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ON WENDT’S DETERMINANT

CHARLES HELOU

ABSTRACT. Wendt’s determinant of order m is the circulant determinant W,
whose (i, j)-th entry is the binomial coefficient (]ir_"j'), for 1 <i,57 <m. We
give a formula for W,,, when m is even not divisible by 6, in terms of the
discriminant of a polynomial T}, 41, with rational coefficients, associated to
(X 4+ 1)m+l — Xm™+1 — 1. In particular, when m = p — 1 where p is a prime
= —1 (mod 6), this yields a factorization of Wj_1 involving a Fermat quotient,
a power of p and the 6-th power of an integer.

INTRODUCTION

E. Wendt ([12]) introduced the m x m circulant determinant Wy, with first row
the binomial coeficients (), (7),..., (,,";), ie.
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m @ @ - 1
which is the resultant of the polynomials X™ — 1 and (X +1)™ — 1, in connection
with Fermat’s last theorem ([10]). E. Lehmer ([9]) proved that Wy, = 0 if and only
if m =0 (mod 6), and that if p is an odd prime number, then W;,_; is divisible by
pP~2q,(2), where g,(2) = 25:;—_—1 is a Fermat quotient. L. Carlitz ([2]) determined
Wp—1 modulo pP~!, which he then used to find high powers of p dividing W,_; in
an application in the same connection ([3]). Factorizations of the integers W, for
m < 50 were given in ([7]). The size of W,, was investigated in ([1]). Granville and
Fee ([5]) determined the prime factors of Wy, for all even m < 200 and consequently
improved on a classical result about Fermat’s equation. This was further improved
in ([6]), where similar computations were carried up to m < 500.
In this article, we show that for all positive even integers m not divisible by 6,

Wi = =9 (2™ — 1)3(m + 1) 4hmI DB |
where D,, is the discriminant of a polynomial with rational coeflicients whose roots
are given by a rational function of those of (X +1)™*1 — X™+1 — 1 and h,, = 2

or —1 according as m = 2 or 4 (mod 6) respectively. In particular, if p is a prime
= —1 (mod 6) then D,_; is a rational integer and we have the factorization

1 _
Wp_]_ = —§qp(2)3pp QDS—].'
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1. PRELIMINARY RESULTS

For any positive integer m, let {,, be a primitive m-th root of unity in C. By a
well-known expression for circulant determinants ([12]),

m—1 /m—1 m—1
m j i \ym
) W = 1 (Z (k)c,,f> =TI (a+cam-1).
j=0 \ k=0 §=0
Denote by n an odd integer > 3 and consider the polynomial
(2) P,(X)=(X+1)"-X"-1.
Its relation to Wendt’s determinant is the following
Proposition 1. For any odd integer n > 3, the discriminant of P, is
D(P,) = (-1)"7 n" W, _;.
Proof. Since P, has degree n — 1 and leading coefficient n, we have ([4] or [11])
D(P,) = (—1)—(""1)2(”—2) n~'R(P,, P.), where R(P,, P,) is the resultant of P, and

its derivative P,. We also have R(P,, P.) = (n(n — 1))" ' [IrZ% P.(yx), where
Yp = ZVL—_l (1 < k < n—2) are the roots of P,(X) =n((X +1)»1 — X" 1) in
n—1

_(rk  _q1yn—1
C. Every Pn(yx) = R GRS T O | < k < n—2. The product HZ;f(l —¢k )

(Cﬁ_l_l)n—l ’
is the value at 1 of (X! —1)/(X — 1), which is n — 1. Moreover, since n is odd,
n—2 n—2
n— k n—1 n—1
H(l_(CS—l—l) 1)=H<<1+Cnir12 ) —1>=Wn—1,
k=1 k=0

by (1). Hence HZ;? P, (yx) = m‘ff—’l’)‘,}j and the result follows by substitution.

Now the polynomial P, can be written ([8])
(3) Po(X) = X(X +1)(X? + X + 1)* F,(X),

where F), lies in Z[X], is prime to X (X +1)(X2+X +1), has degree d,, = n—3—2e,
and leading coefficient n, with e, = 0, 1 or 2 according as n =0, 2 or 1 (mod 3)
respectively. It follows from (2) and (3) that F,,(—X —1) = F,(X) and F,,(1/X) =
F,(X)/X% . Hence the set of roots z of F,, in C is partitioned into r, = d,/6
orbits of 6 elements each, namely

1 z+1 z

z+1’ z 7 z+1 g

Let z1,...,2-, be representatives of the different orbits of roots of F,. For every
1 < j < rp, let g; be the monic polynomial whose roots are the elements of Orb(z;).
A straightforward computation gives
(5) g;(X) =X +3X°+4; X"+ (2t; -5) X+, X>+3X +1 (1<j<ry)

where

(6) t=6-J(z), JX)=

(@) Orb(z) = {z, % Y

(X2+ X +1)°
X2(X +1)2
and

j=1
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Moreover

(8) 9;(X) =X*(X +1)* (J(X) = J(z)) (1<j<rn)
We now introduce the polynomial

©) T.(X) = [[(X - t)

j=1
which lies in Q[X], since the automorphisms of the splitting field of F,, over Q
permute the roots of T;, and thus leave its coefficients fixed. Substituting (8) into
(7) yields
(10) Fo(X) = (-1)™nX?™ (X 4+ 1)¥T,(6 — J(X)).
This relation, linking T, to F,, and thus to P,, facilitates computations with 7,,.

2. DISCRIMINANTS CALCULATIONS

The resultant of two non-zero polynomials f,g € C[X] is denoted by R(f, g) and
the discriminant of f by D(f). The classic formula ([4]) D(fg) = D(f)D(9)R(f,9)?
yields by induction

Lemma 1. If f1,..., fm are non-constant polynomials in C[X], then
D (Hﬁ) =1l Il R £)2
i=1 i=1 1<i<i<m

Using this, the relation (3) allows, when e, < 2, to express D(F},) in terms of
D(P,). Indeed,
Lemma 2. For a positive odd integer n # 1 (mod 6),
_ (E)D(B)
D(Fn) T Senpdlentl)
Proof. Assume first n = —1 (mod 6), so that e, = 1 and

Py(X)=X(X +1)(X2+ X +1)F,(X).
" From Lemma 1,
D(Pn) = _3(Fn(O)Fn(_1)Fn(<3)Fn(C??))2D(Fn)

Now, for all odd n, F;,(0) = F,,(—1) = n, since these are the values of P,(X)/X at
0 and —P,(X)/(X + 1) at —1 respectively. On the other hand, setting P, (X) =
(X% 4+ X +1)Qn(X), with Q,, € Z[X], we have

Fo(G) = Qn(G) _  Pu) _ n(G+)" ' =g
ST GG T 2G4 1 26 T 1

Also, F,(¢2), being the complex conjugate of F,((3), is equal to n too. Hence
D(P,) = —3n8D(F,). Similarly, in the simpler case where n = 3 (mod 6), we have
P, (X) = X (X +1)F,(X) so that D(P,) = (F,,(0)F,(—1))2D(F,) = n*D(F,).

We now relate the discriminants of F,,, T, and the g;’s.

Lemma 3. For any odd integer n > 3,

D(F,) = n*dn=1), ﬂ D(g;).D(T,,)®.

Jj=1
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Proof. By (7) and Lemma 1, D(F,,) = n?(@~1), ) D(g5)-Thi<icj<r, R(gi,95)%
By (8), for 1 < i,j < 1, Rlgivg5) = IL 95(2) = (J(z0) — J(z3))° (TL, 20z + 1))?,
where the products are for z ranging in Orb(z), in which case J(z) = J(z)
by (5) and (6). Moreover, [],z = ¢;(0) = 1 and [[,(z + 1) = g;(-1) = 1.
Hence R(g;,9:) = R(9i,9;) = (J(z) — J(%))%. On the other hand, D(T},) =
(=)= DR (s — t5) = +11,2;(J(25) — J(2:)), where the products are for
all i,j € {1,...,r} with i # j. Hence I,, <, R(9i,9;)> = [Lix; R(9:,9;) =
[Tiz;(J(2) = J(2))® = D(T;,)® and the result follows.

Next, we compute the dicriminants of the g;’s.

Lemma 4. For any odd integer n >3 and 1 < j <ry,,
D(g;) = —(4t; + 3)3(t; — 6)*.

Proof. Let Y = X + 1/X. Then g;(X) = X3h;(Y), where h;(Y) = Y3 +3Y2 +
(t; —3)Y +2t; — 11; and g}(X) = 3g;(X)/X + (X — X)h}(Y). Hence

D(g;) =~ ] 95(=) = - <Hz> <H(z+ 1)) (H(z - 1)) TI7¢+ %),

z z

where the products are for z € Orb(z;). From the proof of Lemma 3, [], z =
[I,z+1) = 1. Also [[,(z—1) = g;(1) = 4¢t; + 3. Moreover, y = z + 1/z
ranges through the roots of h;, each repeated twice, as z ranges through Orb(z;),
2

so that [, (2 +1/2) = (ny h;(y)) = D(h;)?. Thus D(g;) = —(4t; +3)D(h;)?.
Now, setting U = Y + 1, we have h;(Y) = f;(U) = U® + (t; — 6)U + t; — 6.
By a well-known formula for the discriminant of a cubic polynomial ([11]), we get
D(h;) = D(f;) = —(4t; + 3)(t; — 6)2. Hence the result.

The product, appearing in Lemma 3, of the discriminants of the g;’s is given by

Lemma 5. For any odd integer n > 3,

Tn n—1 2en(en—1)
H D(g]) — (_1)rn34—7en (2n—1 _ 1)3n4en—7 ( o ) .
j=1

Proof. By Lemma, 4,

3 4
(11) I = ()™ (H(‘ltj + 3)) (H(tj - 6)) '
Jj=1 j=1 j=1

Now H;;1(4tj +3) = (—4)™T,(-3/4). Moreover, substituting X = 1 into (10)
and (3), we get (—4)™nT,(—3/4) = F,(1) = P,(1)/(2.3°"). Hence
- _F,(1) o2t

(12) j];[l(4t] +3) === o

Similarly, H;’;l(tj —6) = (-1)"T,(6), and substituting X = (3 into (10) yields
(—1)™nT,(6) = Fn(¢s). Let Qn(X) = X(X + 1)F,(X); then F,(¢3) = —Qn((3)
and, by (3), Po(X) = (X2+ X +1)*Q,(X). Taking e,-th derivatives in the latter
relation and making X = (3, we get Qn({3) = Prge")(C3)/(6n!(2C3 + 1)°~) (here
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2¢3 + 1 is the value of the factor X — ¢2 in X2 + X + 1, and the equality follows
from Taylor’s formula). Hence

Tt -6 = o) - ___BG)

L1 n en'n(2¢z + 1)en
j=1

Simple computations show that — 7(18")((3)/(24‘3 + 1) = 3 or n or n(n—1)/3

according as n = 0 or 2 or 1 (mod 3) respectively. Therefore ]2, (¢; —6) = 3/n

or 1 or (n — 1)/6 respectively. One formula representing all three cases is

o e ()T

Substituting (12) and (13) into (11) yields the desired result.

3. CONCLUSION

We can now draw the formula relating Wendt’s determinant W,_; to the dis-
criminant of the polynomial T,,, namely

Proposition 2. For any odd positive integer n # 1 (mod 6),
W1 = _92—3en (2n—1 _ 1)3 Tl,n+4e"_9D(Tn)6,

where e, = 0 or 1 according as n = 3 or —1 (mod 6) respectively, and Ty, is defined
by (9).

Proof. By Lemmas 3 and 5, since d, = n — 3 — 2e,, and e, = 0 or 1, we have
D(F,) = (=1)"»3*"7en (271 —1)3p2"=15D(T,)®. On the other hand, Proposition
1 and Lemma 2 imply D(F,,) = (—1)¢rt(r=1)/23=enpn—4en=6W, _, Equating the
two expressions (and noting that 7, + e, + (n — 1)/2 = 2(n + e,)/3 — 1 is odd)
yields the desired result.

Remark. In Proposition 2, let m = n — 1 and h,, = 2 — 3e,, so that m is an even
positive integer # 0 (mod 6) and h,, = 2 or —1 according as m = 2 or 4 (mod 6)
respectively. Noting that 2 — e,, coincides with |h,,| and writing Dy, for D(Tm+1),
we obtain the formula for W, stated in the Introduction.

Assume now that n = p is a prime number = —1 (mod 6). Then the leading
coefficient p of P, divides all its coefficients (£), for 1 < k < p — 1, so that, by
(3), F, = pE, where E,, is a monic polynomial in Z[X]. Thus the roots of F} are
algebraic integers. Since, by (5), t; is a sum of products of roots of F,, then ¢; is
also an algebraic integer, for 1 < j < r,. Hence T}, has rational integer coefficients
and D(T}) lies in Z. Therefore Proposition 2 (where now e, = 1) implies

Corollary. If p is a prime number = —1 (mod 6), then
1 _
Wp1 = _5‘1p(2)3pp 2D(Tp)ﬁ»

2Pl g
PR

where the discriminant D(T,) is a rational integer and q,(2) =
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