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ABSTRACT. A sensitive issue in numerical calculations for exterior flow prob- 
lems, e.g. around airfoils, is the treatment of the far field boundary conditions 
on a computational domain which is bounded. In this paper we investigate 
this problem for two-dimensional transonic potential flows with subsonic far 
field flow around airfoil profiles. We take the artificial far field boundary in 
the subsonic flow region. In the far field we approximate the subsonic poten- 
tial flow by the Prandtl-Glauert linearization. The latter leads via the Green 
representation theorem to a boundary integral equation on the far field bound- 
ary. This defines a nonlocal boundary condition for the interior ring domain. 
Our approach leads naturally to a coupled finite element/boundary element 
method for numerical calculations. It is compared with local boundary con- 
ditions. The error analysis for the method is given and we prove convergence 
provided the solution to the analytic transonic flow problem around the profile 
exists. 

1. FORMULATION OF THE PROBLEM 

1.1. The boundary value problem. Let Q C R2 be an open bounded domain 
surrounding a given simply connected wing section P C R2. The boundary of Q 
consists of three parts 

(1.1) &Q:=Fm urpUE, 

whose interiors are mutually disjoint and where FmO and Fp are disjoint closed Jor- 
dan curves connected by E. The curve FmO E Co is the artificial exterior boundary 
of Q which is taken in order to obtain a bounded computational domain. The curve 
Fp is the common boundary between Q and the profile P, which has a corner, the 
trailing edge (TE), and is Ctm otherwise. We denote by E a slit in Q, joining the 
trailing edge with Fm. The unbounded far field domain exterior to Fm will be 
denoted by 

(1.2) QC = R 2\Q U p 

The prolongation of the slit E in Qc to infinity will be denoted by SC. Without loss 
of generality, we assume that the travelling velocity is given by a constant vector 
field vom which is parallel to the x1-axis, see Figure 1. 
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I <~~~~~~~~~~~~~~O 

QC= 

FIGURE 1. Computational domains for the coupling 

In Q we consider a stationary, compressible potential flow induced by a subsonic 
travelling velocity vi, at infinity. A simple model is the full potential equation, see 
Landau and Lifschitz [42], 

(1.3) div [p(IVu12)Vu] =O in Q. 

This equation models inviscid, steady, isoenergetic, homentropic, planar flows of 
an ideal gas. Its generalized weak formulation admits transonic solutions with 
shock discontinuities in the velocity field. The equation (1.3) can be derived from 
conservation of mass, momentum and energy, see Berger et al. [9]. The density 
function p(s) is obtained from Bernoulli's law and the assumption of homentropic 
flow. It is given as 

(1.4) p(1Vu|2) = Po (I - 2a2 Vu|) 
2 

Here K, > 1 is the adiabatic gas constant, e.g. f, = 1.4 for dry air. The constants 
po, ao are the density and the local speed of sound, respectively, for the motionless 
gas. The local speed of sound a(IVu12) is given by 

[1aCVUJ2)1 = a2p271 [P(jVUJ2)]K-l = a2 - 2 

and the local Mach number is M := Note that the density p(s) is only 
22 

defined for IVu12 < 2a This bound for the velocity will be assumed to hold in all 
further considerations. 

The differential equation (1.3) with p(s) given by (1.4) changes type at the sonic 

flow speed IVul = a = a* := 2, i.e. M = 1. For IVul < a*, i.e. M < 1, 

the equation is elliptic and the velocity is subsonic; for IVul > a*, i.e. M > 1, it is 
hyperbolic and the velocity is supersonic. For sonic speed, M = 1, the equation is 
degenerate, see Courant and Hilbert [23], Courant and Friedrichs [24]. 
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In order to have a potential flow with circulation and lift we introduce the slit 
E across which we assume that the velocity field Vu is continuous, whereas the 
potential u has a finite constant jump. This implies 

(1.5) u -u =/3 and Ou+ - u= 0 on E. 

Here, n is a unit normal vector field on E and 9Ou = Vu i n. By u+, u we denote 
the one-sided boundary values on S. The constant 3 is an additional unknown and 
gives the circulation of the flow. To determine the jump /3, we need the additional 
Kutta-Joukowski condition 

(1.6) F(3) := 1VU+IE - 1V,7U E = 0 

at the trailing edge TE which follows from the requirement of continuous pressure 
there. Here we shall assume that the flow near TE is subsonic which implies (1.6), 
too. (See Theorem 1.3.) 

On the profile we impose the homogeneous Neumann boundary condition of 
non-penetration, which is equivalent to a vanishing mass flux, i. e. 

(1.7) &nu = 0 on Fp. 

For completeness, we still need a boundary condition at F,'. It is generally assumed 
that a physically correct boundary condition for exterior flows is the requirement 
that the velocity v tends to the constant travelling velocity viOO at infinity. A simple 
and widely used method for approximating this condition is the following mass flux 
condition at F. , i. e. 

(1.8) p(VVuv2)&nu = p(Ivi00 )vi0 n on r.. 
This is the condition used in Berger et al. [9]. A slight improvement of (1.8) can be 
obtained by replacing V', on the right-hand side by v'o1r, where v'0 is the velocity 
of the incompressible potential flow in Q U ?c U F., see Berger et al. [8]. 

In this paper, however, we will consider the coupling with Prandtl-Glauert flow 
exterior to F... As is well known, the linear Prandtl-Glauert equation is 

(1.9) (10- + Px2X2 = 0 for x = (x1, x2) E QC- 

This is a linear approximation of (1.3). Here, the perturbation potential p is 
defined by 

(1. 10) 

:= u-IF with IF (x,/3) :=v-0< (x1,x2)+- arctan x 
2 

where M., is the Mach number at infinity, see Zierep [57] for details. For the arctan 
the branch must be chosen in such a way that the jump occurs at the slits E and 
E' which meet at F... Of course, we assume that the perturbation velocity field 
VW is continuous across the slit EC and the pertubation potential p, by definition 
(1.10), is continuous across SC, too. This gives 

(1.11) p+- - = 0 and AnW)+-AnW- = 0 on Ec. 

For the perturbation velocity VW we prescribe the radiation condition at infinity, 

(1.12) VW(x) - 0 for Ixl -oo. 

In addition, we need two more transmission conditions for the coupling of u with 
p at F... Denote by n' = (n1, n2) the outer unit normal field on Fr, and set 
Onu = Vu * n. The first transmission condition is simply obtained by definition 



1410 H. BERGER, G. WARNECKE, AND W. L. WENDLAND 

(1.10) and continuity across FrO. For the second transmission condition we require 
equality of the mass flux p(IVu12)0&u to the corresponding expression defined by 
linearization about the Prandtl-Glauert solution. The latter leads for the density 
to p ~ p :=p(LJIvo2) in QC. The coupling conditions become 

(1.13) u=y+ P on Fo 

and 

(1.14) p((Vu22)Vu n 

=poO{V ni+(1-M2)9xlrii+Hp2ri2} on FOO. 

Collecting the equations (1.3), (1.5), (1.6), (1.7), (1.9), (1.11), (1.12) and the cou- 
pling conditions (1.13), (1.14), we get the following system of equations, boundary 
and transmission conditions: 
Coupled boundary value problem 

Find the functions u, p in appropriate function spaces and the constant 3 G R 
satisfying the 

Interior full potential problem, 

div [p(jVuj2)Vu] = 0 in Q, 
anu = 0 on F, 

(1.15) U+ - u- = on E, 
anu -anu =0 on Z, 

F(/3)= VU+|}E - 0VU E =0; 

Exterior Prandtl-Glauert problem, 

(1 - M2 )p11x + ) Px2x2 = 0 in QC, 

V ~ = o(1) for Ixl-oo, (1.16) (pf -o(=0 fon X: ?, 

&LP -nyP = 0 on c; 

Coupling conditions, 

(1.17) u= p+ on F, 

and 

P(1,VUI2)&nu 

= P( o-j2) {V n+((1-M2)911,(#2) i} on FoO 

Note that, for a solution (u, p, /3) of this coupled problem (1.15)-(1.18), one also 
has the solution (u + c, p + c, 3) with an arbitrary constant c. We therefore fix this 
constant by the requirement 

J pds = 0. 

With the Euler equations in Q instead of the full potential model (1.15), Sofronov 
and Tscincov present a similar coupling formulation in [55]. 



FEM/BEM COUPLING METHOD FOR TRANSONIC FLOW COMPUTATIONS 1411 

1.2. The weak formulation. Let WS P(Q), s E R, p E [1, oc] and WS P (OFO) 
be the usual Sobolev spaces equipped with norms 11 * IIWS P(Q) and 11 llw sP(, , 
respectively. We define (,.) to be the duality pairing between Hs (Foo ) Ws,2 (OO ) 
and the dual space H-s(J7c) with respect to the L2(J7 ) inner product, 

( 1 19) 
(Xs/) 

J X 
(s),/(s)ds 

for all (X, A) E Hs(roe) x Hs(F). 

We further introduce the spaces 

IV {vE W12(Q) v+-v- = 3 on Z, 3 ER}, 

(1.20) V {vE W1'2(Q) vI _ v- = 0 on El 

H {:= 5E e H-K(rI'oo) J ds = o} 

and the set of admissible functions 

(1.21) K {v e v VV2 < so < 2a a.e. in Q 

Kso is a closed, convex subset of V in W1 2(Q). In order to simplify the notations 
we define the following nonlinear form 

(1.22) 

a(u I| vw) JP(IVuI2)vV Vwdx for all triplets (u, v, w) E Kso x V x V. 

Q 

For solving the exterior problem (1.16) we shall use a boundary potential formula- 
tion based on the Green representation theorem. To this end, one transforms the 
Prandtl-Glauert equation in (1.16) with constant coefficients into Laplace's equa- 
tion and then uses classical potential theory. Any sufficiently smooth solution p 
satisfying (1.16) has the behavior 

(x) = $ log ( 1X ?x2 )?pO+o(1) for IxI-40, 

with constant poC. One obtains with the fundamental solution 

(1.23) G(x, y) slog [(Xi[x1 Y1][x2-Y2])1 

and the kernel of the double layer potential 

(1.24) K(x, y) 1 ([xi - Yi], [x2 - Y2]) . n(y) 

2 ( , 1 M [X1 - Y11, [X2 - Y21 
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the Green representation formula in the form 

(1.25) 

(p(x) = 1E J { (i _ M2 )(o, ni (y) +p2n2(y) }G(x, y) ds 

+ 2 J (y) K (x, y) dsy + EpO, 
I , 

with E = 1 for x = (x1,x2) E Qc and E = 2 for x E rFO,. In the latter case, (1.25) 
defines a boundary integral equation relating the Cauchy data (1 - M>2P11 n1 (x) + 
(pX 2n2(x) and 9p(x) to each other. It can easily be shown that (1.25) corresponds to 
the choice of zero for the additional constant mentioned at the end of Section 1.1 
and used in the definition of H in (1.20). We introduce the co-normal derivative 
of o on F00 by 

(1.26) A(x) := p(KvYI12){(1 - M.2) pxni(x) + p12n2(X)} 

and define the boundary integral operators of single and double layer potentials 

VA(x) P= 2G) A(y) dsy, 

(1 .27)f 2K(xy) 
K4(x) := 11 1- Py) dsy. 

Thus, for x E rcF, we may write (1.25) in short as 

(1.28) (p(x) + VA(x) - Ik4(x) = 2po, 

For smooth r,, we have the following well known result, see Hsiao and Wendland 
[38]. 

Lemma 1.1. For a C0 -boundary roF, and any a E R, the boundary integral oper- 
ators 

V: Ha (F0o) Ho+ (Foo) and 
(1.29) H 

IC HO'+ (Fo,) HO'+3(ro,) 

are continuous. 

Further, we define the bilinear forms 

(1.30) b(A,) := (VA,<i) and d(A,i/) := (CA,) 

for Ai$ E H-' (rF00) and, finally with the function ' = '(x, /) given by (1.10), for 
any 13 E R the functionals 

(1 (v, ,3) p00 (V'' (., 3) - n, v) 

and 

f 2 (V,,) =((I - IC)( ,T, 

for all v e WUP(Q) and all O e H-' +?(rF0). For every fixed ,3 e IR, these are 
linear and bounded functionals. 
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Lemma 1.2. The nonlinear form a(. , *) satisfies the following estimates: 

a(u I v, w)I < Po ll V HIW1,2(Q)II w 1,2(s) 

for all (u, v, w) C K50 x V x V, 

(1.31) la(u uw) - a(v I v,w)l < C 11 U - V 11W1,2(Q) 1 W ||W1,2(Q) 

for all (u, v, w) c K50 x K50 x V. 

Moreover, if we choose so < 2a+ , then we obtain uniform monotonicity for these 
purely subsonic flow fields, i.e. 

(1.32) a(u u, u-v) -a(v v, u-v) ? Y |u-v w ,2(Q) 

for all (u, v) c K50 x K50 

For a C' -boundary FrO and a c R there exists a constant C such that the form 
b(A,'O) satisfies 

(1.33) lb(A, ')l < CIIAIIH_ 1 (1'f H-a- (1). 

Moreover, there exists a constant Y2 > 0 such that 

(1.34) b (V) I ) _> _Y2 II+11H2 17 for all V) C H. 

For the linear forms we have with some constant C the estimates 

I?1(V,3)| < ? oo {KI I + C1/l} IIVIIH 2(L>C) 

|t (V, Al3) -f l(V,2 ) l < C1031 -021 IIV IIHVH-1(1 ) 

and 

f2(V',:i)l < C{Kt + 1i3} IIVkIIH2(L) 

le2(,V),31) - f2(QV)i32) <? C310 - 021 I (1') - 

Proof. The inequalities (1.31) follow from the facts that lp(s)l < po and lp(s) + 
2sp'(s)I < c hold for all s C [0, so]. The coerciveness inequality (1.32) is a conse- 

quence of p(s) + 2sp'(s) > -yl > 0 for all so C [O, 24 
a The properties of the form 

b are shown by Hsiao and Wendland in [38], the continuity estimates for f, follow 
from (1.10) and those for ?2 from Lemma 1.1. 0 

Remark. The coerciveness inequality (1.34) and the mapping properties of V and 
KC: H+2(IF,) -, Hl(]F,) in (1.29) remain valid with ull < 2 even for Lipschitz 
curves FrO due to Costabel [22]. 0 

If we multiply equation (1.28) by a test function b C H and integrate over F, 
we obtain 
(1.35) 

(VA, O) + (W. -(Kp, a) =b(A, O) + (W. b -d(,o,'i) = 0 for all b C H. 

This is the weak formulation for the boundary integral equation (1.28). 
The weak formulation for a solution of problem (1.15) can be obtained by the 

usual variational approach. 
Find u C Kso and /3 C R such that 

(1.36) a(u u, v) - (p(IVuI2)09u, v) = 0 for all v C V0. 



1111 H. BERGER. G. WARNECKE. AND W. L. WENDLAND 

The coupling of the weak formulation (1.36) in Q and (1.35) in QC can be obtained 
with (1.17), (1.18) in variational form via the flux balance (1.14) through FrO and 
reads: 

Variational problem 
Find the three quantities (u, A, f3) C K50 x H x R such that 

(a(u I uv)-(A,v) = el(v3) for all v C V0, 

(1.37) b(A, O) + (u, ) - d(u, A) = ?2Qb) for all C H -2 (F) and 

F(O) = 1Vu+ 12rE _ -VU- 12r = 0. 

Note that the solvability of this problem can be proved rigorously, up to now, only 
in the subsonic case. For transonic flows, however, we shall assume the existence of 
an appropriate solution. This includes that an appropriate choice of so is possible. 

In the following section we will discuss the Kutta-Joukowski condition in (1.37). 

1.3. The Kutta-Joukowski condition. For subsonic flows, i.e. with sufficiently 
small v'0, (1.36) is a nonlinear elliptic Neumann problem in variational form. The 
set of admissible functions (1.21) excludes an arbitrary growth of IVul at the trailing 
edge TE. The solution of a linear and also a nonlinear elliptic problem would in 
general develop a singular growth of JVuj at the reentrant corner TE if f3 is not 
chosen appropriately. In case of a singularity, however, there would be a supersonic 
region at TE which we exclude for physical reasons. 

Theorem 1.3. Let the trailing edge angle w satisfy 0 < w < w. Let (u, A, f) C 

Kso x H x R be the variational solution satisfying 

a(uju, v) - (A, v) = f1 (v, d) for all v C V?, 

b(A,'P) + (u,'i) - d(u,'Oi) = e2(,fl ) for all E C H. 

Let us further assume that there exists some bound s7E lc (O , a and a radius 

ro > 0 such that around the trailing edge 

(1.38) Vu(x)l2 <s' for all x c U := {x C Q x -TEx <ro}, 

i.e. the flow is subsonic around TE. 
Then the velocity field Vu is H6lder continuous in U and already satisfies the 

Kutta-Joukowski condition 

(1.39) VuE l VU|E. 

The proof of this theorem will be given in the paper [21]. 
At a first glance, for a variational solution u in W1 2(Q), the point condition 

(1.39) seems not to be well defined. Since, on the other hand, it also means that 
the stress intensity factor associated with TE and the subsonic flow is to be zero, 
this is a continuous functional on the solution space. For subsonic Prandtl-Glauert 
linearizations, this requirement determines the circulation f3 uniquely. In the paper 
[21] this relation will be used. Incorporating (1.39) into the solution space yields a 
fast deterioration of the condition numbers of the associated discretizations. Here, 
however, we analyze the method described in [10] where a simple relaxation proce- 
dure is used enforcing (1.39) in every iteration step. 
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For purely subsonic cascade flow, Feistauer et al. in [29] also use the Kutta- 
Joukowski condition for finding the appropriate finite element solution providing 
circulation. 

2. EXISTENCE, UNIQUENESS AND THE ENTROPY CONDITION 

The coupled boundary value problem (1.15)-(1.18) is an approximation to the: 

Exterior Boundary Value Problem 

Find an appropriate function u with IVu12 < 2a62 satisfying 

div [p(IVu12)Vu] = 0 in Q U Fro U Qc, 
Onu =0 oniFp, 

(2.1) u+-u- = 3 on Z U SC, 

(2.1) An~Ou+-&nu~ =0O onZSUZSC, 

v(x) > voc for Ix I -oo, 

F(/3) = ,7U -IVU-12re = 0. 

For the subsonic solution to this exterior problem see Bers [11] and Bojarski [13]. 
Here, however, we allow the solution to be transonic. Moreover, the difference to the 
coupled problem (1.15)-(1.18) lies in the fact that there we take the linearization 
on Qc and the corresponding coupling boundary conditions on Fr. Under the 
restriction 

(2.2) 11VU11LcO(G) < a* in the subdomain G c Q n Fro u Qc, 

the problem (2.1) is elliptic there, i.e. the flow is subsonic on G. A unique solu- 
tion exists for all v'J small enough to imply that (2.2) holds everywhere. This 
result has a long history, see e.g. Frankl and Keldysh [34], Bers [11] and the ref- 
erences given there, Bojarski [13], Brezis and Stampacchia [14], Ciavaldini, Pogu 
and Tournemine [20], [19], [51] and Feistauer and Necas [31]; most authors treated 
the problem in the stream function formulation. The upper bound (2.2) as a global 
condition depends on v'U and the geometry (thickness and form) of the profile P. 
Therefore, it has not been possible up to now to explicitly give a priori conditions 
that imply (2.2). 

Due to the jump across the slit Z U Ec, the solution is not in H1 in a neighbour- 
hood of the slit. It is locally only in L2 because Vu is a locally bounded measure 
that has a singular part (see Federer [28]) supported on Z U Ec which is weighted by 
the jump strength ,B. But, the fact that the coupling conditions imply Vu+ = Vu- 
on Z U Ec means that the absolutely continuous part of the measure Vu lies in L2 
even across ZUZC. The singular part is unavoidable in a potential formulation with 
circulation in domains that are not simply connected, however, only the absolutely 
continuous part of Vu defines the velocity field. 

Elliptic regularity theory, which is applicable wherever (2.2) holds, gives interior 
H2 regularity of the solution there. Across the coupling boundary Fr, even if Fr 
is smooth, one cannot expect more than H1, as is well known for elliptic problems 
with discontinuous coefficients, see Fix and Strang [33] for a simple example. 

The question of regularity at the trailing edge is complicated by the fact that we 
put the slit Z there. This was done entirely for numerical convenience. For the mo- 
ment we may suppose that Z touches the profile somewhere else. Then generically 
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the solution will have a corner singularity at TE and be only in H1 there. Based 
on results for the linear theory by Djaoua [27], the stream function formulation by 
Ciavaldini, Pogu and Tournemine [20], [19], and 3-D potential flows by Dauge and 
Pogu [26] it is shown in [21] that the Kutta-Joukowski condition selects the unique 
value 4 such that the solution has H2 regularity up to the boundary also at TE. 

Now let us take a brief look at the existence of subsonic solutions of the weak, 
coupled boundary value problem (1.37). For the subsonic case after subtracting the 
circulation term, the problem (1.37) can be seen as an exterior nonlinear elliptic 
problem having discontinuous coefficients across PO,. Via Kelvin transformation, 
this problem becomes an interior corresponding nonlinear elliptic problem for which 
in the subsonic case existence follows as in [15], yielding existence for (1.37). To 
treat the full problem with unknown circulation 3, also in the transonic case, we 
present a nonlinear iteration in function spaces satisfying the Kutta-Joukowski 
condition (1.39) by correcting the iterates in every step with appropriate 43-values 
to enforce regularity at TE as described in [10]. For subsonic flows, a similar 
coupling involving the stream function formulation with Dirichlet conditions was 
treated in [29]. 

2.1. The entropy condition. For the case in which the geometry of the problem 
and the boundary conditions lead to a locally supersonic flow near the profile, the 
situation changes quite dramatically. In the supersonic regions the equation (1.3) 
becomes hyperbolic and the monotonicity property (1.32) is lost. In this case the 
existence of solutions to (2.1) is still open, even for problems with bounded domains, 
see Feistauer and Nedas [31] and Morawetz [48]. 

A further complication comes from the fact that mathematical analysis by Mora- 
wetz [45], [46], [47], as well as physical and numerical experience with the problem, 
show that one generally has to expect solutions that have discontinuous deriva- 
tives Vu, i.e. contain shocks. Hence, one has to consider weak solutions which 
in turn lead to non-uniqueness and the existence of non-physical solutions to the 
variational problem (2.1), see Necas [50]. This fact, which is well known from the 
related theory of systems of conservation laws, see Smoller [54], is the reason why 
Bristeau et al. in [15], [16], [17] need to supplement the problem with an additional 
admissibility condition for generalized solutions. We will concentrate here on the 
specific numerical entropy condition used for our numerical implementation which 
we adopted from Glowinski and Pironneau [36]. Further discussion on admissibil- 
ity of transonic shocks may be found in Necas [50], Keyfitz and Warnecke [40], 
and Warnecke [56]. Due to the assumption of isentropy, the shocks in transonic 
potential flow conserve entropy but not momentum. 

The practical entropy condition we have used requires that the divergence of the 
flow field must be bounded from above, i.e. 

(2.3) div Vu < B with an appropriate constant B C R. 

In Gdhner and Warnecke [37] it is shown that this inequality is equivalent to the 
solution with compressive shocks and is violated by the non-physical expansion 
shocks. In weak form this means that the inequality 

(2.4) -JVu*V d<B d?fbdx for allOECO (Q) with b > 0 

must hold. The implementation of (2.4) via penalization is shown in Section 4. 
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3. THE COUPLED FEM-BEM FORMULATION OF THE PROBLEM 

In order to discretize the coupled problem (1.37), we approximate the domain Q 
by a family of polygonal domains Qh where h denotes the parameter of meshwidth. 
The outer boundary rh of Qh is supposed to be a polygonal curve with nodes on 
Fc, which approximates Fz). In the same way we define 1h4 as the approximation 
of the profile boundary Fp. Without loss of generality we may assume that the slit 
Z is already a part of the boundary of Qh. Together with Qh we introduce now 
a family of regular triangulations {Th}h>o with Th := Uic Ti where D is a finite 
subset of the natural numbers N. The nodal points of the triangulation are denoted 
by Pi, i = 1, ... , N. For convenience we assume that the nodes on the slit E will be 
taken to be the first 2L points, i.e. p+, p7, j = 1, ... L, with t and p7 having the 
same coordinates but characterizing the limits from above and below, respectively. 
By Whi, i = 1, ... , N, we denote the usual piecewise linear hat functions satisfying 
Whi(pj) = bij, ij = 1,... ,N, which form a basis of nonnegative functions for 
the piecewise linear continuous finite elements. By A2 we denote the areas of the 
corresponding supports, i.e. Ai =meas (supp Whi), i = 1,... ,N. 

For a triangle Ti C Th let ai denote the smallest angle. We say that a family of 
regular triangulations {Th}h>o satisfies the angle property if there is a minimal 
angle a > 0 such that for any h > 0 and any Ti C Th one has ai > a. 

We denote by Si the segments on rF given by the edges of the boundary trian- 
gles Ti of Th. By {Sh}h>o with Sh := U. Si we denote the corresponding induced 
family of polygonal approximations of the boundary rh , where I1 is a finite subset 
of N. Without loss of generality we assume that our triangulation Qh is chosen 
such that the corresponding family {Sh}h>O guarantees the validity of an inverse 
assumption, see Ciarlet [18, (3.2.28)]. This implies inverse estimates, see Ciarlet 
[18, Theorem 3.2.6]. The error analysis is carried out for a Galerkin discretization, 
also for the boundary element method. However, we implemented the boundary 
element method using point collocation. Then it can be shown that the asymptotic 
error estimates used in Section 5 still remain valid due to [2]. The family {Th}h>O 

itself does not need to be quasiuniform. For all further considerations, the param- 
eter h will stand for the maximum diameter of all triangles Ti C Th. Let C?(nh) 

denote the set of all continuous functions on Qh, having one-sided limits on the slit 
Z and &Qh, respectively. For the discretization of (1.37) we introduce the following 
finite-dimensional spaces on the polygonal domains Qh, 

(3.1) Vh := Ch C0(Qh) Vh1, is linear on every Ti c Th and 

vh+ -VhU7= on Z with any c RI}, 

(3.2) Vh :={vh C Vh v -vh= on }, 

(3.3) 

Hh {=Oh E L2(]F) |Ih,, is constant on every Si E Sh and (Oh, 1)h = 0} 

and the set of admissible finite elements 

(3.4) kso {Vh C Vi VihI < So} 
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Here we use the notation 

(3-5) (q5,g)h := JVi(s)) (s) ds 
plh 

h0-0 

for the L2-scalar product on ['h. 

For the following, we need an approximate kernel Kh which is defined as in (1.24) 
where ii(7) is to be replaced by nfh(Y), the linear interpolant of the normal vectors 
to F,, at the vertices of [h. The associated operator will be denoted by ,kh. We 
further define the discrete forms 

ah(uiv w) = Jp(lVil2)V.V * vdx , 
SUh 

bh(A, k) (= VA, V)h , 

(3.6) dh (i, ) = (/Chii, ) h X 

t(U :) := Poo (V !(-, 0) * nh, V)h 

e2 (kX p) = ((-Nh) h - 

The function I was defined in (1.10). Now the discrete analogue of problem (1.37) 
reads as follows: 
The discrete variational problem 

Find (ilh, AhIh) E ks, X Jh X ( Hh X R such that 

(3.7) 

ah(uhIhUvh) - (AhI Uh)h = E(&hs3h) for all Vh E Vh, 

bh(Ah,? h) + (iihe h)h - dh(iih, h) e Q'OhIah) for all 1h C Hh 

subject to F(3h) 0 .- 
Problem (3.7) leads to a system of nonlinear equations, where we have one un- 

known per node in the triangulation Th of Qh, one unknown per segment S, of the 
polygonal boundary ['h and the unknown circulation !h. 

For the error analysis below we convert problem (3.7) into a form which allows 
the use of subspaces to the admissible function spaces used in (1.37). We will define 
subspaces Vh, Vho and Hh satisfying the conformity inclusions Vh C V, Vho C V0 
and Hh C H. This reformulation of problem (3.7) will enable us to present an 
analysis similar to that for conforming finite and boundary elements, see Johnson 
and Nedelec [39]. We introduce a mapping 4'h : i -g IF, where 4bh(X) is the 
point on [o, closest to the point x E [h . For h sufficiently small, the mapping (Ph 

becomes a bijection, see LeRoux [43]. Hence, the inverse mapping 4D-l exists. It 
transforms integrals along Ph into integrals along F,, by 

(3.8) J (s) ds = J) o 4(h s)J(4 h'(S))hds 

00 

where J(4A-1) = l is the one-dimensional Jacobian. Here -a- denotes the 
differentiation in the tangential direction. 

We now define the conforming boundary space 

(3.9) Hh :=J{=J( )1 h o (1 IhCEHh} CH. 
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We also need an appropriate subspace Vh c V based on the definition of Vh. Let 
Vh C Vh be an arbitrarily given function. Then Vh is well-defined in Q n Qh by 
taking the restriction. In the skin 

W ho = (Q\Qh) n {x I dist(x, IF,) < h}, 

however, we need an extension of 5h which we define by setting 

Vh (Y) := Vh (X) 

with x C rP and any given y lying on the line segment between the two points 
X C ]Fh and Ifh(X) C Fro. In the same way as described above, we define the 
function Vh in the skin 

Wh = (Q\Qh) n {x I dist(x, Fp) < h} 

This defines an extension operator which is only slightly different from Zlamal's 
operator used by Feistauer and Zenisek [32]. Our version is chosen in accordance 
with the boundary element approximation defined by LeRoux in [43] and used by 
Johnson and Nedelec [39]. Note that for the piecewise C?-curve rp we have 

meas{(suppWhi) n w} < ch3 < hiAi. 

We now denote by Vh the space of all functions Vh defined from Vh E Vh in the 
above way. Since on Qh\Q the functions Vh are well defined, Vh consists of functions 
given on Q U Qh while their restrictions to Q define a subspace of V. By Vh we 
denote the set of all functions Vh E Vh, which are continuous across the slit E. By 
changing the integrations from rF to FrO and using the definitions of Vh, Vh and 
Hh, we can reformulate problem (3.7) as follows. We note that 

ah(uh IVh, Wh) := ah(uh IVh, Wh), 

and define 
(3.10) 

2[1 
bh(A, O,) A A(y)4(x)G (Jh (x), 4Dh(y)) dsrdsy, 

VI M0 

dh(U, b) 1 -MU JJ u(y)O(x) - K (4Q(x), 4V (y)) [J o (4,h (y)]dsdsy, 

1 h)) :=V), 

fh(l 0) (a(., =) o (vex- X ) 
- 

dh(' 0) 04'h i V), 
e2 (aXt)=(( 3 h b )d(('a h ,+. 

Note that the transformations 4?h do not always map all functions of K,0 into 
Ks5. But taking s' < s0, the functions on K / are mapped into Ks, provided 
h > 0 is small enough. This distinction of s' and so, however, is not significant 
for our error analysis. Therefore, in the following we carry out the analysis for the 
admissible approximations in Vh n Kso. Using these definitions we obtain: 

The conforming discrete variational problem. Find (Uh, Ah, 3h) C (Vh n 
Kso) x Hh x R such that 

(3.11) 

ah(UhIUhVh) - (Ah,Vh) =eh(Vh, 1h) for all Vh E VhV and 

bh(A hi Oh) + (Uh, /h) - dh(Uh, h) - eh(Oh, /3h) for all 'Ilh C Hh 

subject to F(Mh) = 0. 
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The following consistency estimates essentially follow from the corresponding 
results by Feistauer and Zenisek [32] and by .Johnson and Nedelec [39], respectively. 

Lemma 3.1. Provided the polygonal approximation S3, of rFz satisfies an inverse 
assumption, we have the following estimates for the bilinear and linear forms (3.10): 

3 a(uh uh, V,) - ah(UhJUh,,h)v < chlluhIlll V2(D2) lVhlll '2(Q2) 
(3. 12) 

for all (Uh, vh) (VhLn KsK) x V1, 

(3. 13) b(A,1,)/4) - bh(Ah,')h)l ?chllA1.. 2 ()1'hll ) 

for all (Ah,/h) E HI, x Hh, 

(3.141) Id(v,'iI,) - dh(v,4Vh,)l < ch3/ 2lvllw l. 2(u2)ll?,hllH(11 
for all (v,) C V x Hh, 

Eh(V, I)-e (v, 3)J < (C1 +C2I3l)hllvllv1 .2(u2) for all vC V, 
(3. 15) 

hV) )-f ) )I h+C 0)h1 OIII ralVCH (.) 2 H( )-(2(, )j ? (ci +csl3)hil~11H - (U) for all H$ H 

Proof. The estimates (3.13) and (3.1-4) can be found in the paper by Johnson and 
Nedelec [39]. Note that we need the inverse assumption for Hh associated with 
{Sh}h>() for the proofs of (3.13), (3.1.1). The proof of (3.12) is due to the fact that 
on the skin the inequality 

IVhIIl. l 2(U,, ) < Ch2 11VhIl l71.2(Q) for all Vh C Vh 

holds. This inequality can be found in [32, Lemma 3.3.12], however for a slightly 
different extension operator. But the proof in our case is completely analogous to 

the one by Feistauer and Zenizek in [32]. Thus we obtain 

la(Uh lUhv,) - ah(Uh Iu hv) I < J p(lVUh 2 )lVUhl Vvl I dx 
WI, UW I 

< pO I I Uh | 2 (h I 1. U) U v lU 1, 2 (W , U It) 

< ch luh || lU, 12(D2) Vllh ||II,,12(92)- 

The functions (VT - nh) o (P- 1 and I o (h 1 are piecewise uniformly Lipschitz con- 
tinuous and their derivatives are uniformly bounded in w . Hence we get the 
estimates 

(3.16) 

{ 
l 
[(V'. n) ? 1 _ V n] (x,)| K (ci +cflI)h for all x C I, 

t 1[T 
0 4-l 

- T] (X,:)l ' (Cl + c2b10)h 

Thus, with (3.11i) and (3.16) we obtain 

IQ1(v,3)- e(v,13)| = pocl([(V4 ini) 
0 

-1_ 
(V'' .n 

K (c1 + c2lI3)hIvll 1 ('.) 

< (C1 + C21f31)h11v lw 212(m2) for all v C V, 

the first of the desired estimates (3.15). Similarly, for the second estimate of (3.15) 
we find with(3.11l) 
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|f2h('01)-?2(Qt,3)| < (4' ? 40 - /,+)| + hdh(4 o 1?/,)- 

< (cl + c2 1/3)hllfbli H - 1/2(Lr) 

+ dh(1 ? h-14-4,) +Jdh(ql,4,)-d(TJIo) 

< (Cl +C2J/3 )hJl/ I H-1/2(rP ). D 

For later use we collect the following finite element approximation results. 

Lemma 3.2. (a) Let us denote by Ph: H -+ Hh the L2-projection defined by 

(3.17) (PhP, 4h) := (p, 'lh) for all Oh C Hh. 

Then we have for every p C H 

(3.18) RoP-Ph(PII ilH(I) 0 for h -O. 

(b) Further, we define the Ritz projections Rh: V -4 h resp. Rh V - Vh by 

(3.19) JVRhv * V~h dx= JVv * Vvh dx for all Vh C Vh 

S2 h SQ 

where vh E Vh is the extension of iUh to Q. Then 

lim v-Rhvh =0 for allv C V 
h- So W1,2(Q) 

and 

lRhv W1,2(Qh) 
<?C vitW1,2(Q) for allvEV. 

(c) There exist families {Th}h>O of triangulations having additional properties which 
imply that the Ritz projection defined in (3.19) satisfies the stability estimate 

(3.20) V1 hv ?VL(Qh) C IIVVILK0() for all v C W"00(Q) 

where the constant c* > 1 is independent of v, vh and h. 

Proof. (a) and (b) are well known properties, see Babuska and Aziz [3]. The esti- 
mate (3.20) in (c) is e. g. a consequence of the quasiuniformity assumption, i. e. the 
angle property is satisfied and each triangle Ti C Th contains a circle of radius ch 
where the constant c > 0 does not depend on Ti or h, as was proved by Rannacher 
and Scott [52]. For the Ritz projection associated with homogeneous Dirichlet con- 
ditions, Crouzeix and Thomee [25] prove (3.20) for a much wider class of families 
{Th}h>O which includes grids generated by most adaptive methods. Under our as- 
sumptions on Vp, Z and rFO, their proof can be modified so that (c) also holds for 
the Ritz projection (3.19). 

4. THE DISCRETE MINIMIZATION PROBLEM 

The goal of this section is the formulation of problem (3.7) as a discrete mini- 
mization problem. The underlying idea goes back to Glowinski and Pironneau [36], 
and has since been further developed, see Bristeau et al. [15] or Berger et al. [9]. For 
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transonic flow, the hyperbolic character of the supersonic region creates additional 
difficulties. As pointed out in Section 2, we must take into account an additional 
selection principle. This will be done by a penalization due to Glowinski and Piron- 
neau [36]. To this end, we define the following functional Jh: Vh n K,0 -- R by 

(4.1) 

ff J2hVh(qh)j2 dx if globally so < 0 
(subsonic flow), 

j I jV~h(qh)j2 dx + Ph (Oh) for so < 1 (transonic flow), 
Qh 

where the penalty functional Ph: Vh OK,0 -K R is given by 

(4.2) 'Ph (qh) :A E + ([ i Vqh VWh, dx - B wh2 dxl 2 

By [*]+ we denote the nonnegative part of the quantity in brackets. Here, ,u > 0, 
B > 0 and 2 > e > 1 are constants, which do not depend on h. These constants 
can be chosen according to numerical experiments depending on the specific profile, 
the travelling velocity t-, etc., but then they are fixed for mesh refinement. The 
function (h(Oh) E V,? is the solution of the following state equation 

J VW(qh$() * VVh dx 

(4.3) Qh 

-ah (Oh I Oh, Vh )-(Ah (ah,/3h), Vh) h- 1 (Vh,/3h) for all vh E V. 

This state equation is the finite element approximation of the Neumann problem 

for the Poisson equation with given Neumann data on Fp, see (1.15), and on rO 

where Ah is given. On the other hand, Ah(Ph) E Hh is to be determined by the 

Galerkin discretization of the boundary integral equation (1.28), i.e. 

(4.4) 

bh(Ah(Ah, ( h) /h) = e2Wh, /h) - (h, h)h + dh(Oh, /h) for all?/h E Hh . 

Instead of solving the discrete equations (3.7), we will now solve the following: 

Discrete minimization problem 

Find (Uh, Ah,13h) E kso x Hh x I such that 

(4.5) Jh(Uh) = min JhQ(h) 

under the constraints (2.4) and F(/3h) = 0 where Jh(1h) is defined via (4.1) and 
I c R is an appropriately fixed finite interval. C] 

Remark. To simplify the notation, we are not using the --sign for finite element 

functions as previously. F 

Since /3h is the circulation of Uh, it is sought only in a bounded interval I. The 

solution of problem (4.5) subject to F(/h) = 0, to (4.3) and (4.4) exists, because we 
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minimize a differentiable functional over a bounded, convex and nonempty subset 
of a finite-dimensional space. The nonemptyness is due to the fact that the zero 
function lies in K50 and satisfies F(O) = 0. Note that the minimization of the first 
term of (4.1) in view of (4.3) is equivalent to the minimization of the W1'2(Q)- 
seminorm of the Riesz representation of the residual of (1.3) in the least squares 
sense. The above method, hence, can be considered as a least squares method. 

The solution Uh E Kso is not necessarily unique; nevertheless, any solution uh 

defines a corresponding flux Ah(Uh) e fh as the unique solution of (4.4). Thus 
we may assume for a given sequence of meshsizes the existence of a sequence 
{(Uh, Ah,13h)}h>o, where Uh E Kso is a solution of (4.5) and Ah C Hh is the 
corresponding solution of (4.4) with the corresponding Oh. If Jh(Uh) = 0, then 
(Uh, Ah, 3h) is a solution of (3.7). 

The discrete minimization problem (4.5) can be solved by a Polak-Ribiere type 
conjugate gradient algorithm, which takes into account the constraint F(3) = 0 
and the weak coupling equation (4.4). The method we used is described in detail 
in [10]. 

5. ON THE CONVERGENCE OF THE MINIMIZATION METHOD 

The goal of this section is the convergence proof for the sequence 
{(ih, Ah, 1h)}h>o of solutions of the minimization problems (4.5). Under the as- 
sumption of existence and uniqueness for the solution to problem (1.37) we will 
show that the sequence 

{(Uh,Ah,/3h)}h>o E Kso x H, x I 

converges to this solution. For the case of subsonic flow, the proof of this assertion 
is straightforward. The case of transonic flow will be more difficult. For the proof 
we need a compactness result from Mandel and Necas [44] and Murat [49]. For 
this case, a discrete entropy condition will play the crucial role and will enforce the 
convergence. 

5.1. The case of subsonic flow. For this case, we need first a preliminary result 
which involves standard results of approximation theory. 

Lemma 5.1. Let u E V n K50 with so < 2ao2 be a given function which has the 
additional regularity property 

(5.1) u c W2?E2(Q) for some E > 0. 

To the function u there corresponds a /3 E R which satisfies F(/3) = 0. Then for 
sufficiently small meshsizes h, there exists a sequence of functions {f};> with 

corresponding /h satisfying 

ii E 7h.n ko~ with so < go < 2 

(5.2) F(IT):= V~4JT+ 2 _ 

I IIWP- V|I(Q) O f tr 0, 
1U -Uh W,()~ or every p, [1,o] . 
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TE + _ 

P 

T- ~ - ' 

FIGURE 2. The triangular grid involving the Kutta--Joukowski condition 

Here ui E Vh is the extension of i4 E Vh to all of Q as defined in Section 3. 
t+,t- are the unit tangential vectors at the trailing edge pointing in the direction 
of TE. Let T+ and T- denote the respective triangles adjacent to TE as indicated 
in Figure 2. 

Proof. Let us denote by flhu the interpolant of u in Qh. Since u E V we have 
flhu E Vh. By fLhu we denote the extension of flhu into Vh. Using (5.1), standard 
approximation results for E E N0, see Ciarlet [18, p. 123], interpolating these 
inequalities for noninteger ? and finally using the property that the width of the 
skin is of order h2, we obtain 

(5.3) ||U - ILU IW1,-(Q) < chE IUIIW2+E.2(Q). 

The definition of flhu implies that on Z the equation (lhu)+ - (flhu) = 3 still 
holds. 

Note that flhu does not satisfy the Kutta-Joukowski condition exactly, but only 
approximately; with (5.3), however, we obtain 

22 

(5-4) VF1hU IT+ | - |VHhU IT t| =O(he). 

We shall now modify the interpolant flhu along the slit Z by changing the function 
values only in the respective upper and lower points pt and p- on E as described in 

[10]. The modified function will be denoted by W E C7h and it satisfies F(3h) = 0 ~~~~~~~~~ 
with a corresponding /h E R. From the construction of i4 it follows that the 
inequalities 

(5.5) 1:-ihl < ch?+E 

and 

(5.6) flhU-Uh | < che/2 
W 1, o(Qh) 

are valid. Thus, combining (5.3) and (5.6), we obtain 

U - Uh U/ p(Q) ho 0 for all p E [1, o]. 



FEM/BEM COUPLING METHOD FOR TRANSONIC FLOW COMPUTAT'IONS 1425 

Now since so < 2_, for sufficiently small h we can find a constant so < 2a1 such 
that iVuI12 < so holds a.e. in Q. E 

We shall now prove the convergence in VxHxI of the sequence {(iih, Ah, /h)}h>o 

of solutions of the minimization problems (4.5). Again, we shall denote by 
{(U,, Ah, ih)}h>o the corresponding sequence in (Vh x Hh x I). 

22~ 
Theorem 5.2. Let u C V n K,0 with so < a6 , A E H and 3 E I be the unique 
solution of the coupled flow problem (1.37). Moreover let this solution possess the 

regularity u E W2?E2(Q) for some e > 0. Then there exists a constant so < 0 

such that the sequence {(iih, Ah,/3h)}h>o jih E K&o, Ah E Hh, /h E I of solutions of 
the minimization problem (4.5) converges in V x H x I to the solution (u, A, 3) of 
problem (1.37). 

Proof. The proof of Theorem 5.2 will be split into several steps. 
Step 1: Lemma 5.1 implies the existence of a constant so < 2a2 and a function tK?1 

Uh E Vhn0K, satisfying (5.2). For this interpolant u4 we take 3 E 1R corresponding 
to the exact solution and determine A, by solving equation (4.4) with these u4 and 
/3. By (4.3) we then determine the corresponding (h- Thus, using the definition of 
{(iih, h, h)}h>o as the solution of minimization problem (4.5) subject to F(/3h) = 

0, we obtain 

(5.7) 0 < Jh(uih) = mm Jh(kh) < Jh(Uh). 
Xh G Kao 

We will now consider the expression Jh(i4) as h tends to zero. With definition 
(4.3), properties (1.31), (5.1), (5.3) and the interpolation property (5.4) we obtain 

2Jh(ih) = J V~ h (i), d 

Qh 

- ah(uh Ah,&) - (Ah, )h - 

- ah (hz| UhI ,h) -(A, KAh) _ f (-ho :) 

- ah(Uh Uh, h) -a(uh IUh, h)+ a(uh Uh, h)-a(u u, ah) 

-(A A' ih) + el (oh, h- ((h ) 

(5.8) < ch ||UhI Wl,2(Q) JWhiW1,2(Q) + C |U-Uh/IW1,2(Q) fhiW1,2(Q) 

+C 1|A - A, 1H1(') ) + (Cl + C21/31)h iJhiW1,2(Q) 

< C {h( uh, W1,2(Q) + 1 + 11) 

+ ||U UhI W1,2(Q) + 11A-A, JH(I)}ih 1,2(Q) . 

Using the L2-projection Ph defined in Lemma 3.2, inequality (1.34), equations 
(1.37) and (3.11), the continuity of the form d which follows from (1.29), together 
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with the inequalities (1.33), (3.13), (3.14) and (3.15), we obtain the estimates 

11A ||- A'112 -(1 )O < b(A - A', - A') 

b(A-A', A-PhA) + b(A, PhA-A')-bh(A', PhA- A) 
+ bh(A', PhA - A') - b(A', PIA - A') 

?C~ - AhIIH- 2 (F') I "Ph H 
- 

- 2 (F') 

-(u, PhA - Al) + d(u, PhA - A) + e2(PhA -A' 3) 

-d(u/, PhA - A,) + d(uI, PhA -A') 

+ (ut, PhA - A,) - dh(UI PhA - A') - eh(PhA - A', 3) 

+ chbA' 1_ PhA- A 1 

II -hlH- 2(F.) 11A h H 2(1') ? C11A - A,1 IA - PhAI 
h 11 

H 12 (F') |H 2 (F ) 

+ ch |Uhlwl2Q ||PhA -A,|H 2(' 

?(C + C21/31)h 11PhA- A I 
II 12(Fo) 

+ ch A|>h |IH- L2(I F) HPhA-4 - I (F.) 

We use Young's inequality ab < Ea2 + lb2 and the triangle inequality to obtain 
with the appropriate choice of E the consistency estimate 

(5.9)H2 F 

?< C{I A-PhA ll + 1 u-uh IIWl2()++ hIAhjAI -_ 1 

We remark that this estimate is also valid for boundary element collocation 
instead of the Galerkin method, see (2]. 

Then together with (5.8) and (5.9) we have 

Jh(i4,)?<c h(1A 
(5.10) U1 w1 

- Jh 
2(Q)?+2() Ah I I H2 (1F ) +1?31) 

+ IA h IIH- 2(II + ||U 
- 

Uh1WL,2(Q)} j(hlW1,2(Q)- 

The sequence {UI}h>O is uniformly bounded in W",2(Q) and hence by (3.11) and 
(1.34) we can show that {A},h>o is also uniformly bounded in H. The construction 
of h E VhO from th c 1h/ implies together with (4.1) the estimate 

(5.11) llJhHW1.2(Q) < C hc V<C ?< C Jh ("- W 1,2 (h) L 2 (h) 

Combining (5.7), (5.10), and (5.11), the boundedness of {UI}h>o and {fA},h>o and 
the approximation properties of ui and PhA, we obtain 

(5.12) 0 <- h(iih) < Jh (ih) ' 0 for h -O. 

2. Step: Since the sequence {Uh}h>O C K~O, it follows that the sequence is 
bounded in V. Again we can use (3.11) and the coercivity (1.34) to show that the 
sequence {jA}h>o is bounded in H. Therefore, the sequence {(Uh,Ah, ih)}lho is 
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bounded in (V n K~0) x H x I. Since V n Kio is a closed convex subset of V with 
respect to the topology in V, we may extract a subsequence {(uh, Aj, 1h)}h>o and 
find an element (,A, 3) c (V n K~j) x H x I such that 

Uh t u weakly in W1'P(Q) for every p E (2, oc), 

(5.13) Ah - weakly inH, 

fh -/ in R. 

We shall now show that { (Uh, Ah,13h) }h>O converges strongly to (ulA,/3). 
3. Step: We combine the inequalities (1.34) and (1.32) and obtain 

min(-,y1I2) {IIt-Uhl112 12(Q)+ AAh2( 

< a(U|Iti U. Uh )- a(Uh Uh, - Uh) 

+b(A, A- Ah)- b(Ah - Ah) 

(5.14) = a(uIu, u - uh) + b(A, A-Ah) 

-a(uhluh, U - fhU) - b(Ah, A-PhA) 

-a(UhjUh, HhU - Uh) + ah(UhIUh, HhU - Uh) 

-b(Ah, PhA - Ah) + bh(Ah, PhA -Ah) 

-ah(UhIuh, HhU - Uh) - bh(Ah, PhA - Ah)- 

The weak convergence (5.13) implies 

(5.15) a(uLtIu2, u -uh) + b(A, A-h) 0. 

Using the boundedness of {(Uh, Ah,/h)}h>o and the approximation properties of 
Hh and Ph due to Lemma 3.2, we obtain 

(5.16) a(uhIuh,i.-flhfL)+ b(Ah, A-Ph) 0. 

The inequalities (3.12) and (3.13) imply 

-a(Uh lUh, HhU - Uh) + ah (Uh Uh, hU - Uh) 

(5.17) -b(Ah, PhA-Ah)+ bh(Ah, PhA-Ah) 0. 

In order to prove that {(Uh, Ah, /h)}h>o converges strongly to (iA,p), it suffices 
in view of (5.14)-(5.17) to show that 

(5.18) ah (Uh IUh, .hi - Uh) + bh(Ah, Ph - Ah0) 0 

holds. 
In order to use the equality (4.3) it is necessary to show that HhO - Uh C Vh?. 

Usually this will not be the case. But since uh and flhL are uniformly bounded in 
W' P(Q), we modify the interpolant flhhi into ufh only along the slit Z, such that 

(5.19) Uh-Uh E VhV. 

To this end we use a fixed sequence of finite element functions Xh c Vh with a jump 
of constant height 1 along Z satisfying IIXhflwl 2(Q) < c and define 

Uh := HhU + (/h -/3)Xh- 
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Then still 

(5.20) ju2h-U1 1, 1w.2(Q) 0 for h - 0. 

Now because of (5.19) the equalities (4.3), (4.4) with the test function Uh - Uh and, 
together with the definitions (3.10), we obtain 

ah (Uh Iuh, Uh -Uh) + bh(Ah, PhA- Ah) 

= 1 (Uh -Uh, /h) + (Ah, Uh -Uh) 

+2(PhA - Ah, /h) - (Uh, PhA -Ah) + dh(Uh, PhA -Ah) 

+ JVchh(Uh) V(Uh -Uh) dx 
Qh 

(5.21) = EUf(ih-Uh,/3h)-E1 (Uh-Uh, /) 

+2(PhA - Ah,/3h) - ?2(PhA - Ah,13) 

+dh(Uh, PhA -Ah) -d(uh, PhA - Ah) 

+1 (Uh - U.O) + f (u - 
)Uh, ?)E+ 2(PhA-A A/)+ e2(A-Ah, 3) 

+d(uh, PhA - A) + d(uhA - Ah) 

+ (Ah, Uh -U) + (Ah -A U 

-(Uh, PhA-A)- (uh-uA) 

+ V~(iih)* V(Uh - ih) dx 
Qh 

Using the result (5.12) and the boundedness of uih - ih in V, we have 

(5.22) 

~~~~~~~~~~~~~~~~~~~~~~~~ 
V ih ) 

* 
V(uh- h ) d < C I V~h (h ) ldX }= C Jh uh) -0. 

Qh Qh 

The continuity of the operator IC in (1.29) implies the compactness of the bilinear 
form d on V; hence the weak convergence (5.13) for the sequence {Ah}h>o yields 

(5.23) d(Uh,A -Ah) = (Uh, C'(A-Ah)) -*0 for h --0. 

Thus (5.22), (5.23) imply together with (5.21), (3.14), (3.15), the weak convergence 
(5.13) and the approximation property of Rh and Ph the result (5.19). Hence we 
have shown that 

Uh u^ strongly in V, 

(5.24) Ah A strongly in H, 

fh O in R for h -O. 
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4. Step: In the last step we show that (u^, A, /) must coincide with the solution 
(u, A, /) of (1.37). Using (4.3) for an arbitrary but fixed v E V, we obtain the 
following inequality 

a(uIlu^, v) - (A, v) - l, (VI) 

+{la(u'lu^, v) - ah (uhIu, V) ++ [(Ah - I V) I 

+Iah (UIU, V)- ah (Uh IUh, V) I+ [L' (Vphh)-i (V,3)l 

+ Jah (UhJUh,V) -(Ah, V)-a 
( ph.) I 

(5.25) < {la(uil ii, v) -ah ('I'i, v) |I+ l(Ah-A v)I 

+|ah ('I I V)- ah (Uh |Uh, V)| I 1 Oh (V, ph))lU I) 

+jah(uhjuh, V- RhV) - (Ah, v- RhV) - jh(V - RhV, ph)I 

+ JV~h(Uh) * VRhV dx . 

Here Rhv E Vh is the Ritz projection of v defined by (3.19). We obtain from (5.25), 
using Lemma 3.2, (3.12), (3.15), (5.11), (5.12) and (5.24), 

(5.26) a(uQlu4, v)-(A, v)- f (v,3) = O for all v C V. 

In a similar way we obtain from (4.4) the inequality 

b(AI,0) + (ui,?/) - d(U-,O) -e2(O ) 

< ib(A,4 - Ph4)I + Ib(A- AhPh4')I + I(Ui- Uh,?/))I 

+ib(Ah, Ph$')- bh(Ah, PhO) I + If2 (C,!3i 0) 2 Ouph) I 

+ | d (i- Uh, 4)I + |d(Uhi, - Ph)I 

+Id(Uh, Ph/')- dh (Uh, Ph/') I 
+ [e2(?-Ph4,flh)i + i(Uh,4-Ph?/I} 

Using the same arguments as for the proof of (5.26), we obtain the equality 

(5.27) b(A, $) + (u-,?$) - d(U^, $) - f2($',/) = 0 for all 4 E H. 

Since u^ E V n Kg0 defines a subsonic flow, Theorem 1.3 implies the validity of the 
Kutta-Joukowski condition at TE. 

Thus we have proven that (u^, A,/) is a subsonic flow solution of (1.37). The 
assumption on the uniqueness of such a solution implies that (u^, A,:) = (u, A,:) 
holds and moreover, that the whole sequence of solutions {(Uh, Ah, /3h)}h>o of the 
minimization problem (4.5) converges to the solution. O 
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Note that due to the uniform L?-bound for the gradients of the sequence 
{Uh h>,, the latter converges in the W" P(Q)-norms for p C [1, c). 

5.2. The case of transonic flow. The purpose of this section is a convergence 
proof for the sequence {(iih, Ah, 1h)}h>0 of solutions of problem (4.5). The main 
underlying ideas for this proof go back to Berger [6], who has proved the convergence 
of the interior problem with a simplified boundary condition on polygonal domains. 
An extension of this work to domains with arbitrary curved boundaries can be found 
in Berger and Feistauer [7]. Therefore we shall now state the corresponding main 
results, which enable us to show the convergence of the exterior coupled problem. 

Lemma 5.3. Let {Th }h>0 be a family of triangulations satisfying the uniform angle 
property. This implies that the supports of the hat functions whi contain at most a 
certain finite number of triangles independent of h. This in turn implies that there 
is a constant c > 0 such that 

(5.28) A?<ch2 for I=1,...,N and all 0<h<1. 

Then a family of conforming solutions Uh to (4.5), resp. (3.11), satisfies the esti- 
mate 

(5.29) 

- Vuh * Vvh dx < B Vh dx + che lIVhh| o(S2) for all Vh C Eh 

with 2 > E > 1 and B as in (4.2) where 

Eh := {vh C Vh VhO> 0 and Vh = O on IF, UZ} . 

Remark. Note that this result is slightly stronger than Berger's in [6, Theorem 
4.1]. D 

Proof. The nonnegativity of Vh C Eh implies iUh = a Wh' with ac > 0 ac- 
cording to the correspondence between Vh and vUh in Section 3. By using 11vh lHc = 
max, = 1,... N 2i, this gives 

- VJhv * Vihdx -Bfiihdx 

Q2h S ht 

- z 

fi - 
E - V~h * -B Whidx (5.30) N=1 a /V hV dx) 

Pi vuroo QhQ 

N 1 
?Hv I;h IIoc ~ Vih .VWh dx -BJWh, dx 

Pi IEr, hQ 
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The Cauchy-Schwarz inequality gives with (4.2) 

pjjroo [IVih* VWhidx - B Wh, dxl 
PiqfEuroL S, S0h 

<(i A j{ E A ([J Vh VWhdx -B |Whz dx])} 

(i=1l.... ,N J iZ (Aij -'h( 
-) 

By our assumptions on the mesh we have 

N 

A< < A h2 and PAi?C dx=CQhL 

i=1 S 

By (4.5) we have the uniform bound 

0 < Jh(uh) < Jh(0) - I Vh(0) ? Ph(0)- 2 

Therefore (5.30) implies with the above estimates the inequality 

-|J Vh * Vihdx - B hdx < ch'1 I|VhIOC = ch' |lVhff, 

S0h S0h 

since HUvhjj00 = IlVhll0,. Further, we have 

Jvhdx-Vhdx < J vhdx + J ihdx < ch21 Vh|Io, 

S0h S2 S2\Sh Sh \S2 

due to [32]. Correspondingly, there holds 

VUh VVhdx V-JVUh *Vhdx 

S2 S2h 

< VUh* VVhdx + J Vih ,Vh dX 

S2\SQh S2 \S 

< i (IIVVh|L,(02\\0h) + IIV(hILQ(\h\ Q)(IQ\QhI + IQh\QI) 

< SUCIIVhjoch 

due to the inverse estimate [18, Theorem 3.2.6]. Since 1 < E < 2, we have h < h1- 

for 0 < h < l and (5.29) follows. O 
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Lemma 5.4. Under the assumptions of Lemma 5.3 let {iih}h>0 be a sequence of 
solutions to problem (4.5) with h -* 0 and let {uh}h>() be the corresponding sequence 
of conforming approximations defined in Section 3. Then there exists a subsequence 
{ Uh}h>() and a function u C V n KIs3 such that the strong convergence 

(5.31) Iu - UhHIIl1.P(Q) 0 for all p C [1, ocx) 

and the entropy inequality 

(5.32) -JVu.Vvdx<B' vdx forallvCE 

hold for an appropriate B' > 0 where 

E := {v C W"2 (Q)I v > 0 and v = 0 on Fro UZ} . 

Proof. The sequence {uh}h>() satisfies (5.29). The Sobolev embedding theorem 
applied to the case W' "(Q) C L' (Q) for q > 2 gives for all vh C Eh 

g/(vh) =JVuh * VVhdx + B vhdx > -ch-'HVhH1(,. 

Choosing B' large enough there exists an ho > 0 such that for any h with 0 < h < ho 
we obtain for B' > chE7' + B the estimate 

gh/(Vh) >0. 

Due to IIVUhHI < IQ HVUhHOC < Qjs we have with an appropriate constant 
c > 0 

IG/h(Vh)l <? IIVUhII * |lVhll +B|Q| kllVhll <? C||VhII. 12 

This implies g"' C [W"2 (Q)]' and thereby gh' C [W' "(Q)]' for q > 2 since Q is a 
bounded domain. The sequence is bounded and therefore has a weakly convergent 
subsequence. The Corollary to Lemma 3.1 in Mandel and Necas [44] gives gh' -> G 
in [W' "(Q)]' for q > 2. As in the first part of the proof of Feistauer and Necas 
[31, Theorem 4.23] this implies the strong convergence uh -* u in W".2(Q). Since 

IVUh lo is bounded by so this implies convergence in W"" (Q) for p C [1, xc). 
The inequality gh' (Vh) > 0 implies (5.32) in the limit when taking Vh -- v in 

w2. 2 (Q). D 

For the following convergence proof we have to modify and extend the density 
p in order to obtain a function :[0, oc.) [0, oc.) such that i(s) > p,. for some 

constant p,. > 0. We choose 3* C (so, 7 ), set i(s) = p(s) for s C [0, s*] and use 

the extension described in Feistauer and Necas [31] whereby i(s) = p for large s. 
Note that the set of solutions to problem (1.37) is not changed by this modification. 

Theorem 5.5. Suppose that the following assumptions hold: 

(a) Let the family of triangulations be quasiuniform. 
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(b) The problem (1.37) has exactly one solution (u, A, 1) C (V n Ks,) x H x I, 
which satisfies the entropy condition (5.32). 

(c) The solution of (1.37) satisfies the subsonic flow condition (1.38) near the 
trailing edge. 

Then there exists a constant so > so such that a sequence of solutions 

{(iih, Ah, 1h)}h>0 of the modified minimization problem 

(5.33) h(Uih) = min Ph(9h) 
P h E X/h nKS( 

subject to (4.3), (4.4) and F(1h) = 0 converges to the unique solution (u, A, :) of 
the variational problem (1.37). 

Proof. We shall split the proof into three steps. 
Step 1: The assumption (3.20) implies that Rhu C /h 0KC* -,( We modify 

Rhu along the slit such that the modified function 'I satisfies the Kutta-Joukowski 
condition. This modification is the same as the one described in the proof of Lemma 
5.1 and in [10] Since Rhu is uniformly bounded in W" (Qh), the modified function 
will also be uniformly bounded in W' ?'(Qh). Therefore, we can find a constant 
se) > C* s(3, such that 

(5.34) I|ViI _IC < se 

holds. Moreover, the modified function has the same approximation properties as 

Rhu, which implies 

(5-35) |U - 
UhIIW 1, 2 (s) 

>-- ? 
for h O-+ . 

Step 2: Since the density p is now modified, the functional Jh may be applied to 
ci V 7h n Kb(); and we obtain from (5.34) the inequality 

(5.36) 0 < h(iih) < Ah(ih) = V(i4)I2 dx + Ph(i4) 

SQh 

By using the same arguments as in the proof of (5.12) we get with the help of (5.35) 

(5.37) 2 V~h(i4) dx - 0 for h -0. 
S2 

Note that our function i4 coincides with Fthu in the points pi for i = 2L + 1, ... , N. 
Since our penalty functional has no contributions from nodes belonging to Z we have 

Ph(uh) = 'Ph(RhU). Further, we have by the definition of the Ritz projection (3.19), 
by the fact that u satisfies the entropy inequality (5.32), and by the nonnegativity 



of ?ih. that 

0 < Ph(R~hU) 

N2 

2 E (A> ) 2VRhu Vwhidx-B hid 

- 
(A2> [1Vu.VwhidxB~whidxl 

2 Z (Al)E IwhdxI|hd1 
- B (A2) L Whtdl 

N2 < A E - U I 2~d \ S2 h d 

[LB 2 

2 Z AT {(measSUppWhi i) h np 

Since the grid satisfies the uniform angle property and P is piecewise smooth we 
have meas(supp Wh ) 0n < ch3 and ch2) < A. Hence, we obtain 

N 

0 ? lJh(fthu) ? c E hivh4-9 ? c'h2(2-Z. 

E I E Wh~~~~~i = d1 

Pi~~~~~P V 

If we combine this with (5.36) and (5.37) we obtain the result 

(5.38) Jh(Uh) O for h > O. 

Step 3: We now apply Lemmata 5.3 and 5.4. We get the existence of a subsequence 
{tth}h>o and a function u^ C K-(, such that 

(5.39) H-uh - h P(?) O. for all p C [1, C), 

(5.40) -JVu. Vvdx < B vdx for all v C E. 

The convergent subsequence {Uh}h>0 is bounded. Then (3.11) holds. Taking h = 

Ah and using the coercivity (1.34) gives the boundedness of the corresponding 
sequence {Ah}h>0 in H. We may derive the analogue of (5.9) for A - Ah. Then the 
strong convergence (5.39) together with the boundedness of {Ah}h>0 in H implies 

-~~~ h-4) 
(5.41) A-A H 0, 

(5.42) b(A, V) + (u^, ) - d(u^, ) = 2 (, ) for all 7P c H . 

Using the same arguments as in Step 4 of Theorem 5.2 together with (5.39)-(5.41) 
and assumptions (a), (b) we obtain the result. D 
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Remark. The result of Theorem 5.5 is a generalization of the results proved in the 
papers by Berger in [6] and [5]. D 

6. NUMERICAL RESULTS 

We present some results of our numerical computations made in 1989. Here, we 
compare three different treatments of the farfield boundary condition. 

The first condition corresponds to the condition (1.8) which is just the parallel 
flow at infinity. 

In the second case we first compute the FEM-BEM approximation to the har- 
monic solution U of the exterior incompressible flow problem, 

AU =0 in QUQc, 
(9U = 0 on Fp and VU - voo at infinity 

U+-U- =3 and 6nU+ -nU- = 0 on E subject to F(3) = 0. 

Note, that our algorithm for the full coupling procedure needs only a slight modi- 
fication to obtain U. With U, we used as a second boundary condition 

p(J| u|) anu = p(l| ioI 2)iAnU on F00. 
The third case shows the results of the complete coupling described in Section 

4. 
For better comparison we give results for two standard test cases of flows around 

the NACA-0012 profile. Two different sized C-grids were used, see Figure 3. Here 
Fr0 has two corner points where the C00 assumption used in the foregoing analysis 
is violated; however, due to the remark in Section 1.2, our convergence result can 
be extended to this simple Lipschitz curve. A large computational domain with 
115 by 15 nodes, outer boundary 6 chord lengths from the profile; and a smaller 

FIGUE 3.Larg coputaiona doA a 

FIGURE 3. Large- computational domain, containing the small subdomain 
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subdomain with 111 by 13 nodes, outer boundary 3 chord lengths from the profile. 
We give the lift coefficients cl calculated from the pressure distribution along the 
profile. 
Test Case 1: (purely subsonic flow) 

AU- = 0.63 a 2.0 

C(, large domain (( small domain 
1st case 0.3470 0.3684 
2nd case 0.3395 0.3481 
full coupling 0.3371 0.3391 

In a research report Kroll and Jain [41] give a lift coefficient of c(, = 0.3333. 
They used an O-grid with 256 by 64 nodes, outer boundary 50 chord lengths from 
the profile. Their calculation was done with a potential and with an Euler code. 
Test Case 2: (transonic flow) 

A =, = 0.8 a=1.250 

c(a large domain c(, small domain 
1st case 0.4853 0.5852 
2nd case 0.4705 0.5257 
full coupling 0.4209 0.4459 

1.30(- 

1.20 - 
1. 1() 1 .11(1 

0.9(1- 
0.8(0 
0.70 
0.6(1 
0.51) 
(1.41) 

0.31) 

0.10 
0.00 

0.201( 

0.9(1 

0 . 11(1 

-1.1(1- 

(0.1(1 (1.1(1 0. 3(1 0.50 0.70 0.9 1.1() 
x-A(HS1: 

FIGURE 4. Pressure distributions for the transonic test case 2 on 
the large domain 
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1.40 

I .330 
1.20 
1 .1)1) 

0'.61 

0.50 
0.40 

(.3(1) 

0.10 

0.11) 

0.20 

0.31) 
0.40 

-0.50 
-0.60 

0.70 
(1.80 

0.90 

I MO0 I | . . . 
-1.1)0 

1.20 

-().1() ().1() .3( (1 ..5(1 0.70 0.9(1 1.10 
X-ACHSE 

FIGURE 5. Pressure distributions for the transonic test case 2 on 
the small domain 

In Rizzi and Viviant [53] a number of solutions for this test case is given. These 
were obtained by finite differences and finite volume discretizations of the full po- 
tential equation. The calculated lift coefficients vary between 0.5 and 1.1. In the 
AGARD Report Nr. 211 [1] newer results for the Euler equations were published. 
There the lift coefficients vary between 0.35 and 0.37. 

The improvement in the lift coefficients corresponds to a movement of the shock 
location to an upstream position and a slight reduction in shock strength. This is 
shown in Figures 4 and 5 for the above cases. 
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