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ON WENDT'S DETERMINANT 

CHARLES HELOU 

ABSTRACT. Wendt's determinant of order m is the circulant determinant Wm 
whose (i,j)-th entry is the binomial coefficient for 1 < i,j < m. We 

give a formula for Wm, when m is even not divisible by 6, in terms of the 
discriminant of a polynomial Tm+l, with rational coefficients, associated to 
(X + 1)m+l - Xm+l - 1. In particular, when m = p - 1 where p is a prime 

_-1 (mod 6), this yields a factorization of Wp-1 involving a Fermat quotient, 
a power of p and the 6-th power of an integer. 

INTRODUCTION 

E. Wendt ([12]) introduced the m x m circulant determinant Wm with first row 
the binomial coefficients (Jm), (m ), ... (mml), i.e. 

l (Ml (M2) ... (mM-1) 

(mii) 1 (m 1) *.. (m-2) 

(Ml (2) (3) - 

which is the resultant of the polynomials Xm - 1 and (X + 1)m - 1, in connection 
with Fermat's last theorem ([10]). E. Lehmer ([9]) proved that Wm = 0 if and only 
if m 0 0 (mod 6), and that if p is an odd prime number, then Wp-l is divisible by 

p-2qp(2), where qp(2) = 2P-1 is a Fermat quotient. L. Carlitz ([2]) determined 
p 

Wp-l modulo pPl, which he then used to find high powers of p dividing Wp-l in 
an application in the same connection ([3]). Factorizations of the integers Wm for 
m < 50 were given in ([7]). The size of Wm was investigated in ([1]). Granville and 
Fee ([5]) determined the prime factors of Wm for all even m < 200 and consequently 
improved on a classical result about Fermat's equation. This was further improved 
in ([6]), where similar computations were carried up to m < 500. 

In this article, we show that for all positive even integers m not divisible by 6, 

Wm = _hm(2m - 1)3(m + 1)m41hm IDm 

where Dm is the discriminant of a polynomial with rational coefficients whose roots 
are given by a rational function of those of (X + I)m+l - Xm+l - 1, and hm = 2 
or -1 according as m -2 or 4 (mod 6) respectively. In particular, if p is a prime 

-1 (mod 6) then Dp-l is a rational integer and we have the factorization 

WP-= I-qp(2)3pp-2D D6 
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1. PRELIMINARY RESULTS 

For any positive integer m, let (m be a primitive m-th root of unity in C. By a 
well-known expression for circulant determinants ([12]), 

m-1 /m-1 \ m-1 

Denote by n an odd integer > 3 and consider the polynomial 

(2) Pn(X) = (X + 1) - _X _-1. 

Its relation to Wendt's determinant is the following 

Proposition 1. For any odd integer n > 3, the discriminant of Pn is 

D(Pn) = (-1)2 n'nn2Wl. 

Proof. Since Pn has degree n - 1 and leading coefficient n, we have ([4] or [11]) 

D(Pn) = (-1) (n12 ) n-1R(Pn, Pn), where R(Pn, Pn) is the resultant of Pn and 
its derivative Pn . We also have R(Pn, Pn) = (n(n - 1))n-1 Jjn-2 Pn (yk), where 

Yk = 11 < k < n(-2) are the roots of Pn(X) = n((X + ?)n-1-xn-1) in 

C. Every P (Yk) 1((kn -1) for 1 < k < n-2. The product Hk= (1 - (nk ) 
is the value at 1 of (Xn- -1)/(X - 1), which is n - 1. Moreover, since n is odd, 

n-2 n-2 n1 U (1 ((;nk 1 I)n-1) = U ((1?+k+-)n-1 ) 
k=1 k=O 

by (1). Hence JIn-I2 Pn(yk) = Wn-1 and the result follows by substitution. 

Now the polynomial Pn can be written ([8]) 

(3) Pn(X) = X(X + 1)(X2 + X + I)enFn(X), 

where Fn lies in Z[X], is prime to X(X+?)(X2?+X+), has degree dn = n-3-2en 
and leading coefficient n, with en = 0, 1 or 2 according as n _ 0. 2 or 1 (mod 3) 
respectively. It follows from (2) and (3) that Fn (-X - 1) = Fn (X) and Fn (I /X) = 
Fn(X)/Xdn. Hence the set of roots z of Fn in C is partitioned into rn = dn/6 
orbits of 6 elements each, namely 

(4) Or6(z) ={z, z, -z-1, z ? z -I z+ 

Let z1,... , zn be representatives of the different orbits of roots of Fn. For every 
1 < j < rn, let gj be the monic polynomial whose roots are the elements of Orb(zj). 
A straightforward computation gives 

(5) gj(X) = X6 + 3X5 + tjX4 + (2tj - 5)X3 + tjX2 + 3X + 1 (1 <_j ?<rn) 

where 

(6) tj= 6 -J(zj), J(X) = (X2 +X +1)3 
X2X+1)2 

and 
Vn 

(7) Fn = nlgj. 
j=1 
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Moreover 

(8) ~~gj (X) = X2 (X + 1) 2 (j(X) _ j(Zj)) ( n 

We now introduce the polynomial 
Vn 

(9) Tn (X) = H (X - tj) 
j=1 

which lies in Q[X], since the automorphisms of the splitting field of Fn over Q 
permute the roots of Tn and thus leave its coefficients fixed. Substituting (8) into 
(7) yields 

(10) Fn(X) = (-1)rnnX2rn (X + 1)2rnT(6- J(X)). 
This relation, linking Tn to Fn and thus to Pn, facilitates computations with Tn. 

2. DISCRIMINANTS CALCULATIONS 

The resultant of two non-zero polynomials f, g E C[X] is denoted by R(f , g) and 
the discriminant of f by D(f). The classic formula ([4]) D(fg) = D(f)D(g)R(f,g)2 
yields by induction 

Lemma 1. If fi,..., fm are non-constant polynomials in C[X], then 

D ( fif) =F D(fi). fi R(fi fj)2. 
i=l i=l A1<i<j<m 

Using this, the relation (3) allows, when en < 2, to express D(Fn) in terms of 
D(Pn). Indeed, 

Lemma 2. For a positive odd integer n # 1 (mod 6), 

D (Fn) = (-I e) n D (Pn) 
3enn4(en+1) 

Proof. Assume first n _-1 (mod 6), so that en = 1 and 

Pn(X) = X(X + 1)(X2 + X + 1)Fn(X). 

From Lemma 1, 

D(Pn) =-3(Fn(O)Fn(-l)Fn n((32))2D(Fn). 

Now, for all odd n, Fn(0) = Fn(-1) = n, since these are the values of Pn(X)/X at 
0 and -Pn(X)/(X + 1) at -1 respectively. On the other hand, setting Pn(X) = 
(X2 + X + 1)Qn(X), with Qn E Z[X], we have 

_ ______= Qn(( = _ n(6) _ n (((3 + ?1)1_ (3) =- n 
53(; + 1) 2(;3 + 1 2(;3 + I 

Also, Fn((32), being the complex conjugate of Fn((3), is equal to n too. Hence 
D(Pn) = -3n8D(Fn). Similarly, in the simpler case where n _ 3 (mod 6), we have 
Pn(X) = X(X + 1)Fn(X) so that D(Pn) = (Fn(0)F (-1))2D(Fn) = n4D(Fn). 

We now relate the discriminants of Fn, Tn and the gj's. 

Lemma 3. For any odd integer n > 3, 
Vn 

D(Fn) = 2(dn 1)1 D(gj) D(T )6 
j=1 
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Proof. By (7) and Lemma 1, D(Fn) = n2(dn-1). Hjrn1 D(gj). H ijr R(gi, gj)2. 

By (8), for 1 < i,j < rn, R(gi,gj) = Hzgj(z) = (J(Z,) -J(zj))6(1zz(z+ 1))2, 
where the products are for z ranging in Orb(zi), in which case J(z) = J(zi) 
by (5) and (6). Moreover, 17zz = gj(O) = 1 and 1z (z + 1) = gj(-l) = 1. 

Hence R(gj,gi) = R(gi,gj) = (J(Z,) - J(zj))6. On the other hand, D(Tn) = 
(_)-n (tn -)/2 i7j (t, ) = ?Hi7j (J(zj) - J(zi)), where the products are for 
all ij E {1,.I. ., rn} with i j j. Hence H <i<j<rn R(gi, gj)2 = Jjj7j R(gi = gj) 
Hi~j(J(z,) - J(Zj))6 = D(Tn)6 and the result follows. 

Next, we compute the dicriminants of the gj's. 

Lemma 4. For any odd integer n > 3 and 1 < i < rn, 

D (gj) = -(4tj + 3) 3 (tj - 6)4. 

Proof. Let Y = X + 1/X. Then g.(X) = X3hj(Y), where hj(Y) = y3 + 3y2 + 
(tj - 3)Y + 2tj - 11; and gj(X) = 3gj(X)/X + (X3 - X)h'(Y). Hence 

D- g (z) =( z) (fl(z 1)) (( z- 1) ) h (z +?) 

where the products are for z E Orb(zj). FRom the proof of Lemma 3, J7z z = 
Hjz(z + 1) = 1. Also Hjz(z - 1) = gj(l) = 4tj + 3. Moreover, y = z + 1/z 
ranges through the roots of hj, each repeated twice, as z ranges through Orb(zj), 

so that 11z hh(z?+ /z) = (H1Y h(y)) = D(hj)2. Thus D(gj) =-(4tj +3)D(hj)2. 
Now, setting U = Y + 1, we have hj(Y) = fj(U) = U3 + (tj - 6)U + tj - 6. 
By a well-known formula for the discriminant of a cubic polynomial ([11]), we get 

D(hj) = D(fj) = -(4tj + 3)(tj - 6)2. Hence the result. 

The product, appearing in Lemma 3, of the discriminants of the gj's is given by 

Lemma 5. For any odd integer n > 3, 

Po D(gj) = (l)rn34-7en(2rn-1 - 1)3n4en7 (n-l)2en(enl) 

,7=1 

Proof. By Lemma 4, 

rn / n \ n \ 

(11)~ ~ 1 D D(gj) = ) (-In | 1 (4tj + 3) | | (tj -6)| 
j=1 \j=1 / j=1 

Now H1'r1(4tj + 3) = (-4)rnTn(-3/4). Moreover, substituting X = 1 into (10) 
and (3), we get (-4)rnnTn(-3/4) = Fn(1) = Pn(l)/(2.3en). Hence 

In 
~~Fn(1) _2n-1 - 1 

(12) ii(4tj +3) = 3en n 

Similarly, H1r 1(tj - 6) = (-1)rnTn(6), and substituting X = (c3 into (10) yields 

(1) rnnTn (6) = Fn ((3). Let Qn (X) = X (X + ?) Fn (X); then Fn ((3) = Qn () 
and, by (3), Pn(X) _ (X2 + X + 1)en Qn (X). Taking en-th derivatives in the latter 

relation and making X = (3, we get Qn(G3) = Pnen)((3)/(en!(2(3 + I)en) (here 
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2(3 + 1 is the value of the factor X - (32 in X2 + X + 1, and the equality follows 
from Taylor's formula). Hence 

fJ t ) - p(en) ((3) 
(tj-6) = n en!n(2(3 + 1)en 

,7=1 

Simple computations show that P~en)((3)/(2(3 + 1)en - 3 or n or n(n-1)73 
according as n 0 or 2 or 1 (mod 3) respectively. Therefore H>1 (tj - 6) = 3/n 
or 1 or (n - 1)/6 respectively. One formula representing all three cases is 

'rn P-~~~~~~~n (en-l 
(l 13) -) \n en-1 n)-1) 2 

(13) (j-6 
i=1 

Substituting (12) and (13) into (11) yields the desired result. 

3. CONCLUSION 

We can now draw the formula relating Wendt's determinant Wn-1 to the dis- 
criminant of the polynomial Tn, namely 

Proposition 2. For any odd positive integer n # 1 (mod 6), 

-92-3en (2n-1 - ) 3 n+4en -9D(Tn)6, 

where en = 0 or 1 according as n -3 or -1 (mod 6) respectively, and Tn is defined 
by (9). 

Proof. By Lemmas 3 and 5, since dn = n - 3 - 2en and en = 0 or 1, we have 

D(Fn) = (- 1)rn34-7en (2n1 - _ )3n2n-15D(Tn)6. On the other hand, Proposition 

1 and Lemma 2 imply D(Fn) = (_1)en+(n-l)/23-en nn-4en-6Wn1. Equating the 

two expressions (and noting that rn + en + (n - 1)/2 = 2(n + en)/3 - 1 is odd) 

yields the desired result. 

Remark. In Proposition 2, let m = n - 1 and hm = 2 - 3en, so that m is an even 

positive integer # 0 (mod 6) and hm = 2 or -1 according as m -2 or 4 (mod 6) 
respectively. Noting that 2 - en coincides with |hm| and writing Dm for D(Tm+i), 
we obtain the formula for Wm stated in the Introduction. 

Assume now that n = p is a prime number _-1 (mod 6). Then the leading 
coefficient p of Pp divides all its coefficients (), for 1 < k < p - 1, so that, by 
(3), Fp = pEp where Ep is a monic polynomial in Z[X]. Thus the roots of Fp are 
algebraic integers. Since, by (5), tj is a sum of products of roots of Fp, then tj is 
also an algebraic integer, for 1 < j < rp. Hence Tp has rational integer coefficients 
and D(Tp) lies in Z. Therefore Proposition 2 (where now ep = 1) implies 

Corollary. If p is a prime number -1 (mod 6), then 

Wp-l =-qp(2) pP- D(TP)61 

where the discriminant D(Tp) is a rational integer and qp(2) - 2 p-1- 
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