determine the values of M4,k, we need only analyze the functions Jk(x). 
Now the simplest way to get a sense of the behavior of the Jk is to plot their 

graphs. Initial plots of J, and J2 suggest that the maxima occur near one (or 
both) of the endpoints of the interval (0, 1); magnifications of Ji and J2 near x = 0 
confirm that this is indeed the case. (See Figures 2 and 3.) 

From the graphs of J, and J2, we surmise that J, and J2 have the following 
properties: 

(i) Jk(x) --+ 0 as x --+ 0 or 1; 
(ii) J1 has exactly three critical points: one local minimum at x = 1 and two 

global maxima (one near each endpoint); moreover, J, is symmetric about 
x- 

1 
X 2' 

(iii) J2 has exactly one critical point -a global maximum near the endpoint 
x = 0. 
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FIGURE 2. Graphs of J1 
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FIGURE 3. Graphs of J2 

TABLE 1. Numerical values of Ji near its maximum 

x Ji(x) 
.002365 9.107465779 
.002366 9.107465839 
.002367 9.107465888 
.002368 9.107465926 
.002369 9.107465953 
.002370 9.107465970 
.002371 9.107465975 
.002372 9.107465970 
.002373 9.107465953 
.002374 9.107465926 
.002375 9.107465888 

Assuming these properties are true, we can determine the values of M4,1 and M4,2 
to any desired accuracy by computing values of Ji (x) and J2 (x) on either side of 
their respective maximum points. 11 The results of such computations are given in 
Table 1 and Table 2. 

110f course, when numerically evaluating I(x), we will use the form of I(x) given by (15) or 
(16) in ?2. 
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TABLE 2. Numerical values of J2 near its maximum 

X J2(X) 

.0000975 7.007579498 

.0000976 7.007579794 

.0000977 7.007580038 

.0000978 7.007580231 

.0000979 7.007580372 

.0000980 7.007580463 

.0000981 7.007580503 

.0000982 7.007580493 

.0000983 7.007580432 

.0000984 7.007580320 

.0000985 7.007580159 

From these tables, it appears that 

M4)1 
- 9.10746, 

M4,2 7.00758, 

as earlier claimed. 
Before we can say with certainty that these values are correct to the given number 

of decimal places, we must show that properties (i), (ii), (iii) of Ji and J2 stated 
above actually hold. In particular, we must show that the graphs in Figures 2 and 3 
are accurate representations of the functions J1, J2 near x = 0, i.e., we must show 
that the software used to generate the graphs has not inadvertently concealed some 
singularity. The only way to do this is to give an analytic proof of properties (i), 
(ii), and (iii). 

It is convenient to prove properties (i), (ii), (iii) for a slightly more general class 
of functions. 

Lemma 1. Consider the family of functions Sr, for r > 0, defined by 

Sr(X) = Xr(1-X)r (I(x) + I(1-x)), x E (0, 1). 

The behavior of Sr(X) depends on whether r > 8 or r < 8. If r > 8, then Sr(x) is 
increasing for x E (0, 1) and decreasing for x E (1, 1); hence Sr(X) has exactly one 
critical point a global maximum point at x = 2 . On the other hand, if r < 
then Sr(x) has exactly three critical points and x = 2is a local minimum point. 
In either case, Sr(x) approaches zero as x approaches the endpoints of the interval 
(0,1). 

Lemma 2. Consider the family of functions Tr,s, for r > 0 and s > 0, defined by 

Tr,s(x) = xr(I - x)sI(x), x E (0,1). 

If 3r + 4s > 1, then Tr,s (x) has exactly one critical point which is a global maximum 
point. Moreover, Tr,s (x) approaches zero as x approaches either endpoint of the 
interval (0, 1). 

Remark. It may be possible to weaken the condition 3r + 4s > 1 in Lemma 2. 
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FIGURE 4. Graphs of Sr for r = 1/6, r = 1/8, and r = 1/12 

Now properties (i), (ii), (iii) of J1 and J2 follow immediately from Lemma 1 and 
Lemma 2 since Ji(x) = S1/12(x) and J2(x) = T1/3,1/12(x). Notice that Jo(x) = 

S1/6(x). Hence, using Lemma 1 and the observation that 

I (\ [1 dt 

(~2J) Jo; tl/2(i -t -( 1~ 
(2) ( X ) 13/2(I t) 1/2 ( - 

(2 )24 

= 1/2 1 ds 

2 (1)1/ 4(l11) / 

we have M4,0 = 27/6B(1, 1) as shown previously in [2]. 
Before giving the proofs of Lemma 1 and Lemma 2, we would like to make two 

remarks. First of all, the function S1/8 has the "flattest" graph among the functions 
S, as a comparison of S1/6, S1/8i S1/12 in Figure 4 clearly illustrates; indeed, it is 
so flat that 

I(x) +?I(-x) ,,,1 - ) 

for x c (4, 3). Secondly, the local minimum of Ji(x) (= Si/12 (x)) at x = 1 actually 
corresponds to the form XY(X2 + y2) whose graph could be considered the "most 
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symmetric" among quartic forms F(X, Y) in the class k = 1; hence, unlike the 
class k = 0, the "natural" candidate XY(X2 + Y2) does not maximize the quantity 
JDF I/12AF when k = 1. 

We now proceed to prove Lemmas 1 and 2. As might be expected, both proofs 
make essential use of properties of the hypergeometric function. 

Proof of Lemma 1. For each r > 0, put 

Pr(X) = x (1 - X)r, x E (0 1). 

Then 

(25) Sr(X) = Pr(x)I(x) + Pr( - x)I(l - x), x E (0, 1). 

We first show that Sr(x) approaches zero as x approaches the endpoints of the 
interval (0,1). For this purpose, put e = min(r/2, 1/2) > 0. Then, using the 
estimates 1 - x < 1 - xt and 1 - t < 1 - xt, we have 

j1 (1 - xt)c dt 
Pr(X)I(X) < X(1- X)rc t/2(i- - 

< Xr (1- x)rc j tl/2(1- t)1-E 

Xr(1 - X)r- B (1/2, e) 

and so Pr(x)I(x) -> 0 as x -* 1. Similarly, Pr(x)I(x) -> 0 as x > 0. Hence 
Sr(x) -> 0 as x -* 0 or 1 as claimed. 

Now put 

Vr(X) = x(1 -x) Sr' ), x E (0, 1). 
rPr(x) Pr (I - x) 

We will show that Sr behaves as asserted in the statement of Lemma 1 by examining 
the signs of Vr and V/V. Our argument will make essential use of the following 
differential equations for Pr and I: 

(26) x(I - x)Pr(x) - r(I - 2x)Pr(x) = 0, 

(27) x(I - x)I"(x) + (1- 2x)I'(x) - jI(x) = 0. 

(The first of these is easily verified; the second is a special case of the hypergeometric 
equation (see [1, p. 562]).) Notice that the signs of Vr and Sr are identical for 
x (0,1) and that Vr(l) =Sr'(1) 0. 

From (25) we have 

Srx) = Pr(x)I(x) + Pr(x)I'(x) - Pr'( - x)I(1 - x) - Pr(I - x)I'(1 - x) 

and so, using the equation (26) for Pr, we can write 

Vr(x) = (1-2x){ ) rX + p() } 

+ x(1-x) Pr (I-X) "(1X)? 
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Differentiating the two expressions on the right-hand side of this equation and using 
the equation for Pr again, we have 

d 
( 

r 
1(x) I(+ 1-x) 

dx L Pr(1- x) Pr~x ) 

2 { (x) + ( x) )+ (1-2x) P (x) I'(1X)} I.Pr (I1X) Pr (X) jL ((1 - X) P 

r(1 - 2x)2 f I(x) + 1(1 -x)l 
x(l-x) Pr(1 X) + f 

and 

d x(1-x) I'(x) I'(1- x)l 
dx r }.Pr(1-x) - Pr(x) 

1 - 2x It(x) I'(1 -x4) 
r r Pr(1-x) Pr( )f 

+ x(1x) {Itt(x) + IP(1x)} 

- (I-2x){P{(x) - Pr(>V} -(1-X) {P' (I 
_ 

X)- Pr Wz 

Further, using the equation (27) for I(x) we have 

x(1- x) f I"(x) I"(I - x) 1 - 2x f I'(x) -I'(l-x) 
r P Pr(1 -x) 

+ 
Pr 

+ r Pr(I-x) Pr W 

_I1 P I(x) + r(1-x)P 
4r Pr(1-x) Pr+ 

Hence, combining these three equations we find that 

V!(x) = Qr(x) { I(x) Ir(1x) 
P'r(I -x) +Pr(x W 

where 

Q() = 

I 
- 2 

r(1 
- 2x)2 

Notice that the signs of Vr/ and Qr are identical. 
Now suppose that r > 1/8. Then Qr(x) < 0 for all x (except possibly x 

and so V?!(x) < 0 for all such x, as well. Hence Vr is decreasing. Since Vr(') = 0, 
it follows that Vr(x) > 0 if x E (0, l) and Vr(x) < 0 if x E (l, 1). Consequently, 

JSI,(x) > 0 if x (E (?) 2)1 

|S,'() < 0 if x E (2,1), 

since Vr and S'. have the same signs, and it follows that x = is the global maximum 
1~~~~~~~~ point for Sr. In fact, the point x = 2 is the only critical point in this case. 

On the other hand, suppose that r < 1/8. Then Qr(!) > 0 and so V,'(1) > 0. 
Hence S,"(1) > 0 and it follows that the point x = l is a local minimum point for 
Sr. Since Sr tends to zero at the endpoints of the interval (0, 1), the function Sr 
must therefore have at least three critical points in (0, 1). We claim that there are 
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exactly three critical points. Notice that the sign of Qr(x) is the same as the sign 
of the quadratic 

(I -2) x(I - x) - r(I - 2x)2 

for x E (0,1) since x(I -x) > 0, and that this quadratic has two roots in the interval 
(0,1) which are symmetrically located with respect to the midpoint 2. Letting x0 
denote the smaller root, we have 

{Qr(X) < 0 if x E (0,xo), 
Q, Q(x) > O if x E (X0', 1- O), 
(Qr(x) < O if x E (I - O, 1). 

Now, arguing as in the previous case, we find that the function Sr has exactly 
one critical point in the interval (xo, 1 - x0). In fact, 

f~~)< O if x E (x0, 2), 

tS,(X) > O if x E (1- Xo) 

Hence, let us consider the interval (0, xo). Notice that Vr is decreasing on this 
interval since Qr(x) <0 - and consequently V17(x) < 0 also - for x < xo. Notice 
further that 

Vr(X) = r lXl 2r(I _ X)1-2rSI (X) 

and that the quantity r-lxl-2r(1- X)l-2r is increasing for x E (0, ). Thus S, 
is decreasing on the interval (Oxo) and it follows that Sr can have at most one 
critical point in this interval. Since Sr tends to zero as x approaches zero, we see 
that there is exactly one critical point. By symmetry, there is exactly one critical 
point in the interval (1 - xo, 1). Therefore, we conclude that if r < 1/8, then the 
function Sr has exactly three critical points in the interval (0,1) and, moreover, the 
point x = 2 is a local minimum point. 

This completes the proof of Lemma 1. L 

Proof of Lemma 2. The proof of Lemma 2 is similar to the proof of Lemma 1. 
However, here we will use the series expansion for I(x) in addition to the differential 
equation (27). In particular, we will use the fact that 

2 

0.0 2 

1(x) = ir1 ~xr 
n=o n 

where 
(1) (1) (3) () ( 2n ) 

(This follows from the definition of a hypergeometric function and its series repre- 
sentation [1], and can be derived directly from (7) of ?2 by expanding (1-XZ)12 
in a Taylor series and integrating term-by-term.) 

To begin, note that Trs(x) approaches zero as x approaches either endpoint of 
the interval (0,1). Indeed, arguing as in the proof of Lemma 1, we have 

xr(1 - x)sI(x) < xr(1 - x)S-B (1/2, c) 
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which tends to zero as x -* 0 or 1 (provided that 0 < e < min(s, 1/2)). Hence Trs 
has at least one maximum point in (0,1). We will show that Trs has at most one 
critical point in this interval, and Lemma 2 will follow. 

Put 

(28) Vrs(X) = Xlr(1 - x)l -sT',(x). 

Then from the definition of Trs, 

Vr,s(x) = r(1 - x)I(x) - sxl(x) + x( - x)I'(x). 

Differentiating Vr,, and using the fact that 

d X (x( - x)I'(x)) = I(x) 

(just another way to write the hypergeometric differential equation (27)), we find 
that 

V'sx - r - 1 I(x) + (r - x(r + s))I'(x). 

Hence V's, (x) < 0 if and only if 

(29) (r - x(r + s))I'(x) < (r + s - I(x). 

From the series definition of 1(x), we have 

002 

It(x) =7 (n + 1) ( )1 n 

from which it follows (after some calculation) that 

(r -x(r + s))I (x) =7r -+ 7r E ((~~ n!)( 

Similarly, 
2 

r ~)7rr s : n (r + s -)x ( 4) ( 4) 
~~~~n=1 

l!)( 4 

Hence (29) will hold if each term in the latter series dominates the corresponding 
term in the former series, i.e., 

r 1 
4 4 

and 

r (2n+) 21 forn 1,2 , 
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Both of these conditions are satisfied if 3r + 4s > 1 (the assumed condition of 
Lemma 2). Consequently, V1<8(x) < 0 for all x E (0,1). 

Now V/7, (x) < 0 means that Vr,s (x) is strictly decreasing; consequently, Vr,s (x)- 
0 for at most one x E (0,1). Since Vrs(x) and T,8 (x) have the same sign on (0,1) 
(see (28)), it follows that Trs has at most one critical point. However, Trs has at 
least one maximum point since Trs (x) > 0 for x E (0, 1) and since Trs (x) tends 
to zero at the endpoints. Therefore, Trs has exactly one critical point - a global 
maximum point - in the interval (0,1). 

This completes the proof of Lemma 2. LI 
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