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ZEROS OF DEDEKIND ZETA FUNCTIONS 
IN THE CRITICAL STRIP 

EMMANUEL TOLLIS 

ABSTRACT. In this paper, we describe a computation which established the 
GRH to height 92 (resp. 40) for cubic number fields (resp. quartic number 
fields) with small discriminant. We use a method due to E. Friedman for 
computing values of Dedekind zeta functions, we take care of accumulated 
roundoff error to obtain results which are mathematically rigorous, and we 
generalize Turing's criterion to prove that there is no zero off the critical line. 
We finally give results concerning the GRH for cubic and quartic fields, tables 
of low zeros for number fields of degree 5 and 6, and statistics about the 
smallest zero of a number field. 

0. INTRODUCTION AND NOTATIONS 

The Riemann zeta function and its generalization to number fields, the Dedekind 
zeta function, have been for well over a hundred years one of the central tools in 
number theory. It is recognized that the deepest single open problem in mathemat- 
ics is the settling of the Riemann Hypothesis, and number theorists know that its 
generalization to number fields and algebraic varieties is almost equally important. 
Much energy has been devoted to the numerical investigation of the zeta function 
(see [4] for example). There has been some investigations of its closest cousins, the 
Dirichlet L-functions (see [20]). However, the case of a general number field has 
remained totally unexplored territory. We give here the first numerical evidence in 
favour of the Generalized Riemann Hypothesis for a number field where calculations 
cannot be reduced to the classical L-functions. 

We explain how we have transformed a formula proved by Eduardo Friedman 
(in 1987) into an efficient algorithm for computing values of Dedekind zeta func- 
tions. The program (now included in the package Pari/GP) needs a few seconds to 
compute a single value of (K for a number field of small degree. We also generalize 
Turing's criterion for Dedekind zeta functions to check the GRH. 

In all the investigation, great care is taken to obtain results which are mathe- 
matically rigorous (estimate of error terms, of roundoff error...). 

We finally give numerical results concerning the GRH. We have verified this 
hypothesis for 50 cubic number fields up to height 92 and for 30 quartic number 
fields up to height 40. We give statistics about the gaps between zeros and about 
the height of the first zero of a number field. 
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In all, the computations represent between two and three months of running 
time on a Sparc-10 machine (see 3.4). 

We use the following notations. We let K be a number field of degree N and 
signature (rl, r2), OK its ring of integers, and DK its discriminant. We also use 
the regulator RK, the class number hK, and the number WK of roots of unity. The 
Dedekind zeta function of this field is of course defined by 

(1) K($(,) S ( /a<S 
=Ear=S 

for Re s > 1 
aCCOK n>1 

where an is the number of ideals with norm equal to n. This function is extended 
by analytic continuation to a meromorphic function on the whole complex plane 
with a unique simple pole at s = 1. Moreover, CK verifies a functional equation: 

AK (S)= AK(1-S) 

where 
/S 

(2) AK,(S) = r (2 r(s) ( 22 (K(S) K k )- k 2 }\I\\ N 
2 

j 

and AK is meromorphic on the complex plane with two poles at s = 1 and at s = 0. 

1. THE METHOD FOR COMPUTING VALUES 

In [7], Eduardo Friedman explains how we can simplify the multiple integral 
appearing in Hecke's formula by turning it into a single integral. The main result 
that we will need is the following (see Proposition 2.3 and Theorem 1 in [7]). 

Theorem 1.1. 

(3) AK(s) - 2lhKRK + E an f -vs +f -, 1-s 
WK(S 

- 
I) r >1 

nn 

with the notations of Section 0 and 

c-V DK I 
CK- 

7r 2 2r2 

(4) f(XIs) = 2ir J Z I (Z)I?(Z)r2 8 > max(Re s,0). 

Apart from the problem of computing the regulator and the class number of a 
number field (which is made at the beginning of the program since it is independent 
of s), we must also compute the function f at a great number of points. For this, we 
shift to the left the line of integration, and we compute the residues of the integrand 
at the poles that we encounter (at z = s and at negative integers). We thus obtain 
the following result. 
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Proposition 1.1. 

(5) f(x,s) = (i nAij(s)x x (S1 l r(,) 2 

j=1 i>0 (j-i) 
if s is not a negative integer, 

'r 1 r 2 

.(Inx__1______+ 
(In x)j- 

(6) f (XIs) = S S -1)! S + E -sj~~ 
j=1 

(j l E (j )! 
i$-s 

otherwise, 

where the coefficients Aij (s) are defined by 

r (Z)Il r(Zr2 l+,r2+1Aj s 
(7) (2Jk _ 

) E r J s) + a function analytic at z = -i 

j=1 

Proof. The proof of this result is quite easy and is done in [7] for the first case. In 
the second case, s is a negative integer and so, the function r(z/2)l Fr(Z)r2 has a pole z-s 
of order ri + r2 + 1 (instead of ri + r2) at z = s. In this case, the computation of 
the coefficients A,,j (s) is also slightly different (see the next section). D1 

2. COMPUTATION OF THE COEFFICIENTS 

2.1. The number an of ideals of norm n. We compute the regulator, the class 
number and the numbers an at the beginning of the program since it only depends 
on the number field. The best method that we have found for computing the an is 
to use the Euler product as follows. If P is the set of primes of Z, we have 

(8) Eann-s = [1 I7 (I - (g)s) if Re s > 1. 
n>1 E / W ) 

Suppose we want to compute the coefficients an for n = 1 to n = No for a given 
No, and suppose also that we have numbered all the prime ideals Pi (i = 1, .. ., Im) 
such that JVpi < No; Let fi = fpz be the residual degree of Pi and pi the prime 
number below Pi. We compute the an recursively, introducing the coefficients anh 
(for h =,...,m) by 

fa1,o = 1 and ant, = O for n > 2, 

Z0=1 an,hnr = 
h 

Zk>o 
1 if h > 1. 

With a little computation, we have 

V 

(9) anh = a n ,h-1 

k=0 

where P = pAh, and v is the largest integer such that Pv divides n. We finally 
obtain the coefficients an since anm = an for n < No. 
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2.2. The coefficients Aij (s). Computing these coefficients is the main problem 
for us (see the formulas in Proposition 1.1). The best solution that we have found 
is to introduce coefficients Aij which are independent of s and depend only on the 
number field. They can be computed at the beginning of the program. For each 
value of s, we will then deduce recursively the Aij (s) from the Aij. We define 

Z V1 
'~~r +r 2Aj 

(10) F ) F(z) V2 7+ a function analytic at z = -i 
j=O 

and a little computation gives the following result on the Aij. 

Proposition 2.1. Let Hqk = j= jk, let 81,k be the Dirac symbol, and by abuse 
of notation, let ((1) = -y (Euler's constant). 

1) For i = 2q even we have for 0 < Iz + 2q < 1, 

(Z~r V 
(1)qr12 

rl 

(11) r F(z) = ()V ( 2q)rl+r2 exp[g(z)], where 

g(z) = z (z +kq ) [(-1)k((k) (r + r2) + rlHqk + r2H2q,k] 
k>1 

2) Fori = 2q+1 odd we have for 0< Iz+ 2q+11 < 1, 

Z ) r (-l)(q+l),rl+,r2,7Trl 2(2q+l),rlq !,ri 

(12) F (I F(z)r2-(l(+)1rq~22+)iq exp[g(z)], where 
(12) (2q + 1)!V+r2(z + 2q + 1)r2 

z) = (z + k q + )k [(-)k((k) (ri (I - + r2) 

+ (ri + r2)H2q+1,k - 2 Hq,k - rl1,k ln 21 

Proof. For the first part, we let X = z + 2q, then r(X - 2q) F(X+1) (X-2q)(X-2q+l) ... X 
and so 

ln [r () (z)r2] - r1 lnFr + I) + r2 lnr(X + 1) 

-r, In - - 
-q 

- 
. .2]r2 In [(X -2q) . .. X]. 

We thus have 

n[ (Z)rl F(z)r2] = S Xk ( + r2)-r ln [(-1) q!i2] 

j- 1 j=1 (1-2j) - r2 l ) In (1 - 

= Z k [(-1)kq) (2 +r2) + 2Hqk +r2H2qk] 

k>1 

-r1 ln I( -)qq ] - r2 ln[(2q)!X] 
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(see [1] for the expansion formula of lnr(1+z)). To prove (12), we let X = z+2q+l 
and we have 

rX -2q -1I r(X + I)V7(X - q- ).(X -l 
t 2 J - r (X + 1) 2X-2q-2(X - 2q - 2) ... (X - 1) 

We compute the logarithm of this expression, we find 

X - 2q - I xk - 
I H2k 52 

ln F 2, [(_)kC (k)I l- ) + H2q+l,k ~ -k,lInJ2 ( 2 ) k>1k [( 2 ) 2 

+ In q! - ln(2q + 1)! + In V + (2q + 1) In 2 + ln(-1)q+l 

and after a computation we obtain formula (12). D 

In practice, we compute the coefficients of the expansion of the function g to 
r1 + r2 + 1 terms if i is odd and to r2 + 1 terms if i is even. After exponentiating the 
series we obtain the coefficients Aij. It is clear that many terms in the expressions 
(11) and (12) can be recursively computed. For a given value of s, we can now 
deduce the coefficients Aij(s) from the preceding results. Formulas (7) and (10) 
give immediately the following relations between Aij and Aij(s). 

if i = -s Aij(s) S+i with 

(13) f Ai,rl+Vr2 + (S) = 0 if i is even, 

Air2 +1 (S) = 0 if i is odd, 

if i = -s A-Sj(s) = A-sj-,. 

2.3. Another form of the method. Our first goal in this paper is to check 
numerically the Generalized Riemann Hypothesis. For that, we need to locate the 
zeros of (K, and hence we must compute thousands of values with our program. As 
a consequence, it must be as fast as possible. The best solution that we have found 
for doing this is to separate the computations in two parts. First, at the beginning 
of the program, we compute all the data which are independent of the value of s. 
These are data linked to the number field (discriminant, regulator, class number,...) 
and the coefficients Aij. Hence, when the value of s is known, we have a minimal 
number of operations to perform. 

In a first version of the program, we simply used all the preceding results without 
any change. But, with little difficulty, we can improve the method by a simple 
inversion of summations. Nevertheless, this slight modification implies the need for 
rigorous verifications about the size of the coefficients (see Section 5). Here are the 
final formulas. 

Proposition 2.2. Let e be the error made truncating the series (3) and (5) to No 
and io terms (we will see in 3.2 and 3.3 that No and io depend only on the number 
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field and on the absolute precision required). If s is not an integer 

(14) K~s) 2rhKRK C s< ( 
No 

(I14) AK (S) = )+ C;C (7 2 r(s)12 1: ann 
5 

+ SK (S) + SK( (- S) WK(S5-1)5 + 2sn=1l 

rn=1 
+-s(1- 5 ls~2anns1 + e, where 

r1 +r2-1 io 

(15) SK(S) =- E, E ( )+ 

No ri1+,r2-k n\ (In C )j-1 

(16) Ci,k =I: E anAi (jnk (nA) I (16)Cik= r=1 j=1 YCK) (j - 1)! 

Proof. Using formulas (3) and (5), we obtain immediately (14) with 

N0 rl+r2 o ( n) (In cK)j-1 
SK (s)= I:an 5: L:Aij (S)( 

If s is not an integer, Aij(s) is given by the first line of (13). Rewriting the 
recurrence, we easily obtain 

r, +,r2 -3j i~ 
Aij,(S) =- E (s + i)k+1 

and so 
NO V +V2 i 10 r+V2- A ( n ) i (In c K )) 

Nrl+r2-1 NO io rl+r2-k AiJ+k ( n\ (In )i1 

E jE E E: (s + i)k+1 CK/ (j - 1)! 
k=O rn=1i=O (1n=)1 

which proves the proposition. 

Example. If we define K by the monic polynomial X3 + X2 - 2X -1 and we want 
30 digits of accuracy for values of (K near s = 2, we obtain No = 134 and i0=164. 
The number of operations for each value of s is around 132000 with the first form 
of the method, and only 1100 with the modified form ! 

As a conclusion, we give another proposition which is almost the same as the 
preceding one, except that s is now an integer. The proof is the same as that of 
Proposition 2.2. 

Proposition 2.2'. If s is a negative integer and s > -io, (if s is positive and 
s < io + 1, we take 1-s because of the functional equation A(s) = A(1 - s)), we 
have 

AK(S) =2 hKRK + Sj ) S) 
WK(S - 1)s 

C1-Sr S) 121Zann~sl +SK (1 - s) +,E 
n=1 



ZEROS OF DEDEKIND ZETA FUNCTIONS IN THE CRITICAL STRIP 1301 

where 
rl+r2-1 io 

SK(s)=- (S + i)k+l+ -S 
k=0 i=0 

i$A-s 

C/= Fs n-S E A sjnjan 
rn=1 j=1 ( ) 

ande is the error made truncating the series (3) and (5) to N0 and io terms. 

3. ESTIMATE OF ERROR TERMS 

In this section, we bound the error terms by computing an asymptotic bound 
for the function f (x, s), and we compute io, N0 and the maximal number of ideals 
of a given norm so as to guarantee a given accuracy in the computation of (K(S). 

3.1. Asymptotic bound for f (x, s). B. L. J. Braaksma explains (see [3], Sections 
2, 3 and 4) how we can obtain an asymptotic expansion for a class of Barnes- 
integrals, and thus for f (x, s). We use here his results to obtain an asymptotic 
bound for f(x, s). Using the notations of [3], (2.25) we have 

1 -6+io? or dz 
f (X S)= I x ZP 

- 
F(-z)r2 

1 -6ioo (1 \ 

- 2iir]j-6-o xzh2(z, s)dz = Ho -s). 

We need an asymptotic bound for Ho(, s) when x -* 0+. We have obtained the 
following result. 

Proposition 3.1. If 0 < x < 1, jIm sl < T. and IRe sl < L, we have: 

(17) if(x, s)l <Ax A ?N exp (-27 T-1Nx- N 

with 
rl +r2 N r2+LN+l 

A = 7r 2 22Nrl+r2 (r2 + LN+1) 2 (T + L + 1). 

Proof. We first apply the Euler-Maclaurin formula to obtain an estimate for h2 (z, s). 
We assume in the entire proof that s is a complex number with 1Im sl < T and 
IRe sl < L. We let p = N/2, 3 - 2r1/2 and oa = (ri + r2 + 3)/2. We introduce the 
function 

(2wr)l-rl-r2h2(zi s) OPPb)-Z 

We start with the following formula ([14], p 208, formula (17)): 

1 
lnF(z+a) = (z+a)lnz-z+ -ln2ir+4(z) 

2 

with 

O(z) = QW( ) and jQ(z)j < 2 if Re z > 0. 
12z 
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We use this result to compute 

lng(z, s) =-zln(,i3) - ln(-s - z) + (1-ri -r2) ln2ir 

-[ -,z + a-e ln(-,uz) + ,uz + 
I 

In 2,7r + 0 _Az2) 

+r Z[( z z~n-)22n1+6-) 

+r2 [(-Z-l) ln(-Z) +z+ ! ln2lT+0(-z) 

and we finally have 

ln g(z, s) =co +ln( I ) + 0(z) 

with 

( + 2r + r2) 2( + r + r2) 
jO~z~j ? 6jzj 6(L + 1) 

because we can assume that Jzj > L + 1 (we take 6 = L + 1 in the integral defining 
f(x, s)). We now bound the modulus of the logarithm. We have 

ln (Z < In2 jz +r2 < 4 +In(T+ L+ 1) if jzj < 3js 
kz +S} jz+sj 

since Re z = -L - 1, lRe sl < L, and jIm sl < T. We also have 

In(z ) l n (1 ) I- s Z< IJsjn <In2 if Jzj > 31sl 
rn>1 

and we finally obtain 

lg(zs)I < exp [co +6( (2r1+r2+ ) +4+ln(T+L+1)1 =". 

As in [3] we can say that 

h2(z, s) = po(z) (O3b) F(-buz + 1 - a)(27)rl+r21 with j po(z)| < y 

and that 

x X \ r-L-1+ioo 

f ( , S) = -i(27r)r1+r2 2 x p0o(z)F(I - pz - a)dz 

with |po(z) <-y. 

We use now the same principle as Braaksma introducing the function o(x). 

p-L- 1+ioo 

q(x)-= x-Zpo(z)F(l - ,z - cx)dz 
-L-1-ioo 

fL 1+ioo F(3 -pz - a) d 

J L-1-ioo (I -Z z-a)(2 - z - ) 
We start with the formula 

F(3 - z- E)x-z = x 3 exp -x- t] dt 
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with Re z = -L - 1 (In [3], Braaksma shows that the integral is absolutely conver- 
gent.) Using now this relation, we easily obtain (see [3] for a rigorous justification) 

a(x) = x j p(t) exp [-x-t] dt 

-L-1+io - dz 
with p(t) = I 

1i Po(Z)t (1- z-)(2- z-a) 

We have now 
-L-l+ioo ldzl 

l(t)l < t2+( +)p-a?ZI o Z1lR+H -1i__ 1poW) la + pz - Ill + ,uz - 21 

< at2+(L+1)p-C +0 dO 
]oo I[(a-(L+i)i_-1)2 +M202] [(a-(L + l)b - 2)2 +-202] 

< yKt2+(L+1)p-a 

where 

Pl dO [+00 dO [1 dO 
K < s202 + X 202 + 1 l(L +1) + 1-all(L +1) + 2-al 

2 1 

-A2 [(L+1)1 +I-oa]2 

So we have proved that lp(t)I < K-yt2+(L+l)p-a for t > 0. Moreover we know that 
p(t) = 0 when t E]O, 1] (see [3]). FRom this and the precedent formulas we derive 

la(x)I < Kyx A J t2+(L+l)p-exp [-tx-lj dt 

c~3 Fil 

< Kyx A exp [-x-J t2?(L?1)I-exp [-(t - 1),] dt 

where q is an arbitrary real number and x is such that x- A > q. We take r =1 

(and thus x < 1) and we use a rough estimate for 

+00 

I = j ~0t2+(L+1)I-c exp [-(t - 1)>] dt 

to obtain that 

I < K' = 2(4 + (2L + 2) - 2)2+(L+1)-c exp[a - - (L + 1) A]. 2 

FRom all the preceding relations and with a little computation we obtain 

la(x)I< K-yK'x ? exp[-x ] if 0<x<1, jlmsl< T, and jResl< L 

and finally 

jf(x, s)j < [K-yKI(27r)r1+r22 (A3A) ] x A 
exp [-/18- x-] 

if 0 < x < 1, JIm sl < T, and lRe sl < L. LI 
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3.2. The bound NO. Suppose we want to compute a value of (K with an absolute 
error e. We have to evaluate the error that we make when truncating the series in 
(3) and then to compute the bound NO depending on e. The problem is to find the 
"best" value of NO such that 

S jr(ns)j = E an f (CK S) +f (CK Ils) ) 
n>No n>No 

We define the coefficients dN(n) by ((S)N = fn>, dN(n)n-s and using Theorem 
2 in [5], we obtain the inequality 

(18) an < dN(n) < nr where a= (l N). 
In 2 

From this and (17) we can derive 

at3+3_- [noN A [-noN jr (ns) I?<2AC,!4 n exp[ 2 <?Cniexp jb 

and 

R(No, s) = 
5 

r(n, s)I< C E 
F 

p b 
<]o 

e [ ] 
n>NO n>NO26ep[ 

J? ][b dt 

We use a rough estimate for this last integral and we obtain 

Proposition 3.3. NO is the smallest integer such that 

(19) NO0> CK K2In. 

2 

where Ko = CNb 22 [6e1)N-2 - 

3.3. The bound io. We want now to estimate the error that we make when we 
compute values of the function f (x, s). Let (' be the absolute precision that we 
want to obtain when we compute a single value of f (x, s). Since we compute NO 
successive values of this function, it is clear that(' = 6/No. We prove the following 
result: 

Proposition 3.3.. io is the smallest integer such that 

(20) ~~(CK ), (ij) ( i !r2 > (2vai)r25ri 

Proof. We estimate the remainder r(io, s) of the series in formula (5) when we 
truncate this series to io terms. In fact, r(io, s) depends also on x but we can easily 
see that the convergence of the series becomes slower when x decreases. So we set 
x = CK/No which is the smallest value of x, and we compute the corresponding 
remainder. We easily have 

1 (02K /Z\ rl (C I I l dz 
tr(iols)f< ? (7FI ) . K) F ) 2 F(Z)fr - 

j0(0 io- (-io 2 +t)r+ itit r2 
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As in [8], we have 

r -o-2 +i)|<I(-io - 1 + it) (I-io + -+ it) ... (- + it)I 

< i r (2+it) 
io! 2(+t 

and 

I -io - 1 + it) 4 I(3 +it) 

and combining these inequalities with the first one, we obtain formula (20). Z 

3.4. Conclusion. We are now able to write a complete algorithm for computing 
values of AK (and (K) in the complex plane. 

In the first part of the algorithm, we compute all the coefficients and data which 
depend only on the number field and on the absolute precision e. We use the 
algorithms implemented in Pari to compute the regulator and the class number. 
This part of the program requires a few minutes of CPU time. 

In the second part, we only make basic operations (see formulas (14) and (15)) 
which require only a few seconds of CPU time. 

The problem with this method is that we stop our computations when the re- 
mainder is smaller than the absolute precision required. So, if the value of AK is 

very small (if s is far from the real axis), we obtain few significant digits. The only 
solution that we have found is to increase this number of digits with the height of 
our computations (see Section 5 for more details). 

The following table shows the execution time of the program in various cases (the 
smallest and largest number field of Tables 6.1 to 6.7). The third column contains 
the execution time of the initialisation part. The time needed to compute a real or 
a complex value of (K(s) is given in columns 5 and 6. All these times are given in 
seconds. 

P(x) Digits Init Real Cplex 
x3 + x2 _ 1 30 5 0.2 0.5 
x3 + x2 - 1 120 280 5 12 
x3 + x2 - lOx - 8 30 11 0.3 0.8 
x3 + x2 - lOx - 8 120 1517 11 25 
x 4 + x3 _ X2 _-x + 1 35 17 0.4 1 
x4+ x 3 - x2 _ x + 1 90 493 5 12 
x4 + 2x3 - 3X2 - 2x + 1 35 65 1 2.3 
x4 + 2x3- 3X2 - 2x + 1 90 2773 18 40 

4. THE GENERALIZED TURING CRITERION 

In this section, we generalize Turing's criterion to Dedekind zeta functions. The 
principle is to combine a count of the zeros of (k(s) in a segment [2 ' +iT], together 
with the existence of sufficiently long intervals where the zeros are fairly regularly 
spaced, to rigorously prove that all zeros with imaginary part t E [0, T] are on the 
critical line. 
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Here are our principal references for this section. The first one is [21] (in 1953) 
where Turing explains his method. Unfortunately, there are many mistakes in 
this paper but Lehman gives a corrected version of Turing's original proof in [12]. 
Finally, we refer to a third paper: in [20], Rumely generalizes the criterion to 
Dirichlet L-series. 

We introduce the function 
1 1 

SK (t) = -arg(K (- +it) 
7r 2 

where the value of the argument is obtained, if t is not the ordinate of a zero, by 
continuous variation along the line from oo + it to 1 + it starting with the value 
zero. Let now SK (t) be 

SK4(t) = jSK(u)du. 

We begin this section by one of the two main theorems. 

4.1. The main result about SK. This first theorem gives us an estimate for the 
function SK. The proof is rather long but is similar to the one in [20], p 427-433. 
Of course, the result depends on the degree, the signature and the discriminant of 
the number field. 

Theorem 4.1. If t1 and t2 are real numbers such that 40 < ti < t2, we have 

(21) JS1 (t2) - S(t1)I < (0.2627 + 1.8392N) + 0.1221n [DK (t)N] 

Proof. We assume that tj > 40 and t2 > 40 since in the case of number fields of 
degree 4, we compute zeros to height 40. We note that there is a constant term 
(0.2627) which is independent of the number field. This comes from a result of 
Rademacher used in the proof of Theorem 4.2. We start the proof by writing the 
integral as follows. R 

Lemma 4.1. If t1 and t2 are not the ordinate of a zero and 40 < t1 < t2, we have 

r+>o+it2 r+>o+it, 

(22) or I SK (t2)-S1 (t1) I O in (KK(S)t ds-j In I (K(S)| ds 
1 +it2 2 +iti 

Proof. This result is an application of Cauchy's theorem (see Lemma 1, p. 106 in 
[21] or [13], p. 534). C1 

We have now to bound the integrals that we obtain in formula (22). We begin 
with a first inequality. 

Theorem 4.2. If t > 40 we have 
r+0+it 

(23) 1K (t) = in It K K(S)I ds 
J+it 

<(0.8252+2.329N)+0.14071n [IDKI (t)N] 

Proof. The proof of this theorem is quite easy. We apply the following result from 
Rademacher (see [18] p. 200). El 
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Lemma 4.2. If 0 < 7 < 2 and s = aF + it, we have with the usual notations 

l+s NNI? _' 2 

(24) (K(s) < 3 (1(D + 7)N IDKI D2 ) 

for - < u ? 1 + < 

The proof is given in [18]. We apply this result, for 7-1 and we use Lemma 4 
3', p. 305 in [12]. We have 

(24') lnt(K(S)I <ln3 +ln 1- 

+ 5- aln [DKI (I1)+sI)N +Nln((). 
(8 2 ) [ (21r )]4 

* If t > 40 and 2 < a < 5, we have 

ln 
1 

< 0.00156 
1-s 

and ln 
1 

t 1 <0.00158 = ln l+sIN<lntN+0.00158N 

so 

- ln [Dn (1Zr)N] - -2) (ln [JDKI (2)N] +0.00158N) 

* Nln( (5) <1.525N. 
We combine these results with formula (24') and we obtain 

ln j(K(s)ids ] L8 ( ) <(ln [IDKI ) 0.0016N du 

3 +00 
+ -(In3 + 0.0016 + 1.525N) + 1 ln K(K(J + it) do 

<0.14071n [IDKI (2) 1 +0.00023N+0.824 

+ 0.0012 + 1.1438N + 1.184N (*) 

<(0.8252 + 2.329N) + 0.1407ln [IDKi (t)N] 

For (*), note that ln l(K(a + it)I < Nln l((o-)I, and use again Lemma 3' of [12]. 
We now prove another inequality about the integral IK(t). 

Theorem 4.3. If t > 40, we have 

(25) IK (t) J ln TK(8) jds> -3.4489N - 0.24An 1 DK I t(t)] 
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Proof. We start writing the integral in the following form 

+(ooi ()O+t K()K(S2 +(oo+it J ln (s)I ds = n 
(S)K(S 

+ 2)2 ds + ln I(K(s) Ids 

5 +it 

+ I n I(K(s)I ds = I, + I2+ I3. 
+it 

1) Estimate for the integrals I2 and I3. If we set s = u + it, we have u > 1, so 

ln I(K(s)I =-Zln 1 -p-f,'I 
p 

-p-fPs < 1 + p-f,,U < I + p-a 

so ln I1-p-fisI <ln (1-p-2,)-ln (1-p-7) 

and we find 

(26) ln K(K(s)I > N (ln 1K(2a)1 -ln II(()1) . 

We use now the inequalities from [20], p. 431, 
J 5 r+0 

ln 1((u)Ida < 0.5382 Jln K (a)Idu < 0.3445, 

j ln 1((u)Ida < 0.0495 j ln l(a)Idu < 0.1779, 

and combining these with inequality (26), we easily find the required estimate: 

I2+ I3> -1.2183N. 

2) Estimate for the integral I,. We use exactly the same principle as Rumely in 
[20] (formula (16), p. 431), to prove the following inequality: 

(2o7+it 3 +it 

(27) fi InKIK(s)I ds> +it In 
(K<(S 1) 

ds - 1.2183N. 

We apply the following result about AK (see [11]). D 

Lemma 4.3. The function s - s(s-1)AK (s) is holomorphic on the complex plane 
and its zeros are the non-trivial zeros p of the Dedekind zeta function (K. So AK 
can be expanded in a Weierstrass-Hadamard product 

s(s - 1)AK(s) = exp(a + bs) (I - - exp (-) with Re b =-Z Re -. 

In our special case, if CK is defined as usual, we have 

(S - C )rF (s) F(s+2)(K(S ) 1 e - (1 ) (-1 
(s - )F rl) F(S )r2~S =exp (- b) fj s+1) exp 
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Combining this identity with (27) we obtain 

(K (S) _s?+1 rF(s+l)rlFr(S +1)r2 In (1) -Re b+In +lnCK+ln 2(s)rlf()) 

+ Eln _ , - Re- _ s+1 
p p 

>inCK+in r(s+l)rf(S +1)r2 + 
_ _ 

| 

]p(s)rlr(S)r2 ?5n1_s+1 

We have thus proved the inequality 
+Oo+it 23+it S+1 

in K(K(s)I ds > InCK+ rl I Itn ds 

3 ~+it 

+ r2 ln (s + 1) 

3 +it Fs) 

+ J E In |i1 ds-1.2183N 

>inCK+H+I+J-1.2183N. 

2.1) Estimate for the integrals H and I. We apply the mean value theorem to 
estimate the integrals H and I (for details, see [12], p. 311). We obtain 

H = rl Re IF (it + I where > < ? < , 
2 IF 2; 4 4 

I = r2Re - (it+r) where- < r < - I? 2 2 

and we use the following result about rr (see [12], p. 308, Lemma 8) 

(28) n- (z) = lnz >-O + E r 
2 
ifzReezz> ) IFz) =7+ I IM2 JmZ-Re2ZI} 

where the notation f = 6(g) means -g < f < g. We obtain 

H> Iin--0.00211 and I>r2(Int-0.001) ~2 \2 

and from these inequalities we derive 

+00+it N t 
(29) ln I(K(s)Ids > InCK + - In - + J-O.0011r1 

J i 2 2 

+ (In2 - O.OO1)r2 - 1.2183N. 

2.2) Estimate for the integral J. 

J ~In ds >-1.48Z Re 
E +itt s + l - P 3 (3+it-p) 

The interchange of summation and integration is justified in [12], p. 311, and 
see [12], Lemma 7, p. 307 for the last inequality. We now compute the sum 
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EpRe (1/(s - p)). We logarithmically differentiate the Weierstrass-Hadamard 
product and we obtain 

5- + 4(S) + r1 rr(2 + r2-r(s) + nCK = b + E( - 

We take real parts, we use the relation Re b =- Re p and we get 

ZRe ( p 
InnCK+ 

Re (S)+Re (r () +r2 (S) 

+ Re( 
2s 

-1_ +e s(s -)2 

and if s =3 +it 

(30) J > -1.48 [lnCK+ Re 3? (?+it) 

R (r 3 it r 3 +itF' 
2FReIZ! ?r+y-G+it)) 

+2Re ( +it)] 

* We easily see that 

2Re ? 
t 

<0.00125 if t> 40 3 
4-t2 + 2it) 

and that 

Re (S)? <-NN(c) wheres=u+itandu>1 

so we have 

Re (K (2 + it) < 1.506N. 

* Using (28) once more, one finds 

- Re r --+ it < - (ln- + 0.0008) and 

2 F \42/2 2 

r2Re F ? +it) r2(lnt +0.0006) 

so 
t 

J > - 1.48lnCK- 2.2289N - 0.74Nln - -0.0006r, 2 
-1.48(1n 2 - 0.0006)r2 + 0.00236. 

Thus, combining all the preceding results, one gets 

+oo+it t N- 

J ln I(K(s)Ids > -3.4489N - 0.241n I[DKI (t2)N 

and this is the lower bound of Theorem 4.3. 
Theorem 4.1 follows immediately from Lemma 4.1, Theorem 4.2 and Theorem 

4.3. 
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4.2. The argument principle. In this section, we summarize some well-known 
properties of (K(s) and we start by introducing the following notations: 

NK(T) is the number of zeros of (7K oftheformp=u+it, 0<t<T. 

(31) K(t) = Im (r In r' 1+ i) +r2lnr ( + it)) +tIn 
VI 

2/D 

we then have 

AK + it) exp[f(t)] exp[iMK(t)](K( + it) 

ZK(t) = exp[ii)K(t)](K + it). 

We see that ZK takes real values when t is real, and has the same zeros as AK 
(which are the non trivial zeros of CK). Thus, simple zeros of (?K on the critical line 
can be located by finding changes of sign of ZK(t) on a segment [0, T]. 

Suppose now that we have found NK(T) zeros with this method. We want to 
compute NK(T), and if NK(T) = N4(T), then GRH holds for the number field K 
to the height T. There is no zero of 4,K outside of the critical strip (O < a < 1) 
except for the trivial zeros, so NK(T) is the number of zeros in the rectangle 
0 < t < T and 0 < a- < 1. We apply the argument principle to the function 
s(s-1)AK which is holomorphic on the complex plane. We define R as the rectangle 
{s c C / -c < Re s < 1 + e and 0 < Im s < T} and R is the boundary of R 
oriented in the usual counterclockwise direction. It is assumed that T is such that 
there are no roots p on the line Im s = T. We call C the portion of AR from 1 + e 
to 1 + iT. If LK(S) = s(s - 1)AK(s), we have 

NK(T) U j K (s)ds = lIm (j K (s)ds) 
2iT J RLK 7r J LK 

Im ( [r In (j)? +r2lnF(s)+slnCi ds) 

1 (d1 (f \ 
+-Im (- [lns(s-1)]ds+?-Im (K-(s)dsj 

IF \J ds SI \JC(K J 

and we obtain (see [6], p. 128 for a rigorous justification) the relation 

(32) N K( T) + 1 + SK(T). 

We can easily compute an approximation of (DK, so the main problem is to estimate 
the function SK(t). 

Remark. We can directly use the argument principle (see [10], p 1093). Indeed, 
the argument principle asserts the number of zeros of LK in R is the change in 
argument of this function around AR divised by 27r. Using the symmetries of 
AK, we have only to consider this change on the contour C (we take for example 
e= 1). The change in argument from 2 to 2 + iT is very easy to compute because 
I In (K(2 + it)I < N In ((2) < N/2 and so, if N < 3, 1 arg (K(2 + it)I < w/2 and the 
argument change of (4K on this segment is arg (K (2 + iT). Of course, if N > 3, we 
replace 2 by a larger integer k, such that N In ((k) < 7r/2. The main problem is for 
the segment from 2 + iT to 2 + iT. Here, the only solution is to compute AK (s) at 
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a large set of points on the segment, along with its first derivatives, to show that 
AK (S) cannot change its argument by as much as w between these points. 

4.3. Results about (K. We prove here a lemma which will be used in the next 
section. 

Lemma 4.4. We have: 

(33) 1?K(t) = - ln IfDKII -] N- L 8r - i- 6t) 
2 [\21r/ 2 8 16t 

(34) b<(t) - 11 [ID (In) jDo( 1N) 

(recall that -f < 6(f) < f). Moreover, there is a number 0 < tK < 7 depending 
only on the number field K, such that (DK is monotone increasing for t > tK. 

Proof. Set Bk (x) = Bk (x - Lxj) and apply the Euler-Maclaurin formula. We obtain 

1 it~ it 1 it it 1 B 1 

lnFr(- + ? ) =(- - -) ln- - + - ln27r + 2i 4 
4 2' 2 4 2 2 2 it 

1 +j? B2(x- -Lx-'J) dI 

so, if we take imaginary part, we have 

1 it t t t 7r 1 !Imf+? B2(XI 4d 
Im Ir(- -In 

- - - 
-+ 

- - -1 d 

and 

ImlnT'(2+it) =tlnt-t + 24t ?t i+{2 7fd(X ) 

and we replace in the definition of '1K(t): 

bK(t) = tlnCK ? Im (ri lnE (- ? 2? +r2 lni (2 ? it)) 

]8 2 48t 

where 

(J2 + 
t 

[2 
)2 2(2 + 

t2()2 

[Im jn1(1+t =tI B2(XtIdx(rX j ( 2 d)xd 

and jB2(x) j = jx2-x? 1 K < if x E [0, 1] implies that jB2(x)j K I if x C]-oo, +oo[, 
so 

IJ' t [4ij+t j (x2+t2)2dxj 

<t[rl J+ du f+ ~du] r1 r2 N 

and formula (33) follows. 
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To obtain the estimate for (DKI we differentiate under the integral sign in (*) 
(see justifications in [12], p. 312) 

Jt\lFI 1t Nl N 
K) 2 n LKI 2w}J 48t2 

where 

ri f+`0 d B2(X~j 1 [+`0 d [B2 (X-)1d 
2 t dt [ (Xs + 2i)]d 2 -dt-[ (X + it)2 

r2 (x? 2 i - 22 (x 
R>e ((4)<2 dx +r2Re I (22> )dx 

+ B( 1)(j 3 2 
? j B2( 1)(x3 3 Xt2) 

So 

[+00 Ut2 du + r2 +00 u4t2 
du < 

5N 

J 2 2 k 12Jt2 24t2 

and formula (34) follows. 
We have also to verify that V/j(t) > 0 for t > 0. We do not give details of the 

proof since it is exactly the same as in [12], Lemma 11. The idea is to write 1K(t) 
in the form 

(K(t)=- I2nIF I -+? -lnIF-1-itI 2 [ 4 24 ) (2 )] 

and to differentiate twice. We then use an expansion of the / function to show 
that V/ (t) > 0 and thus that JVK is strictly increasing. We now want to prove that 
Vj(7) > 0. By (34), it suffices to show that: 

- In lDK ( ) 4I >0 2 27, 248 x 72 

X DKI > 0.906 

which is true for any number field. So, (K is monotone increasing on [tK, +00[ 

with tK < 7. D 

4.4. Gram blocks, Gram's law and the number of zeros. We start this 
section by giving some definitions (for more details, see [12] , pp. 314-318). Since 
(K is strictly increasing on the interval [tK, +00 [, we can define the Gram points 
as follows. The nth Gram point is the unique solution g, in [tK, +oo[ of 

(35) JK(9n) = nwr for n > 0 

and the intervals Gn =]gn, 9n+1] are called the Gram intervals. The statement that 
the (n + 2)nd zero of ZK(t) is a real positive number in the Gram interval Gn 



1314 EMMANUEL TOLLIS 

and that ZK(t) has no other zero in this interval is known as Gram's law. The 
interesting point is its connection with the behaviour of SK(t). Indeed, by (32) we 
have 

(36) SK(9n) = NK(n) -(rn ? 1) 

and thus SK(t) takes integral values at the Gram points. Moreover, since DK is 
monotone increasing, we easily see that SK is monotone decreasing on [tK, +00[, 
except at points t which are ordinates of zeros and where SK jumps and increases 
by an integral amount (the number of zeros at height t). With these results, we 
can prove that Gram's law holds for a given integer n if and only if ISK (t) I < 1 
for gn < t < gn+1 . This law is often verified but we can introduce a modified 
version of it which holds more frequently. A Gram block of length I (see [19] for 
the introduction of the concept) is an interval ]gn, vn+1] such that (-1)S ZK(gj) > 0 

forj= n and j=n+1, but (-1)iZK(gJ) <0for n< j <n+. Wesaythat this 
Gram block satisfies Rosser's rule if it contains at least I zeros of ZK. The main 
result of this section is based on Theorem 4.1 and on the following lemma. 

Lemma 4.4. Assume that (K (2) < 0 and that t > 0. Then NK(t) is even if 
ZK(t) < 0 and odd if ZK(t) > 0. 

Proof. There is a slight difference with the proof of Lemma 13, in [12], p. 314, when 
we want to show that ZK (O) < 0. Indeed, we have ZK (?) = (K(1) exp[iDK (?)] = 

(KK(1) (and not (K(O) as said in [12]). The problem is to prove that (K(2) < 0 , and 
the only solution we have for this is a numerical verification with our program. E 

We now give the main result of this section. We start by introducing the concept 
of e-approximate Gram block. If 0 < e < 1 and 1g.j- rl < e for n < j < n + 1, 2 
then we call the interval ]gn, gn+1] an e-approximate Gram block of length I if 
(-1)iZK(gj) > 0 for j = n and j = n + 1, but(-1)jZK(gj) < 0 for n < j < n + 1. 

Theorem 4.4. Assume that gn > 40 and assume also that the interval ]gn, gn+1] 
is the union of p disjoint e-approximate Gram blocks, each containing at least as 
many zeros of ZK(t) as its length. If 

(37) P? ( -e 1 >(0.2928N+0.0419)ln [|DKI (grn+)N] 

+ 0.0195 In 
[2DK| 

(2+I)N] then NK (n) : n + I and NK(gn+l) > n + + 1. 

Proof. The result follows from Lemma 4.4 and from the following lemma (see [12], 
Theorem 4, pp. 317-318 for details). 

Lemma 4.5. If b > a > 40, then 

j SK(t) K dt <(0.2928N + 0.0419) ln [IDKI (2I) N 

+ 0.01951n2 |DK (b)N1 
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Proof. We integrate by parts. We have b > a > tK (tK < 7) and therefore: 

b b 
j SK(t)>(It)dt = V (a) [SK(b) - SK(a)] + j [SK(b) - SK(t)@14(t)dt 

=~~~~~S (3[a S~) (t)l (IV>(a)l 
+ X; / I (t)Idt) 

[ 9max IS' (b) -SK?(t) I ( In IDKI (bN ?u ) 
[[a,b] ( 2 [ 27T) 48b2) 

since V/ (t) > 0 and V (a) > 0 when a > tK. We now use Theorem 1 and we 
easily obtain the result claimed in Lemma 4.5. The end of the proof of Theorem 
4.4 is now the same as in [12]. 

5. NUMERICAL COMPUTATIONS 

5.1. The method and its limitations. The first (and most expensive) part of 
the work is finding the zeros of (K (s) in the interval [1, 1 + iT]. Since ZK (t) takes 
real values when t is real, we only search for changes of sign of this function. We 
first compute ZK(j0) for n = 0 to n = 20T, we store each change of sign in a file, 
and then we compute the roots to accuracy 10-20. 

In the second part, we rigorously prove that ZK(t) changes of sign at each point 
we have found in the first part. To do that, we use the same method as Rumely: 
we choose validation points between the zeros, and we re-evaluate ZK(t) at these 
points with a program which bounds roundoff error, in order to prove that ZK(t) 
really changes of sign (see 5.2 for computational details). 

The third and last part consists in checking the GRH. We start by computing 
the second term of inequality (37) to estimate the number of Gram blocks that we 
need. We then compute the approximate Gram points such that Igj -j7rl < 0.1 and 
we verify that each Gram block contains the correct number of zeros. We finally 
prove the GRH using Theorem 4.4. 

In the remainder of this section, we point out the limitations of our method that 
led us to choose T = 92 for cubic fields and T = 40 for quartic fields. 

The first limitation is due to formulas (5) and (6) (or formula (16) for the second 
form of the method) since the number of significant digits is limited by the largest 
element occurring in the course of a summation. Indeed, the maximal term in 
these sums is very large compared to the final answer, so we have to increase 
the internal precision in our computation. If we want to compute AK(S) with an 
absolute precision c, we have to compute f ( CK, s) for n = I to No such that 

f ( , s)) < (see Section 3.2). We search for the largest element that occurs 

in formula (5) when x = x0 = CK. In the following fk(xo, s) denotes the sum in 
No 

(5) truncated to k terms. FRom the proof of Proposition 3.3 we have 

CK (2 iF) r2 5r1 

Ifk(X0j s)I < r (k + l + 3 with 0 < ai < - 

2 (C?) F(k+I) r2W - 2+ 

(No ca(2f.) r 2 5r1 No N rl2 Nlk 
?K )r1 r exp [k yln OK 2 2n12 knk 
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We introduce the function 

2O 2 12 

N 

i 

g(k) = exp [k (In + + n2- 
2kInkj 

and we easily see that 

g (k) = 0 X (CK 2j 

and that 

w~~~~~~ 2w~~~~~~ 
Ifk(XI -8 ( I 13rl exp [- ( ) 2< V ? < aE < - 

and using the relation (17), we obtain after some computations that 

Ifk(XIs)| < M for all k < io and No < X < CK 

where M is a bound for the number of ideals. We use this result as follows: if we 
want a value of AK(S) with k significant digits (e = l0-k), we make the compu- 
tations with 2k + c digits (with c ln 10 = ln 2M5 N) to be sure that the result is 
correct. 

The second limitation is due to the gamma factors in (2). The absolute value 
of AK (2 + it) decreases exponentially with t. Indeed, the modulus of AK (I + it) 
is essentially the modulus of its gamma factors. Using Stirling's formula, we easily 
obtain 

A K (2+ it) 0 = exp [ 

For example, if we work with a number field of degree 3, and if we set T = 100, we 
have exp(-3007r/4) < 5.10-103 so if we want to compute a root to accuracy 10-20, 
we must work with 103 + 20 = 123 digits, and we must increase this accuracy to 
more than 200 digits (see preceding paragraph). 

The last limitation is in the degree (and the discriminant) of the number field. 
Indeed, the value of NO increases with N or DK. For large values of No, the 
most expensive part of the program is the computation of the sum EN- an -Sin 
formula (14), and it seems that there is no solution to improve this computation. 

5.2. The roundoff error. To estimate the accumulated roundoff error, we follow 
the same method as Rumely ([20] pp. 423-425). We use another program which 
re-evaluates ZK(t) at validation points (see 5.1) and which computes the roundoff 
error in the same time. In this program, we represent a real number a by a pair 
(a, Ca) which means that a - Ca < a < a + Ca and we determine how the error term 
propagates through the computations (we consider a complex number as a pair 
((x, X), (y, Cy))). We use for this the formulas given in [20] p. 425 for the principal 
operations (addition, multiplication, exponentiation...). For example, we apply this 
method to the first term in formula (14). 
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If A(s) - C2O(SRI) and hK, RK, s = 2 + it are given with a relative precision 

60 = 10-k, we have 

2r1+3hKRK t2 + 2r+2hKRK t2 2ril hKRK 2] 2 

'EA < / 
X t2- 1j6? + L K Xt2 - + + 2 

601 

Our program uses this style of formulas and combines them with numerical com- 
putations to obtain a bound of roundoff error of each term in formula (14). We 
do not give here all the computational details since it is rather long and has little 
interest, but we have obtained the following results for cubic fields. 

Suppose that we want to obtain values of (K(S) (Im s < 100) with 20 digits. We 
know that (K(1 + 100i) 10-100 and so, we set 6 = 10-120 to compute No and io. 
We suppose now that hK, RK, s and ir are given with a relative precision 60 and 
we have 
* 

A= 2 rlhK RK 'EA < 63560. 
WK(S-1)s 

* B = Ckr (s)rl f (,)r2 z a n-s 6B < 6.10760. 
n>1 

(We also have 6c < 6.1076o if C = CK-sr (1 s)rl F (1 - )r2 Zn>i annsl.) 

rl+r2-1 io 

. D ZE Z(s+i)k+l ED < 4.1012860. 
k=0 i=0 

ri +r2-1 io 

(We also have CE < 4.1012860 if E = Z Z (1-S+t)k?1.) 

k=0 i=0 
From this, we can deduce that 

(K(S) - (K(S) < 5.10180 

where (K(S) is the result of our computation, and (K(s) is the exact value. So, 
to be sure that we really have a zero between two validation points, we need that 
5.101286o = 10-120, and thus, we compute (K(s) at these points with 249 digits 
(E = 10-120 and 60 = 10-249). 

Numerical results.are given in section 6 (50 cubic fields, 30 quartic fields). For 
each field, we have proved the GRH (height 92 for degree 3 and 40 for degree 4) and 
we give the first zero and the least and greatest gap between zeros (the complete list 
of zeros is available upon request from the author). The functions (K(s) and AK (s) 

are now included in the GP/Pari calculator. These functions receive a polynomial 
T. a complex number s, and compute the value of (K or AK at s. 

6. NUMERICAL RESULTS 

For number fields of degree 3 and 4, we have proved the GRH up to a certain 
height. For each field, we give this height, the first zero and the least and greatest 
gap between two successive zeros. When the degree of the field is 5 or 6, we only 
give a table of small zeros because of the limitations of our program (see Section 
6.7). 
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6.1. Degree 3 and signature (3,0). 
GRH Nb First Least Greatest Least Greatest 

P(X) DK Height < 92 Zero Gap Gap Gap* Gap* 

x3 + x2 _ 2x - 1 49 94.31 131 4.35640 0.00270 1.95056 0.00270 2.10758 
x3 - 3x - 1 81 93.54 139 3.44409 0.02293 2.21285 0.02519 2.21285 
x3 + x2 - 3x - 1 148 94.03 147 3.02402 0.00435 1.85461 0.09947 1.85461 
X3_- - 4x - 1 169 92.13 149 2.27313 0.00545 2.66545 0.00545 2.66545 
x3 - 4x - 1 229 93.78 154 2.61412 0.01298 1.75660 0.05787 1.75660 
x3 - 5x - 3 257 93.91 155 2.12932 0.00273 2.05906 0.05829 2.05906 
x3 + x2 _ 4x - 2 316 93.42 158 2.86162 0.02098 1.64006 0.15851 1.64006 
x3 + x2 _ 4x - 1 321 93.31 159 2.21077 0.01432 2.17808 0.06883 2.17808 
x3 + x2 -6x - 7 361 93.87 161 1.57320 0.00429 2.83562. 0.02451 2.83562 

3-x 2 - 5x - 1 404 93.57 162 2.28061 0.03555 1.72736 0.06728 1.72736 
x3 + x2 _5x - 4 469 94.35 164 2.05522 0.00920 1.63356 0.07146 1.63356 
x3- 5x - 1 473 92.98 164 1.72932 0.00453 1.93468 0.12857 1.93468 
x3 + x2 _-5 - 3 564 94.02 166 2.40567 0.01047 1.46857 0.17307 1.46857 
x3_x2 - 6x - 2 568 93.54 167 2.38573 0.01107 1.40286 0.14241 1.40286 
x3 - 6x - 3 621 94.26 168 2.23358 0.00908 1.29944 0.16193 1.29944 

3- x2- 8x - 5 697 94.38 170 1.26559 0.00486 2.11886 0.13953 2.11886 
x3 + x2 _7x - 8 733 93.63 171 1.90179 0.00294 1.45064 0.14844 1.45064 
x3 - 6x - 2 756 93.86 171 1.90188 0.04830 1.52764 0.10620 1.52764 

3- x2- 6x - 1 761 93.81 171 1.43397 0.02358 1.89358 0.08302 1.89358 
x3 + x2 -6x - 5 785 93.19 172 1.63471 0.00814 1.77858 0.11881 1.77858 
x3_x2 - 7x - 3 788 93.59 172 1.93396 0.00781 1.43374 0.09976 1.43374 
x3 - 6x - 1 837 94.06 172 2.16814 0.01414 1.34862 0.11652 1.34862 
x3 + x2 - 8x - 10 892 92.81 173 2.10560 0.00499 1.39146 0.09983 1.39146 
x3 - 7x - 4 940 93.75 175 2.20619 0.01679 1.49646 0.10598 1.49646 
x3 + x2 - 10x - 8 961 93.19 175 2.59082 0.00529 1.98059 0.00529 1.98059 

This table gives statistics for the first 25 cubic fields with signature (3,0). Col- 
umns 8 and 9 give the least and greatest gap between two successive zeros, without 
zeros of the Riemann zeta function. For each field, we needed between 9 and 13 
Gram blocks satisfying Rosser's rule, to check the GRH. We have found no exception 
to this rule during our computations. Table 6.2 gives exactly the same results for 
cubic fields of signature (1, 1). 

In Section 6.3, we have computed the height ho(DK) of the first zero of 1000 
cubic fields of each signature and we have plotted the function 

f (DK) = ho(DK) x In IDKI 

to verify that ho(DK) = 0 (nIDKI 

6.2. Degree 3 and signature (1, 1). 
GRH Nb First Least Greatest Least Greatest 

P(X) DK Height < 92 Zero Gap Gap Gap* Gap* 

x3 + x2 _ 1 -23 93.81 121 5.11568 0.04081 2.04357 0.25629 2.04357 
x3 _ x2 1 -31 94.11 125 4.16621 0.00897 2.75950 0.28513 2.75950 
x3 _ x - 1 -44 93.98 130 4.04199 0.00313 1.77366 0.17532 1.77366 
x3 + 2x - 1 -59 93.78 134 3.43180 0.02993 2.21542 0.09515 2.21542 
x3- 2x- 2 -76 93.89 138 3.27623 0.02791 1.92620 0.13147 1.92620 
x3 _x2 +x-2 -83 93.73 139 2.91606 0.04557 2.33787 0.11248 2.33787 
x3 + x2 + 2x - 1 -87 93.38 140 2.68368 0.00008 2.29417 0.17799 2.29417 
x3 - x - 2 -104 93.06 142 3.31991 0.03118 1.90971 0.10893 1.90971 
x3 - x2 + 3x - 2 -107 93.34 143 2.61608 0.06722 2.30193 0.15955 2.30193 
x3 - 2 -108 94.26 143 2.82161 0.02491 1.71850 0.19064 1.71850 
x3_x2 _ 2 -116 93.73 144 3.11568 0.01069 2.11816 0.06693 2.11816 
x3 + 3x - 1 -135 93.12 146 2.04028 0.00050 2.36295 0.08348 2.36295 
x3 + x2 + x - 2 -139 93.40 146 2.66179 0.00171 1.90768 0.12775 1.90768 
x3 + 2x - 2 -140 93.35 147 2.27790 0.02046 2.59247 0.05948 2.59247 
x3 _x2_ 2x - 2 -152 94.20 148 2.81196 0.00546 1.91305 0.17549 1.91305 
x3 x2 _x - 3 -172 93.79 150 2.35670 0.00616 1.84139 0.13394 1.84139 
x3 x2 + 2x - 3 -175 93.20 150 1.81080 0.02071 2.39880 0.18226 2.39880 
x3- x2 + 4x - 1 -199 92.30 152 1.67161 0.01448 2.62086 0.19531 2.62086 
x3 + x2 + 2x - 2 -200 93.67 152 2.52234 0.01052 1.78618 0.11447 1.78618 
x3- x2 + x - 3 -204 93.07 152 2.51256 0.00346 1.84822 0.08541 1.84822 
x3 - 2x - 3 -211 92.83 153 2.29906 0.01656 1.68544 0.12543 1.68544 
x3 -x2 + 4x - 2 -212 93.27 152 2.46540 0.02508 1.79746 0.10591 1.79746 
x3 + 3x - 2 -216 94.07 153 2.79656 0.00312 1.62192 0.06707 1.62192 
x3 + x2 _3 -231 93.14 154 1.84481 0.00523 2.34089 0.12322 2.34089 

. - -239 93.83 154 2.12721 0.01478 2.69767 0.15969 2.69767 
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6.3. Statistics about the height of the first zero. 

50 50 

.1 .. . . . . . 

0 23720 0 6644 
Signature (3,0) Signature (1, 1) 

6.4. Statistics for cubic fields to height 40. This table gives statistics for 
cubic fields to height 40. We give it only to compare results with tables of degree 
4. 

Nb Least Greatest Least Greatest Nb Least Greatest Least Greatest 
DK < 40 Gap Gap Gap* Gap* DK < 40 Gap Gap Gap* Gap* 
49 41 0.00932 1.95056 0.00932 2.10758 -23 37 0.04081 2.04357 0.43639 2.04357 
81 45 0.02293 2.21285 0.05483 2.21285 -31 39 0.06966 2.75950 0.33564 2.75950 
148 49 0.09464 1.85461 0.25450 1.85461 -44 41 0.08500 1.77366 0.17532 1.77366 
169 49 0.04901 2.66545 0.04901 2.66545 -59 43 0.08438 2.21542 0.09515 2.21542 
229 52 0.03159 1.75660 0.20172 1.75660 -76 45 0.02791 1.92620 0.13147 1.92620 
257 52 0.04456 2.05906 0.16923 2.05906 -83 45 0.07893 2.33787 0.24891 2.33787 
316 53 0.03330 1.64006 0.23388 1.64006 -87 45 0.00008 2.29417 0.27303 2.29417 
321 54 0.02999 2.17808 0.17970 2.17808 -104 47 0.16163 1.90971 0.16163 1.90971 
361 54 0.02451 2.83562 0.02451 2.83562 -107 47 0.07351 2.30193 0.27553 2.30193 
404 55 0.14017 1.72736 0.24106 1.72736 -108 47 0.02491 1.71850 0.23129 1.71850 
469 56 0.00920 1.63356 0.21808 1.63356 -116 47 0.09699 2.11816 0.22768 2.11816 
473 56 0.01432 1.93468 0.16644 1.93468 -135 48 0.05242 2.36295 0.08348 2.36295 
564 57 0.04620 1.46857 0.17307 1.46857 -139 49 0.10583 1.90768 0.12775 1.90768 
568 57 0.12967 1.40286 0.16699 1.40286 -140 48 0.08975 2.59247 0.29068 2.59247 
621 58 0.01838 1.29944 0.16193 1.29944 -152 49 0.04671 1.91305 0.25602 1.91305 
697 58 0.01390 2.11886 0.13953 2.11886 -172 49 0.11080 1.84139 0.13394 1.84139 
733 59 0.00574 1.45064 0.14844 1.45064 -175 50 0.02236 2.39880 0.27872 2.39880 
756 59 0.04841 1.52764 0.10620 1.52764 -199 50 0.01448 2.62086 0.19531 2.62086 
761 59 0.04487 1.89358 0.16024 1.89358 -200 51 0.01052 1.78618 0.11447 1.78618 
785 59 0.03064 1.77858 0.23442 1.77858 -204 51 0.00522 1.84822 0.24845 1.84822 
788 59 0.04555 1.43374 0.20056 1.43374 -211 51 0.01656 1.68544 0.13736 1.68544 
837 60 0.04358 1.34862 0.20740 1.34862 -212 51 0.09019 1.79746 0.14141 1.79746 
892 60 0.02110 1.39146 0.20080 1.39146 -216 51 0.05687 1.62192 0.06707 1.62192 
940 60 0.02855 1.49646 0.10598 1.49646 -231 51 0.03945 2.34089 0.32738 2.34089 
961 60 0.00943 1.98059 0.02896 1.98059 -239 52 0.01913 2.69767 0.16827 2.69767 

6.5. Degree 4 and signature (4, 0). 
GRH Nb First Least Greatest Least Greatest 

P(X) DK Height < 40 Zero Gap Gap Gap* Gap* 

x4 + x3 - 3x2 x + 1 725 42.62 65 3.31527 0.01457 1.25258 0.29755 1.69636 
x4 + x3 - 4x2 - 4x + 1 1125 40.91 67 2.73460 0.00729 1.67209 0.11973 1.77291 
x + 2x3 - 7x2 + 2x + 1 1600 42.05 70 2.48821 0.00483 1.54338 - - - 

x4 - 4x2 + x + 1 1957 42.73 70 2.52928 0.01406 1.24419 0.10595 1.24419 
x4 _ 5x2 + 5 2000 40.60 71 2.43970 0.00459 1.83982 0.00721 1.83982 
x4 - 4x2 + 2 2048 40.95 71 2.84244 0.00315 1.35797 0.00315 1.97953 
x4+ x3 _ 5x2 _ 2x + 4 2225 42.37 72 2.49859 0.00718 1.62549 0.25728 1.62549 
x4- 4x2 + 1 2304 41.46 72 2.68865 0.00993 1.39979 - - - - - - 

x4 + x3 - 6x2 + 5 2525 41.62 72 2.13772 0.01125 1.45974 0.22223 1.55324 
x + 2x3 _ 3x2 _ 2x + 1 2624 41.51 72 2.15522 0.00149 1.38864 0.13669 1.88352 
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6.6. Degree 4 and signature (2, 1). 

GRH Nb First Least Greatest Least Greatest 
P(X) DK Height < 40 Zero Gap Gap Gap* Gap* 

x4 + x3 - 2x - 1 -275 41.35 58 3.81577 0.00649 1.54002 0.14005 2.19745 
x4 + x - 1 -283 43.62 58 3.72299 0.00527 1.52318 0.21046 1.52318 
x4 + x3 - x2 - x - 1 -331 43.12 59 3.40271 0.01425 1.91807 0.17352 1.91807 
x4 _ x2 - 1 -400 42.06 61 3.18874 0.03688 1.65784 0.20874 1.65784 
x4 + 2x3 + x2 - 2xc - 1 -448 42.17 62 3.00942 0.01153 1.89054 0.26119 2.84525 
x4 + x3 - 2x2 + 2x - 1 -475 42.45 62 2.87350 0.00875 2.18414 0.29969 2.18414 
x4 + x3 - 2x2 - 2x - 1 -491 43.25 62 3.18155 0.11444 1.56191 0.22678 1.56191 
x4 + x3 _ x2 + x + 1 -507 42.25 62 3.11934 0.01349 1.50662 0.38555 1.81562 
x4 + x3 _ x2 + x - 1 -563 42.83 63 2.96180 0.05622 1.46111 0.16249 1.46111 
x4 + x3 + 2x + 1 -643 42.43 63 2.53414 0.00415 2.19025 0.17572 2.19025 

6.7. Degree 4 and signature (0, 2). 

GRH Nb First Least Greatest Least Greatest 
P(X) DK Height < 40 Zero Gap Gap Gap* Gap* 

x4 + x3 - x2 -_x + 1 117 42.05 53 4.39582 0.00758 1.81562 0.38555 1.81562 

x4 + x3 + x2 + x + 1 125 41.82 53 4.13290 0.00019 2.05067 0.00019 2.27365 

x4 - x2 + 1 144 41.85 54 3.80462 0.02192 2.21632 - - - - - - 

x4 + x3 - 2x + 1 189 42.92 56 3.51328 0.03331 1.64927 0.27429 1.71614 
x4 + x3 + 2x2 - x + 1 225 41.87 58 3.05701 0.00200 2.28617 - - - - - - 

x4 + x + 1 229 42.77 57 3.19363 0.03188 1.85968 0.14911 1.85968 
x4 + 1 256 41.45 58 3.57615 0.00590 1.87477 - - - - - - 

x4 + x2 + a + 1 257 41.92 58 3.56819 0.01113 1.34834 0.17364 1.34834 
x4 + x2 + 2x + 1 272 41.74 58 2.75562 0.01938 2.65702 0.25713 2.65702 

x4 + 2x3 + 2 320 41.23 59 3.18874 0.01303 1.65282 0.20874 1.65784 

We give for quartic fields exactly the same results as in 6.1 and 6.2 but we have 
stopped our computations at height 40 (see Section 5). Columns 8 and 9 give the 
least and greatest gap between two successive zeros without all zeros of the Riemann 
zeta function, and without all zeros of Dedekind zeta functions of subfields. If there 
is no value, this means that each zero of the Dedekind zeta function is also a zero 
of the Dedekind zeta function of a subfield. 

6.8. Low zeros in degree 5 and degree 6. 

(5,0) (3, 1) (1,2) (6,0) (4, 1) (2,2) (0, 3) 
14641 -4511 1609 300125 -92779 28037 -9747 

2.6960041 3.0959276 3.5046434 2.6107359 2.6567860 3.0348978 3.3084337 
3.6100404 3.9839167 4.4029081 2.8054153 3.2834471 3.4842283 3.8933927 
4.6293537 5.1824400 5.8558274 4.0919419 4.2570181 4.9815596 5.4260008 
5.1336996 5.8433821 6.3798009 4.3564016 4.8393463 5.1156833 5.5084686 
6.0318093 6.5240485 7.1361800 4.9665914 5.4475842 5.8117296 6.5621326 
6.7062198 7.4281911 8.2402966 5.5951657 6.0325920 6.8129660 7.0204644 
7.2069265 7.9450296 8.7206690 6.2012300 6.5817773 7.1592623 8.0397372 
7.6618576 8.6508744 9.3318488 6.6484533 7.0862482 7.5677683 8.1130254 
8.7041611 9.2160990 6.8272084 7.7047603 8.3161065 8.9799068 
9.0057129 9.8659138 7.7709912 8.1083577 8.8313966 9.5307146 
9.3257628 7.9274309 8.4529841 9.1792851 9.7559341 
9.9689866 8.4085884 9.1313170 9.8587313 

8.7855547 9.5750581 
9.3512139 9.9000521 
9.8314444 
9.9187331 

This table gives us the first zeros for the number fields of degree 5 and degree 
6 of different signatures, having smallest discriminant. In each case, we give the 
signature and the discriminant of the field. We cannot prove the GRH for these 
fields because Theorem 4.4 assumes that we can find the zeros of (K (s) up to a 
height 40. 
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