
MATHEMATICS OF COMPUTATION 
Volume 66. Number 220. October 1997. Pages 1389 1406 
S 0025-5718(97)00886-7 

ANALYSIS OF A CELL-VERTEX FINITE VOLUME METHOD 
FOR CONVECTION-DIFFUSION PROBLEMS 

K. W. MORTON, MARTIN STYNES, AND ENDRE SULI 

ABSTRACT. A cell-vertex finite volume approximation of elliptic convection- 
dominated diffusion equations is considered in two dimensions. The scheme is 
shown to be stable and second-order convergent in a mesh-dependent L2-norm. 

1. INTRODUCTION 

A finite volume formulation is the preferred technique for discretising systems 
of partial differential equations where conservation is the most important property 
to be modelled, compressible gas dynamics being the prime example-see Jameson 
[3] and a large subsequent literature. Of the various formulations that are possible, 
the cell-vertex scheme is often advocated for its compactness and its accuracy for 
first-order equations on distorted meshes (see Morton and Paisley [8] and Siili [17]); 
moreover, Morton et al. [6] and Crumpton et al. [2] have also demonstrated the 
effectiveness of the cell-vertex scheme for the compressible Navier-Stokes equations 
(see also Mackenzie and Morton [7]). Numerous practical computations have, in- 
deed, shown this discretisation to be of very general utility, with recent extensions to 
unstructured three-dimensional meshes on general domains, and applicable to the 
very high aspect ratio meshes encountered with high Reynolds number, turbulent 
flows. 

However, the resulting system of discrete equations is difficult to solve and its 
accuracy is hard to analyse. Some of these issues can be studied with simple 
model problems on rectangular meshes. In the earlier form of the method, for 
purely hyperbolic problems, when it was referred to as the finite difference box 
scheme of Thomas [18], Preissmann [13], Wendroff [19], Keller [4] and others, the 
equations were always solved by marching in a special coordinate direction. This 
is not possible with the equations for steady inviscid transonic flow and various 
alternatives have been developed, based on the work of Ni [11]; marching techniques 
are even less appropriate when second-order viscous terms are present, but Ni's 
techniques are still effective (see [2] and [7]). The present paper is one in a series 
devoted to the analysis of the resulting cell-vertex finite volume schemes. 

Scalar convection-dominated diffusion problems, with general convective velocity 
fields, show both the remarkable approximation properties of cell-vertex methods 
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and highlight the challenge posed by their analysis. Mackenzie and Morton [7] 
presented a two-dimensional cell-vertex finite volume scheme which reduces to a 
non-standard twelve-point difference scheme on a uniform rectangular mesh; they 
demonstrated its accuracy in some well-known model problems and analysed its 
one-dimensional analogue. Morton and Stynes [9] adopted an alternative approach 
to the one-dimensional problem and analysed the case of pure convection in two 
dimensions, making use of the techniques of Siili [15], [16], [17]. The present paper 
is developed from this approach. The key ideas in the analysis are, firstly, to treat 
the finite volume scheme as a Petrov-Galerkin finite element method with a trial 
space Uh consisting of continuous piecewise bilinear functions, a test space Mh 
of piecewise constant functions, and an associated discrete bilinear form Bh(., .); 
secondly, a mapping 8 from Uh to Mh is constructed such that Bh(v, Lv) > CJJvHJ2 
for all v in Uh, where C is a fixed positive constant and is a suitable norm on Uh 
so that Bh is coercive over >h Mh. The bulk of the effort is in the construction 
of this mapping. 

We consider the model convection-diffusion problem 

(1.) V- (-EVu +du) = f onQ. 

(1.2) U = 0 on&Q, 

where Q =.(0, 1) x (0, 1) C R2, E is a small positive parameter, and a = (al, a2) is 
a variable convective velocity, a E (CE(Q))2. We assume that there exist positive 
constants a, and a2 such that ai > cei on Q, i = 1, 2, and that f E L2 A . 

The well-posedness of this problem can be demonstrated by multiplying (1.2) by 
gu, where g is a bounded non-negative weight-function constructed so that 

-V2_g-daVg+(V *d )g>0 in Q. 

Our stability analysis of the cell-vertex finite volume approximation of (1.1), (1.2) 
makes use of a similar construction, and also requires that the discretisation takes 
particular forms at inflow and outflow boundaries. To clarify these points we have 
assumed that both components of a are strictly positive; then the construction of g 
is simplified and the inflow boundaries for the reduced problem (corresponding to 
E = 0) are at x = 0 and y = 0, with the outflow boundaries at x = 1 and y = 1. In 
any case, the presence of the zero Dirichlet boundary condition along the outflow 
boundary of the reduced problem implies that, for E << 1, the analytical solution 
contains a thin boundary layer in the neighbourhood of this part of aQ. 

Wide-ranging comparisons of finite difference, finite element and finite volume 
methods for this problem are given in [5] and [14]. It is shown in [5] that the 
distinctive feature of the cell-vertex scheme for convection-diffusion problems is its 
uniform effectiveness as E tends to 0, without the use of any adjustable parame- 
ters; indeed, as highlighted below, this is also a distinctive feature of the stability 
analysis. On the other hand, a dominant difficulty arises from the presence of the 
spurious chequer-board mode, which of course does not appear in one-dimensional 
problems. In nearly all other methods that suffer from chequer-board oscillations, 
the spurious mode is damped out by the diffusion term approximation, but not in 
the cell-vertex scheme where the diffusion term is transparent to the chequer-board 
mode: in practical computations with the cell-vertex scheme chequer-board oscilla- 
tions are controlled by a fourth-order artificial dissipation term. However, since the 
inclusion of such a term complicates the analysis even further, in the present paper 
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we make an assumption on the convective velocity which reduces the generation of 
the chequer-board mode and so simplifies the argument. 

In Section 2 we state the cell-vertex approximation of the convection-diffusion 
equation (1.1) using the terminology of Petrov-Galerkin finite element methods. 
In Section 3 we prove that the cell-vertex scheme is stable in a mesh-dependent 
L2-norm, uniformly as E tends to zero. In doing so, we introduce the technical 
assumption on the velocity field a (see (3.1)) which takes the form of a discrete 
analogue of aual + &.a2 = 0. A general class of vector functions a satisfying 
condition (3.1) is given by 

a(x,y) = (ai(x,y),a2(x, Y)), 

with 

a,(x,y) = Al(x) + By, a2(x,y)= A2(y)-Bx, 

where A1 and A2 are arbitrary functions of x and y, respectively, and B is a real 
constant. This gives quite a large class of velocity fields which the analysis can 
handle. However, we believe that condition (3.1) could be overcome by either a 
slight change in the scheme or a more sophisticated analysis: indeed, in the case of 
variable-coefficient linear advection, corresponding to E = 0, the analysis of Balland 
and Siili [1] establishes the stability of the cell-vertex scheme in the absence of 
hypothesis (3.1). Unfortunately, the argument in [1] is difficult to extend to the 
case of E > 0. 

The stability of the scheme is a straightforward consequence of the discrete 
GArding inequality stated in Theorem 3.5. Second-order convergence in a mesh- 
dependent L2-norm is then deduced from a superconvergence result of Balland and 
Siili (see Proposition 3.1 in [1]); the resulting error estimate is stated in Theorem 
3.7. 

Throughout the paper, C (sometimes subscripted) will denote a generic positive 
constant, independent of E and of the mesh-size, and may take different values at 
different occurrences. We denote by 11 . IIHS(Q) and j IHs(Q) the norm and the semi- 
norm of the hilbertian Sobolev space HS(Q) of index s, and by 11 IILP(Q) the norm 
of the Lebesgue space Lp(Q), for 1 < p < oo. 

2. THE CELL-VERTEX DISCRETISATION 

Consider the uniform square mesh 

{(Xi, yj) : xi = ih, yj _ jh; i, j = 0, ..., N} 

of step-size h = 1/N, where N is an integer, N > 3. 
The approximate solution U will be assumed to be continuous and piecewise 

bilinear on Q, that is, bilinear on each cell 

K'i =_ (xi - , xi) x (yj - 11yj) 

Following the usual route, we construct the cell-vertex finite volume approximation 
of problem (1.1), (1.2) by integrating (1.1) over each cell (except for those cells that 
lie adjacent to the part of the boundary of Q which is the outflow boundary for 
the reduced problem corresponding to E = 0) and using Gauss' Theorem to convert 
integrals over cells into integrals over cell boundaries; we note that the outflow 
boundary for the reduced problem is 
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where ni(x, y) denotes the unit outward normal to &Q at (x, y) E aQ. An approxi- 
mation of the contour integrals is needed to proceed further: we use the trapezium 
rule to evaluate integrals of (au - eVu), and approximate Vu by finite differences 
of u. Motivated by this approximate equality satisfied by the exact solution, we 
define the cell-vertex approximation of u as a continuous piecewise bilinear function 
U that satisfies the same relation as u but with approximate equality replaced by 
the equality sign. The equations resulting from this construction are supplemented 
with a zero Dirichlet boundary condition. 

In order to give a precise definition of the cell-vertex finite volume scheme, we 
shall employ the terminology of Petrov-Galerkin finite element methods. Thus, 
we let U" denote, for a mesh of size h, the linear space of all continuous piecewise 
bilinear functions that vanish on aQ, and let M" denote the linear space of piecewise 
constant functions on the mesh which vanish on those K23 for which i = N or j = N. 
Let I": (Ho (Q) n C(Q))2 -* (U")2 be the interpolation projector onto (U",)2. The 
desired discretisation of the convection term is obtained by defining the bilinear 
form B : U" x M" -* R by 

(2.1) Bc(Wp) = (V .I" (w),p) 

where (,.) is the inner product in L2(Q). It is easy to see that the use of this 
bilinear form is equivalent to applying Gauss' Theorem followed by the use of the 
trapezium rule. Indeed, for v C C(Q) let via denote v(xi,yj), and for q C M" let 
q'3 denote the value of q on K23; then, by choosing p in (2.1) as the characteristic 
function X13 of the cell K23, we have that 

ij h 
Bc(w, xi)) = - [(aiw)i2 + (alw) _i - (alw)i_. (a- w)il . l 2 

h 
+-- [(a2w)i' + (a2w)i. - (a2W),.i - (a2W)ij-1] 2 

(2.2) = ht6x (alw)i23 + huxb6v(a2W)13j, 

where we have employed the finite difference operators 

6x ViJ= % - vi - j, 6bv = %. -vi -1 

xvij = (v2j + v-i-.j)/2, [yrvi = (v2% + vi .-,)/2. 

We use the methods of Mackenzie and Morton [7] to discretise the diffusion term 
in (1.1), together with a simple second-order boundary condition on the inflow 
boundary. For this purpose we consider the bilinear form Bd U" x M" -* R 
defined by 

(2.3) 
N-1 N-1 

Bd (w, p) = -E hp23 [f (wx) . - AVt(wx) i +j ? ftz(wV) i- fx(WV)i 
i=1 j1 

where, for j = 1,... , N - 1, we set 

(2.4) /9(wz)2j = f h-1(, vwi+?.3 - pvw j)1 if i = 1,... I N - 1, 
with h (2(utwle - dfW2n), if i = 0, 

with fAx(wv)ij defined analogously. 
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Now the cell-vertex finite volume approximation of (1.1), (1.2) is defined as 
follows: find U E UW such that 

(2.5) Bh(Up)-Bdj(Up) +-BC(U p) = (f p) Vp E Mh. 

This is a system of (N - 1)2 linear equations in the (N - 1)2 unknowns U2i, the 
nodal values of the continuous piecewise bilinear function U E Uh, where i, j = 
1,... , N-1. In the next section we show that Bh is coercive over uh x Ml, and 
therefore U is well-defined. 

3. STABILITY AND CONVERGENCE 

The crucial step in the analysis of the cell-vertex scheme is to prove stability via 
a discrete Garding inequality that guarantees coercivity in a generalised sense. Let 
ph: L2(Q) - AMh be the orthogonal projector onto Mh. It is easily seen that 
(phW)ii = /_ L'Wj for any w in Uh. We shall consider 

Bh(W, GPhW + AphV . Ih(dw)) 

where G and A are suitable elements in Mh chosen so as to achieve the desired 
coercivity. We analyse this expression in the following four lemmas. 

Let Qh = (0,XN-1) X (0,YN-1). Then, as in Sfili [15], [16], [17], Morton and 
Silli [10], and Morton and Stynes [9], we define the 12(Qh)-seminorm 1V112(QK) of a 
locally integrable function v by 

1V112(Qh) {KEc h2 I d } 1/2dy 

We note that this seminorm is a norm on the linear space Uh. 

Lemma 3.1. Assume that there exist positive constants a, and a2 such that ai > 
aii= 1,2, and that 

(3.1) ILu66 (al)ij + 6xtuy (a2)ij = 0 

for all i and j . There exist G E Mh and positive constants Ci, i = 1, 2, 3, 4, such 
that Ci > Gi > C02, GCi - Gz+1'j > C3h and GOg - Gij+1 > C4h for all i and j, 
and 

N-1 

Bc (w, GPhw) > 2C2 IW12 + Zh( alGN-1 - C2h)(yWN- l .j)2 

i= 1 
N-1 

+ Ih(-a2G' N-1 - C2h)(-x Wi. N -1)21 

for all w E jh and for all h < ho(d), where ho(a) depends only on IIalljc2(I). 

Proof From (2.2) and the definition of Mh we have that 

N-1 N-1 

(3.2) Bc(w,GPhw) = E E[py x(a w)ij + ,tpx6y(a2w)ij]. 
i=1 j=1 
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Using the elementary identities 

6X(bc) = (,uXb)(6.c) + (6.b)(,u.c), 

bx (bc) = (,uXb)Q(-Xc) + j(xb)G(xc) 

and their 6E, ILv analogues, we can rewrite (3.2) as 

N-1 N-1 

Bc(w, GPhw) = E hGi(tixiywij )2 [6xLy (a )ij + IX y (a2) i 
i2l j=l 

N-1 N-1 

+ 4 hGij (t pry wij (6x 6y wij)[tx y (a 1)i + 6X Iy (a2) j] 

N-1 N-1 

+ , ,hGij.(pxpywi,)(6xpyw-j)[ttxty(al) ij + -6Xby(a2)ij]1 
i=1 j=1 

N-1 N-1 

+ E E hG2j(ItXbtyw-j )(ix6yw2j)[4-6x6y(ai)ij + tutXyu(a2)1j] 

(3.3) -S1 +S2+S3+S4. 

We define 

G(x,y) = e-(1xz1?I2Ya1) for (x,y) E K"3 

where i1, 1 = 1, 2, are positive constants which will be chosen appropriately in the 
course of the proof. 

First we bound S1 from below. Observing that 

(3-4) ~~(tt~ttiWj)2 < [(UttiWj)2 + (ttXWi.j_1)2]j 
(3.4) (,1uw3) 

2~~ 
it follows that 

N-1 N-1 

Si > -2 h2G J(bxwij)2 jAijj 

N-1 N-2 

(3.5) - 
Zh2G2J+?1(bxwij)2 W Aij?+ 1, 

2=1 j=1 

with a similar bound in terms of (,yW2j)2, where 

(3.6) Aij = h(6xuy (a,),i + ux6y (a2)ij) 

Noting that G2j > G2J+? and separating out the term with j = N - 1 from the 
first double summation, 

IN-1 N-2 

(3.7) Si ? E h2G3(bt xw2ij)2(jAijj + jAi.+ij) 
i=1 j=1 

N-1 

(3.8) 1E h2 GN1 (xWi.N-1) 2Ai.N-1 I 

i =- 1 
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Now (pxbij)(6xbij) = (1/2)6xb%.; we use this identity and sum by parts to get 

N-2 N-1 

S3 E = ( Z Wwij)2(GiJBii-Gi+1 JBi+lj) 
i=1 j=1 

2 

j=1 

where 

Bi = h(,xuty (a1)ij + 415x y (a2 ij)- 

Let us write 

GijBij - G-i Bi+ 'J = (Gii -Gi+l J)Bi~lJ + G'i(B'i - B- 
+ 1 

Recalling the definition of GQi, it follows that 

Gii - Gci+?j > ,,hGij 

provided h < 1/Kil. In addition, since a,, a2 E C1(Q), 

B-i = h(ai)ij + 0(h2) = h(a)i)&ij + 0(h2). 

Thus, for 0 < h < ho, where ho = ho(d), we have 

Bi> 1ha,1. 

Similarly, for 0 < h < ho, where ho = ho(a) (with a possible adjustment of the 
previous ho), 

Bi - BZ+l jI < 2h21lVdlILO,(Q). 

Consequently, 

GijBij - Gi+ljBi+l,j > h2 Gi Klal - 2flVdii|L.(Q)) 

Returning to S3, we deduce that 

N-2 N-1 \ 

S3 > 2- j=1 h2Gii(/iyw)2 - 2iiVdiLE()) 

+- ZhcNlJ(IYwN-lj)_a l 
ij=1 

Analogously, 

1N-1 N-2 / 

S4 ? - h2 Gij (Ixwij)2 (-j2a2 2-211 VaIIL.(Q)) 

N-1 

E hGiN-1 (x Wi, N-1)2a2. 
i= 1 
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Now combining the lower bounds for S1 and S4 we obtain 

N-1 N-2 

S + S4 h2Gi(wij)2 2a2- lVllL,() + Aij+l -S ?544 ??11 
i=l j=l 

~a N-1 

+4 E hGi N-l(uxWiN-l)2 (a2- hIAiN-1l). 

Noting that IAi,3(?A)I < 21IVdIIL( ) for 0 < h < ho, where ho = ho(d) (with a 
possible adjustment of the previous ho), it follows that 

ae2 - hIAi,N-li > -a2. 

Choosing K2 such that 

K 2 > - (1 + 2||Vd'L, (Q)), 
a2 

it follows that for 0 < h < ho, where ho depends only on a, 

1 N-1 N-2 N-i 

2S ? + S4 z z h2G (Uxwij )2 + -a2 E hGiN-1 (x WI N )2. 
i=1 j=1 i=1 

Similarly, choosing K, such that 

t'l ? - (1 + 211JVd'LX()) 

and using the alternative bound for Si, we have that 

N-2 N-1 N-1 

S ? + S3 > S h2G.i(,uywij)2 + 1 , hGNiJ(,uyW i)2 
2=1 Ji1 J= 

Finally, 

N-2 N-1 N-1 N-2 

S1 + S3 + S4 > h G'' 
h2GL)(Ywij)S 

+ z hhG2GZ(( WZw) 
2=1 Ji1 2=1 j=1 

N-1 1 N-1 

+8al E hGN lj(PyWN _1 )2 + -a2 5 hGi Ni (uxWiN-1)2, 
J=121 

provided h < ho(d), and r,,, i = 1, 2, are chosen as indicated above. Inserting this 
lower bound into (3.3) and recalling that due to (3.1) the term S2 = 0, we deduce 
that 

N-2N-1 N-1 N-2 

B,(w,GPhw) > C)2 + h2(txWij) 2) 

(3.10) \=11 jl 
+ N-1 N-1 \ 

+ e 1 E hG N-IJ (AyWN -1 j)2 + Ce2 hG N1 
(AxWIN- )2| 
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for all w c Uh and for all h < ho(a). To complete the proof of the lemma we bound 
from below the right-hand side of this inequality in terms of jjwjjj2(Qh). This is 
easily accomplished by defining 

Iw.= dxIdy, 

and noting that, for w E U4, 

N-1 N-1 

WIIWI22(h E Eh h2 (tW i)21 

i=1 j=l 

AW'i3 = 2(AxW11j + Axti'j - 1 ), 

and 

AW1 j = 2I(Ayt wz3 + AyWi - 1,j) ) 

Since 

([Lwj )2 < 2xWij)2 + 1(ttWj- 2 2w~ 

and w = 0 on OQ, it follows that 

N-1 N-1 N-1 N-2 N-1 

C2 E E h2 ItW3j12 < C2 E h 2 
h2(ix Wj)2 + C2h E h(uxiwN-1)2. 

i=1 j=1 i=1 j=1 i=1 

Similarly, 

N-1 N-1 N-2N-1 N-1 

C2 E E h2buw i2 ? 02 E E h2( w2j)2 + C2h E h(AyWN-1,) 
i=i j=i i=i j=i j=l 

Substituting the sum of these two inequalities into (3.10), we deduce the desired 
coercivity of the bilinear form B,(, ) for all w E Uh and for all h < ho(a). O 

We note that condition (3.1) was necessary in order to remove the term S2 that 
contained the second-difference 6,,6y; this term cannot be absorbed into any of the 
positive terms in the lower bound on B,(w, GPhw). 

Lemma 3.2. For all w E Uh and all A E Mh, A > ?O 

B (wAphV. Ih(w)) - .1/2V *h()12 

Proof. This is immediate from (2.1). D 

Lemma 3.3. Assume that there exist positive constants C2 and C5 such that G2J > 

C2, IGj - G-1,jI < C5h, and IG2j -G'- < C5h for all i and j. Then there 
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exist positive constants C6 = C6(C2, C5) and h1 = h1 (C2, C5), such that 

N N-1 
Bd(w, GP w) h2( w )21 (ay(Wx)i_-,j) 

i=l j=l 

N-1 N 

+ E Eh52h(Ax(Wy)Gj_ WNC6_IW 12 

12 (Qh~ ~ i~~2 
i=l j=l 

N-1 N-1 

8h , giN- I-xiN-1 12 + hN-1 j 28W- 
i2=l j=l 

for all w E Uh and all h < h1. 

Proof. We give details only for the Ay terms, postponing the analogous contribution 
from the A., terms of (2.3) until later in the proof. Thus we write, for any w E Uh, 

N-1 N-1 

Bd(w, GPhw) =- E E hG5j(jx1-ywj)[Ay(wx) - Ay(wx)i-lj] + (wy terms) 
i=1 j=1 

N-1 N-1 
(3.11) E h {5 Ay (w) i -1 ,j [G j |Ix Ay wij - G'% 1JA AwY 1, ] 

j=l i=2 

-Ay(wx)N-ljGN lAyuYwN-1,j + Ay(wx)ojG '1t-ywi } + (wy terms). 

Now for 1 < i < N we have that 

G'j~xLywij - GC -1'xtywij-lj = hG'jfy(wx)i-lj + (G0J - G'-1 j)Ax~ywi-i j. 

Therefore, using IG'j - G f-JI < C5h together with the arithmetic-geometric mean 
inequality, we get 

Ay (wx)jij (G'j1x1ywjj - Gi l j1x1ywj-ij) 
> h [G'j (Ay (wx),i_1)2 - C5 I y(Wx)_lia Axywi-,i_ 1] 

(3.12) > -h [G-i(5y(wx)i--)2 - . 
-2 

On the other hand, 

/Ay(Wx)N-1,j JLxI-tyWN-,j = h(2y(Wx)N-l J)2 - Ay(Wx)N-lj IxIyWN,j 

> 2(Ay(Wx)N1,j) - Ah (yWN 1j)2, 

and therefore 

ay(Wx)N ljGN l tIyWN-1 j 2> cG (Ay(wx)N -1j) 

1 
(3.13) 8h AyN1 
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Analogously, since #y(w,)oj + Ak(w,)1,j = (4/h),,ttiiuwij, it follows that 

Aiy(wx)o,j IHlxywlj = h ((Wx)Oj) k + Ay(wx)ojAy(wx)lj 

(3.14) ? L(L(W )O)2_ - (AV(Wx)1,j), 8 

and therefore 

(3.15) Ay(wx)o,jG', i xrywlij >h Glj(Ay(Wx)O~j)2 _ hG1,j(AV (wx 1'j) 2 

Substituting (3.12)-(3.15) into (3.11), absorbing the last term of (3.15) into the 
corresponding term of (3.12), and noting that G'j > C2, we deduce that 

1 N-1 N N-I N 

Bd(w,GPhw) > _C2 I E Eh2 A (Wx),_ Ij 2 +E Eh2 Ax(WY),,j 12 
8 = = i=1 j=1 

N-1 N-1 N-1 N-1 

-2 C6E { E : h2I uywiiI2 + Z h2 _L yWij_- 2 } 
j=l i=2 i=l j=2 

(N-1 N-i 

- E NhGiN 1 1xwi 
2 

N + [ NN-lj 
2 

with C6 = C52/02, where we have assumed that h is sufficiently small, namely 
h < h1(C2, C5). Recalling the definition Of h1.12(Qh) we obtain the desired result. D 

We note that with G2j = e-(Klxi-1+t2Yj-1) and t1 and Ks2 chosen as in the proof 
of Lemma 3.1 all hypotheses on G in Lemma 3.3 are satisfied. 

Lemma 3.4. For all w E Uh and all A C Mh, A > 0O 

IBd(, V I (aw))l ? (-/V)[5,j + Ah("1' + 
i=1 j=l 

N-1 N N-1 N-1 

+ 5 h(A>'-l + A2j) ( (wy)i j i)2 +2 5 hAij ((PhV . Ih(awii)2] 
i=1 j=1 i=1 j=1 

where we set A0i = Ai0 = 0. 
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Proof. As in the proof of Lemma 3.3, we write out the details only for the f? terms. 
The Cauchy-Schwarz inequality gives 

|B,(w, APV aw 
N-1 N-1 

? E A{hj h f (p . aw)h) j)I 

X{v3 3ij-h((h Vi J. + ()1)}, t +(Ites) 

z=1 -j1.N- 

? (/) , 3 3 Ah[()' h[,+ (wV 3 3 1) (2 t )2 + (.(]})/ 
i= J=1j 

N-1 N-1 

{,V I'h(w)) ) } + (wj terms) 
z=1 j=l 

.N- 1 .N- 1 

< (e/V'/)Z , h( > 'Jh[,v + J)(f) + ,i(wl )ii 1.j) 
zil jil 

N-1 N-1 

(3 AiJh((PhV Ih(dw))Ii)2 +(w terms). 
i=i j=i 

.N N- 1 

= (6/ E E h (A'-'-' + A )(,uAw.) j)9 
i=1 '=I 

.N- 1 .N- 1 

+ 0? E E ,Pj((h .h (aw)i) +(w terms). 
i=1 J=1 

Including the w. terms, we obtain the desired result. D 

We now combine these four lemmas to reach our coercivity bound. 

Theorem 3.5. Assume that there exist positive constants a, and a2 such that 
a, > ?a, i = 1, 2, and that 

,I, 65(a )ij + 5 PYJ(a2)ij = 0 

for all i and j. ChooseGeMh such that C, > G. > C 0 > 0. Gij-Gi1l ?C'h, 
G j-Gzj+i > C4h, JGZJ-Gi' <0-h and GGZJ 'GJ- ' < C5h for all i and j. 
Let A E Mh be defined as follows: 

AzJ = |/ h, if h > 2J/2E, 

01 O. otherwise, 

with the convention that AO' - AZO = 0. 
Then, for all h < min (ho(a), h1 (C2, C-,)) and all E such that 

(3.16) E 
> (1-- , i =1,2, 

we have that 

(3-17) Bh(w, GPhw + APhV* Ih(aw)) > C2|W|(Q, ) +-1 / V . aw 

for all w E Uh . Here ho (d) and hI (C2, C-,) are as in Lemmas 3. 1 and 3.3, respec- 
tively. 
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We note that a function G satisfying the conditions of Theorem 3.5 has been 
constructed in Lemma 3.1. The hypothesis (3.16) requires the mesh Peclet number 
to be greater than or equal to 1 + Ch; this condition is automatically satisfied for 
the convection-dominated diffusion equations considered here. 

Proof. Adding the results of the previous lemmas, we obtain 

Bh (w, GPhw + APhV Iha(w)) 
> (2C2 - 

C61)IwI2(Qh) 
+ 1A /w * 

2I( h) 

2 N-1 N-1 
2, S S hAii((phV Ih(dw))ij)2 

1i= j=1 

N N-1 

+E5 E E h[-hC2 - X (Ai- 1ij + A)(y(wX)i- 1j 
i=l j=1 

8 v_ 

N-1 N 1 

+E 6 h[-hC2 - -(Ai,3-1 + Ai3)](AX(WY)i'j-1)2 
= j=lj 

8 

N-i I 

+ E h -(c(l - -)GN Ij - C2h) (yWN-1,j)2 

(3.18) + E h -(a2 - -)GN1 - C2h) (lwti, N-1)2. 

Recalling our assumed lower bound on aih/E, it follows that the last two sums are 
non-negative. In order to deal with the remaining terms, we need E so small that 
2C2 - C6E > C2 > 0; since 06 = C52/C2, this can be achieved by supposing that 
E < (C2/C5)2. Next, we claim that 

2- hA'j < - h2A 
v/ - 2 

for each i and j. For if V = 0, the inequality is trivial. If 54- 0, then E < h/(2xv ) 
by hypothesis, as required. 

Finally, 

(Ai- 1,j + Aij) < -C2h, 

and similarly, 

(A>',j + Aj) < -0 C2h. 

Using the above inequalities in (3.18), the result follows. D] 

We can now derive a bound on u - U. 
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Theorem 3.6. Suppose that the hypotheses of Theorem 3.5 hold. Then, for all 
sufficiently small E and h, such as in (3.16), 

jU - U112(Qh) + |A/ V a Ih(a(u - U))112(Qh) 

N-1 N-1 I Y3 

< CC[ Z h2{ [Ay(u)i - h j ux(xi Y) dy 
t=1 j=1 1 

-Ay(uI)i-l,j + h j ux (Xi-I, y) dy] 

1- +- [Ax(uy i - h uyj(xx yj) dx 

-AX (uI )isi-1l + h Uy (xzy Y- 1 ) dx] 2] /2 

+C|V a(Ih(au) - au)112(Qh) + Ju - u 112(Qh), 

where ul is the interpolant of u from Uh. 

Proof. For brevity, set 

0 GP (ul - U) + AphV Ih~a(uI-U)) 

and 

X= j[Ay(u8)ij - Uj(xi, y) dy - Ay (u) i-,j + h j u (xi 1, y) dy] 

+ -[Ax()ij- h uyf(xyj) dx-A (- ) ij + u uy(xyji)dx]. 

From Theorem 3.5 we have that 

U' - Ui2( 12) + |A1/2V .Ih(a(u ))2 

< CB h(u - U.O) = CBh(uI, 0) - C(f, ) 

= CB h(uI, 0) - C(V. (-EVU + au), 0) 

N-1 N-1 

= -C? ,j h20ijXij + C(V. Ih(auI) - v (au),0) 
i=l j=l 

K C10112(cQh){e[Z E h21 1211/2 + IV * (Ih(dul) - u)112(Dh)}. 

i=l j=l 

Noting that Ih(auI) - Ih(au), we deduce that 

ju' - UII2(Q ?) + IA1/ V *Ih(a(u -)l2(h 

N-1 N-1 

? Ce[E E h2E au2]a/2 + CuV (Ih(du)-du)I12(Dh). 
i=l j=l 

We combine this with the triangle inequality 

IU - UI12(Qh) ? Iu U Ia2(Qh) + IU UII2(Qh) 

2Iil]/ + .7 I ( 

and recall the definition of X1J to complete the argument. 

Hence we easily obtain our final bound on the global error. 
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Theorem 3.7. Let the hypotheses of Theorem 3.5 hold. Suppose, further, that 
u E Hs(Q) n Ho'(Q), s > 2, and assume that the entries of a belong to C(s)(Q), 
where (s) denotes the smallest integer greater than or equal to s. Let A be as in 
Theorem 3.5. 

There exist positive constants K1, K2 and K3 such that 

jU - U112(Qh) + A1/V * Ih(d(u - U))112( Q h) 

(3.19) < Ki (E, u)h1 + K2 (E, u)hr2 + K3(u)hr3, 

where 

Ki (E, u) = C16IUIHrl+1((Q) + C2IUIHrl (Qh)X 1 < r1 < min(s, 3), 

K2(E,U) = C 61/2IIUIIHr2+1((Qh) 2 < r2 < min(s, 3), 

K3(u) = C3IUIHr3(Qh) 1 r3 < 2. 

The proof of this theorem relies on the following superconvergence result (see 

Balland and Siili [1]). 

Proposition 3.1. Given that s is a real number, s > 1, there exists a constant C, 

independent of the mesh-size h, such that 

;ph (V d-V* (hd)) IIL2(Q) ? Chr-1 IkHr(), with 1 < r < min(s, 3), 

for all d = (d1,d2) in (Hs(Q))2. 

We shall also need the following boundary layer estimate. 

Proposition 3.2. Let D = (0, A) x (0, B), where A, B > 0. Suppose that r is a 
positive real number, and let DT = (0, T) x (0, B) with 0 < T < A. Then 

IUIHr(D,) < CTll2 f|Uff Hr+l(D). 

Proof. We shall prove the estimate for 0 < r < 1; for r > 1, the proof is identical. 

According to a classical result (see, for example, Chapter 1, Section 4, of Oganesian 

and Ruhovec [12]): 

(3.20) IUuIL2(D,) 
? CT1/ hIUIIH1(D). 

Consequently, 

(3.21) IUIH1(D,) < CT1/2uIUuIH2(D). 

Combining (3.20) and (3.21) we also have that 

(3.22) IfUIIH1(D,) 
? CT1/2hIUflH2(D). 

Now inequalities (3.20) and (3.22) imply that I : u | > u is a bounded linear 

operator from H1(D) to L2(D,) and from H2(D) to H1(D,-). Using the K-method 

of function space interpolation it follows that I is a bounded linear operator from 

Hr+l (D) to Hr(D,), for 0 < r < 1, and that 

IIUIIHr(D,) < CT-1/2 ||U||Hr+l(D). 

Therefore also, 

|UJHr(D,) < CT 1/2 ffUHr+1(D) 0 < r < 1. 

For r = 0 and r = 1, the desired inequalities are (3.20) and (3.21), respectively. D] 
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Proof. (of Theorem 3.7) Let us label the three terms on the right-hand side of the 
inequality in Theorem 3.6 by T1, T2 and T3. 

We begin by considering T1. For the sake of notational simplicity, we define, as 
in the proof of Theorem 3.6, 

X - = - U (xi, y ) d Y- Ay (UZ) i _j + U (Xi - u 1, y) dy] IL~~~~~~~~ y ~~~~~~~-1 

+ -h [Ax (U I)ij - X Uy (zx yj ) dx - AI (Uy)i,j ._ + -h Uy (x, yj _ )dx] 

-- ) + i(2) 1 < i,j < N-1. 

For 2 < i < N - 1 and 1 < j < N - 1, a simple application of the Bramble-Hilbert 
lemma yields 

X(i ? Ch 2hr lIUHr(Tj), 2 < r < min(s, 4), 

where Tij = (xi-2,xi+1) x (Yj-1,Yj)- Consequently, for 2 < i < N-I and 1 < j < 
N-i, 

/N-1 N-1 \1/2 
h2 1 / 

hlX~ii)1/2 ? 

< 

Chr-2UIHr(Q), 

2 < r < min(s,4). 
\ =2 '=1 

Now let us consider the case when i = 
1 

and 
1 

< j < N - 1; recalling the 
definition 

of AY(u')o, and appealing to the Bramble-Hilbert lemma, we deduce that 

N-1 IX~~/1/2 ) - h4112IH((XOX)X(Y) 1Y))1 

< Cht-2 UIHt(o), 2 < t < min(s,3), 

where QO = (XOX2) x (YO,YN-1)- Combining these two bounds we get 

(N-1 N-I 1/2 

K2...d Zh2Xti; 12 < C(hr-2IUIHr(Q) + ht-2IuWHt(D0)), 

with 2 < r < min(s, 4) and 2 < t < min(t, 3). Exploiting the boundary layer 
estimate stated in Proposition 3.1, 

|UIHt(Q0) < Ch1/2 flU flHt+1(Qh). 

Thus, 

/N-1 N-1 \ 1/2 

(\Z E Ix h2 J12 < CE(hr IU|Hr+1(D) + ht-2h1/2 1uHt?1 (h)), 
i=l j=l 

with 1 < r < min(s, 3), 2 < t < min(s, 3). Similarly, 

1N-1 N-1 \ 
1/2 

(tvi tv- h 1(ii ) 12 < CE(h r-1 UIHr j1 (Q) + ht-2hl/2 lIUIIHt+(Dh)) 
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with 1 < r < min(s, 3), 2 < t < min(s, 3). Thus, recalling from the statement of 
Theorem 3.5 that E < Ch, it follows that 

T1 < Cl(ch' IUIHr+1(Q) + /2 htl IIUIIHt+l(Qh)), 

for 1 < r < min(s, 3), 2 < t < min(s, 3). 

Term T2 is estimated using Proposition 3.1 with d= du; we obtain the bound 

T2 ' C2hr-lIUIHr (h) 1 < r < min(s, 3). 

Finally, the term T3 can be bounded using a standard interpolation error estimate 
to obtain 

T3 < C3hrIUIHr(Qh) 1 < r < min(s, 2) = 2. 

Combining the bounds on T1, T2 and T3 yields the desired error estimate. O 

4. CONCLUSIONS 

In this paper we have been concerned with the stability and the convergence of 
a cell-vertex finite volume method for linear elliptic convection-dominated diffusion 
equations in the plane. Using a combination of techniques from the theory of 
finite difference and finite element methods we proved that the scheme is stable, 
uniformly as the diffusion coefficient tends to zero, and second-order convergent. In 
addition to the error bound in the mesh-dependent 12-norm, Theorem 3.7 implies 
that, provided u E H4(Q) n Ho (Q), the derivative of the global error in the stream- 
wise direction is 0(h3/2), as long as h > 2v"2c. The results presented here may be 
extended to tensor-product non-uniform meshes. 
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