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CONTINUOUS COLLOCATION APPROXIMATIONS 
TO SOLUTIONS OF FIRST KIND VOLTERRA EQUATIONS 

J.-P. KAUTHEN AND H. BRUNNER 

ABSrRAcr. In this paper we give necessary and sufficient conditions for con- 
vergence of continuous collocation approximations of solutions of first kind 
Volterra integral equations. The results close some longstanding gaps in the 
theory of polynomial spline collocation methods for such equations. The con- 
vergence analysis is based on a Rurnge-Kutta or ODE approach. 

1. INTRODUCTION 

In this paper we consider first kind Volterra integral equations of the form 
it 

(1.1) j K(t, s)y(s) ds = g(t), t E I = [0, T]. 

Here g and K are supposed to be sufficiently smooth functions satisfying g(0) = 0 
and JK(t,t)I > r, > 0 for all t E. 

The (unique) solution of (1.1) is to be approximated in certain polynomial spline 
spaces. In the case where this space is S,1) (RJN), the space of discontinuous 
polynomial spline functions of degree m, the relationship between the choice of the 
collocation parameters and the (order of) convergence of the collocation solution is 
well understood (compare [2], [4]). The picture is much more complex for the space 
S (RIN) of continuous polynomial splines, especially when the set of collocation 
points does not contain the mesh points. It is the purpose of this paper to develop 
a convergence theory analogous to the one for S( 1) (IN). It has been shown in 
[12] that methods based on splines with full continuity and of degree greater than 
one are divergent. 

We also discuss the corresponding fully discretized collocation methods. These 
methods were introduced in [10], [11], and their place within the framework of 
polynomial spline collocation methods was described in [1], [2] (compare also [4]). 

In Section 2, we define the continuous collocation approximations in SM(O)(FIN). 

Section 3 contains some preliminary and technical results concerning properties 
of the coefficients of the implicit Runge-Kutta method defined by the collocation 
parameters. The main convergence results are presented in Section 4 where we give 
proofs for equations with constant kernel. The convergence analysis for equations 
with non-constant kernel is carried out in Section 5. In Section 6 we briefly discuss 
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the fully discretized collocation approximations and give a numerical illustration. 
Finally Section 7 contains some concluding remarks. 

2. CONTINUOUS COLLOCATION APPROXIMATIONS 

Consider the subdivision HN of the interval I = [0, T] defined by t, = nh, 
n = O,. . . , N, where the (constant) stepsize is given by h = T/N (N > 0). Let 0 < 

C1 < C2 < ... < Cm < 1 (m > 1) be the collocation parameters and t, = tn + cjh, 
j = 1, ... , m, n = 0 ... , N - 1, the collocation points. 

We seek an approximation u in the spline space S7?)(uN) of the solution y of 
(1.1). This approximation satisfies the collocation equation 

(2.1) 
/t 7' j j 

K(tnj,s)u(s)ds =g(tnj) 
j = 1, ... ,m, n = 0,... ,N -1, 

and the continuity conditions 

(2.2) Un - 1(tn) = Un (tn), n = 1,.... IN - . 

Here un denotes the restriction of u to the subinterval [tn, tn+ 1]. The initial value 
is u(O) = y(O) = g'(O)/K(O, 0). 

On each subinterval [tn, tn+], In = O,. .. , N - 1, the approximation u is a poly- 
nomial of degree m and is represented by the interpolation formula 

m 
(2.3) Un(tn ? Th) = Lo(T)un- 1(tn) + ZLe(T)Un(tne), T C [0, 1], 

e=1 

where the Lagrange polynomials Le, f = 0,... , m, are defined by 

(2.4) 
m m 

Lo(rT) = (-1 
Ck 

c f (,T) =eIT Tl 
Ck 

k=1 CkQk=1 Q C 
ke ll 

The collocation approximation u is obtained by solving on each subinterval 
[tn, tn+1 ] I n = O.... , N - 1, the following system: 

(2.5) hZ: (j0 K(tnj, tn + Th)Le(T) dT) un(tne) 

9(tnj) - h (j/a K(tnj, tn+ Th)Lo(T) dT) un- 1 (tn) 

-hZ ((j K(tn, t+rh)Lo(T)dT) u,-i(t,) 

+ Ev K(tnjtv+ Th)L (,T) dT ul, (tl,e)) 

(j = 1,... ,m), with u-1(to) = uo(O). This system has a unique solution if h is 
sufficiently small and if the matrix (fJ' Le(-r) d -) m is invertible (see Section 3). 
Having solved this system, one obtains the approximation at tn+l by 

m 

(2.6) un(tn+l) = Lo(1 )un- 1 (tn) + ELe(1)un(tne). 
e=1 
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3. PRELIMINARY CONSIDERATIONS 

We define co = 0 and consider the m + 1-stage implicit Runge-Kutta method 
which is equivalent to the collocation method characterized by ci, i = 0,... ,m. 
The coefficients of this method are then given by 

(3.1) aie = j Le(T) dT, be = j Le(T) dT, j, e = 1,... , m. 

It follows from Theorem 11.7.8 of [8] that the matrix A = (aje)me=0 is defined by 
condition C(m+ 1). The vector b = (bo, .. ., b,)' is defined by condition B(m+ 1). 
We recall that an s-stage Runge-Kutta method satisfies 

Ck1 (3.2) B(p) if Zbic- = k = 1,... .p k' 
S k ~~~ ~~ C. 

(3.3) C(q) if ,aijC = k L i = 1,... ,s, k =1,.. ,q, 
j=1 

(see e.g. [8, p. 208]). Hence the coefficients aij and bi satisfy 

m cq 

(3.4) aijc- i = O . .. ml q =1...,m + 1, 

m 
(3.5) bici- =, q = I,-... m + 1. 

i=Ojq 

It follows that aoe=0, e=0,... ,m. We define A=(aje)7m1, ao=(alo,... ,amo)T, 

c=(C1,,... ., CM)T andb= (bl, . .. I bm )T . Let I m = (1 . )T C Rm and R(z)= 
1 + zbT(I - zA)-1 im+1 denote the stability function of the Runge-Kutta method 
(see e.g. [9, pp. 40]). Some properties of the coefficients of the Runge-Kutta method 
are stated in the following lemma. 

Lemma 1. Let A = (aje)me=0, b = (bo,... ,bm)T and c = (co... ,Cm)T be the 
coefficients of the Runge-Kutta method defined above. Then 

a) if Cm < 1, limz,,n R(z) = oc and if cm = 1, 

m-1 
(3.6) R(oo) = (-1)m -i1 -Ci 

i=l1 Z 

b) the matrix A = (aje)me=1 is invertible; 

c) if d = (dj.. I dm)T is defined by d = A-,ao, we have 
m 

(3 7) di = (-l)m-1 II' Hi=1 ,m 
k=1 Ck 
k5i 

d) it holds that 

(3.8) 1-bTAlllm = Lo(1) (I +z?) 
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e)ify i,... Vm)T is defined by= A`Im, we have 

(3.9) +d, iM 
(Ci jc e 

f) it holds that 

(3.10) bTA I - Lo (1). 

Proof. a) Let M(T) = (m+1)! 
H 1(T - ci). Then M(O) = 0. If cm < 1, Theorem 

IV.3.9 of [9] implies that lim,,, R(z) = 1imzoc JJ(,0)) z = oo. If Cm = 1 M(1) 0 

and it follows that R(oo) = M'() which gives (3.6). 

b) A is solution of 
m Cq 
,aijc q1= 7.I, i= 1,...,)m, q=2, ...,m+l, 

j=1 q 
or 

Since the ci are all different, all matrices are invertible. 
c) We have 

al ( .. .*am C . . . . ...1 

am 1 * amm cm .. c m ... 

?m m+l I 

or in matrix notation 

(3.11) AV= VQ. 

Here f, i = 0. .a. , m, are the coefcients of the polynomial 
m 

M Ct .. ctc) m 0B~t- ... . IBt+ 3 

i=l 

Relation (3.4) implies that a0 - c-Mm. Therefore d = x - m where x is the 
solution of Ax = c. It follows from (3.11) that VQV-lx = c. Let y = V-lx. 
Then VQy = c or Qy = V-lc = e1 with e3 = (1,0,... ,o)T M lm* We thus solve 

Qy= e1, compute x = Vy and obtain d X x- Im. With /53m = 1, we obtain 
j =-(j ? 1) , j = 1, . .., m. Hence 

m m 

ji = 1 C~yj = -iE + . o 
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Let M(t) -tM(t). Then 
m m 

M'(ci) = Ci J (Ci - Ck) = U(j + 1) i3c . 
k=1 j=O 

This leads to 

Xi = -(00 ~dcj-o --Ci rl (Ci CO) +1 

and m 
di = xi- 1= (l)m 1 171 Ci Ck 

k=1 Ck 

since ,Bo = M(O) = (-1)m fJm Ci 
d) We have 

(3.12) AV =VJ, 

and 

(3.13) bTV mTj, 

where 
0 0 ... 

m+1 1 0 
C1 . C12 0 1 

(cm Kc..mm1 
Cm~~~l /1 3 0... 

We solve (3.12) for V and insert into (3.13). Thus 

We now have to find u = (ul,... UM))T E Rm such that 

(3.14) VJu =m 

It then follows that TA-' m = bTA-1VJu - JMu or 1-bTA M -1- I1~u. 
Condition (3.14) is equivalent to 

m C k+1 

(3. 15) E Ukk =1, i = 1 1 , ... ., m. 

Let the polynomial p c 1rm be defined by p(t) = Em 1 Uktk. Then fjc p(t) dt = 

Ek=1 Uk kl . By (3.15) we thus seek p such that fjc` p(t) dt = 1, i = 1, ..., m. 
Let q(t) = fg p(s) ds. Then q c 7lm+l, q'(t) = p(t) and q is the solution of the 
interpolation problem 

q (ci) = 1, i = 1, ...... m, q(O) = O. q1(O) = O. 
One easily verifies that 

m m-1 m 

q(t) = I + (e + 13t) r|(t -ci), Ce M I~ 0 = a30 __ C 
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We now have 
m 

JUz=Zk+l = q(1) 
k= 

and find that 

1- bA_ Ilm = 1- TJu = 1- q(1) (-I) i ) ( j i) 

e) We have a = Vu where VJu = fm (see (3.12) and (3.14)). Thus yj = 
M 1ci'uj = p(ci) = q'(ci) where p and q are as in part d) and the desired result is 

readily obtained. 
f) The proof is similar to that of part d). One has bTAl1 q(1) where q is the 

solution of the interpolation problem 

q(ci) = ci, i I ,. ,ml q(O) = O. q1 (0) = O. 

This completes the proof of the lemma. D 

4. CONVERGENCE ANALYSIS 

We now return to the collocation method. The exact solution of (1.1) can be 
written on [tn, tn+ 1 ] as 

(4.1) 
m 

y(tn + Th) = Lo(T)y(tn) + ZLe(T)Y(tn) + rn(T), T E [0 ,1], 
e=1 

where the interpolation error is 

(4.2) 

rn (T) = hm+ 1 y 
(? )) 

T rJ7(T - ci), tn < (n (T) < tn+ 1 
i=1 

It follows from (4.1) and (2.3) that the collocation error e = y - u is given by 

m 

(4.3) en(tn + Th) = Lo(T)en-1 (tn) + ZLe(T)en(tne) + rn(T). 
e=1 

We have in particular that en(tn) = en (tn), with en denoting the restriction of e 
to [tn, tn+1]. Subtracting the collocation equation (2.1) from (1.1), we obtain the 
error recursion 

J K(tn, tn + Th)en (tn + Th) dT 

(4.4) n-1 1 

=- -Z| K(tnj, t, + Th)e. (t, + ?rh) dT, j = 1,... , m. 

We first consider the case of constant kernel K(t, s) 1. This case already contains 
all important ideas. The convergence analysis for equations with non-constant 
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kernels is carried out in Section 5. We rewrite (4.4) with n replaced by n - 1 and 
with j = m and subtract it from (4.4). We obtain 

(4.5) 

j en(tn + Th) dT 
Jo 

j en 1 (tn 1+ rh) d j - 
en-1 (tn- 1+ Th) dX j = 1 . m. 

We have to distinguish between two cases: cm = 1 and cm < 1. 
Case I: cm = 1. This case has already been studied in [2]. The techniques 

employed here are different and rely on an "ODE approach". Equation (4.5) now 
reduces to 

(4.6) j en(tn+Th)dT=O j=1 ... I m. 

Inserting (4.3) into (4.6), we obtain 
m (C 

ajoen- 1 (tn) + Zajeen(tne) + ] rn (T) dT = 0, j = 1, ... Xm. 
?= 1 

Since, with cm = 1, enil(tni1m) = en l(tn), the last equation becomes 
m 

Zajeen (tnf) = -ajoen-1(tn-lm) +rnXj, = 1 M... 
e=1 

where rnj = f- of rn(T) d-r. In matrix notation 

AEn = BEn1 + Rn, 

or 

(4.7) En = AA-1BEn-1 + A-1R, 

where En = (en(tnl),... Xen(tnm)) T, A= (aje)m=1 , Rn = (rnl ... rnm)T and 

/0 ... 0 -alo 

B~~~~ 
0o ... 0 -amok 

Part c) of Lemma 1 implies that 

/o ... o -dm 

The only non-zero eigenvalue of this matrix is -dm. Note that 

m-1 

(4.8) -dm = R(oo) = (-1)m I - I 
i= tCi 

(see parts a) and c) of Lemma 1). It is easy to show that 

(4.9) (A-1B)n = (_)n-11dn-1 A-1B. 
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It follows from (4.7) that 
n 

En = (A-1B)nEo + Z(A-1B)?LA RR 
ii=1 

With (4.9) this equation becomes 

(4.10) 
n-i 

En = (-1)n-ldn-l A-BEO ? Zt-1)n--l dn-v-1 A- BA-1R + A-1R 

ii=1 

If Idm < 1, there exist constants D1 and D2 such that for n = 1, .. ., N - 1, 

En < D? i lEoll +?D2 max 11R.11. =1= ,. . .,n 

With e(0) = 0 it is easy to show that IIE0 = (9(hm+l). Moreover IIRn = (9(hm+l), 

n = 1,.. , N (see(4.2)). Finally there exists a constant C such that 

1jEn11 < Chm+l, n = 1, ... ,N-1 . 

From (4.3) we then obtain that 

11ell.c=suple(t)l =O(hml), h -0, Nh=T. 
tEI 

If dm = 1 (i.e. R(oo) = -1 and m is odd), (4.10) becomes 

En = (-1)n-1 A-1BEo + A-1BA-1((Rn- - Rn-2)+(Rn-3 -Rn-4) + ? Ri) 

+ A-1Rn 

Since Rj - Rj_- (9(hm+2) if y c Cm+2(I) (see (4.2)), it follows that 

1jEnjj < Chm+l, n = 1,. .. ,N-1. 

If dm = -1 (i.e. R(oo) = 1 and m is even), (4.10) becomes 

n-1 

En = A-1B Eo + S A-1B A-1R + A-1R 
ii=1 

and the method converges only with order m, i.e. 

1jEnjj < Chm, n = 1, ... ,N-1. 

If Idml > 1, the method diverges. For the convergence analysis in the case of a 
general, non-constant kernel, we refer to Section 5. We have the following theorem, 
based on our "ODE approach" (compare with Theorem 5.5.1b of [4]). 

Theorem 1. Assume that g and K in (1.1) are of class Cm+3. Let u be the colloca- 

tion approximation in Sm??)(flN) of the solution y of (1.1) and defined by (2.3)-(2.6). 
If Cm = 1, then the collocation approximation u converges to the solution y for any 
m > 1 if and only if 

m-1 1 
(4.11) -1 < R(oo) = (-1)m i i < 1, 

and the collocation error e = y - u satisfies 

el = sup e(t)l ( hmf ) if -R )R()1<1, h -0,Nh=T. 
t~i 10(hm) if R (c'o = 1, 



COLLOCATION APPROXIMATIONS TO SOLUTIONS OF VOLTERRA EQUATIONS 1449 

Case 11: cm < 1. Inserting (4.3) into (4.5) we obtain for j = 1,.... m, 
m 

ajoen 1 (tn ) ? Zajeen (tne)-rni 

e=l 
m 

= amoen-2(tn-1) + Zameen-1(tn-1e) -rn-lm -boen-2(tn-1) 

f=l 
m 

-Zbeen- 1 (tn- ie) - fn- 1, 

e=l 

where rnj = - f rn(-r) dr and in = fo' rn(T) dT. Furthermore 

(4.12) 
m 

en(tn) = en- 1(tn) = Lo(1)en- 1(tn-l ) + ELe(1)en- i(tn-ie) + rn-1(1). 
e=1 

These equations give in matrix notation 

1 0 ... 0 en(tn) 

a10 a11 ... am, en(tnl ) 

amo aml ... amm )K en (tnm ) 
Lo (1) Li (1) .. Lm (1) '/en- 1 (tn- 1) 

=1 |amo -bo ami-bi *.- amm-bm 1 1 en- 1 (tn- 11) 

K amo-bo ami-bi ... amm- bm en-i(tn 1m) 

rn-1(1) 
rn1 - rn-lm -rn-1 

rnm -rn-lm -n-1 

In a more compact form 
AEn = BEn1 + Rn, 

or 

(4.13) En= A-lBEn-1 + A-1Rn, 

where En = (en(tn),en(tnl), en(tnm)) T and 

A (1 ? A 1 (1 0) 

with d = A-1ao. Let A- = (wij )T.=. Then 

Lo(1) ... Lm(1) 
m m 

-d1Lo(1) + (amo-bo) E Wlj * -diLm(1) + (amm-bm) E wij 

A-lg= j=l j=l 

m m 
-dmLo(l) + (amo-bo) E wmj * -dmLm(l) + (amm-bm) E wmj 

j=l j=l 
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Lemma 2. The matrix A-1 B given above has exactly two distinct nonzero eigen- 
values Al and A2. These eigenvalues are real and we have 

(4.14) 

Al + A2 (1) (I| CZ 
2 ( E I iE 

I 
) 

(4.15) AA m ( 1c2 

Proof. Since B is of rank 2, the same holds for A-'B. Therefore A-' B has exactly 
two nonzero eigenvalues Al and A2. It follows from elementary linear algebra that 
A1 + A2 is equal to the trace of A` B. Then 

m m m 

A1 + A2 = tr(A-'B) = Lo(l) - ZdiLi(l) + Z(ami - bl) Eij 
i=1 i=1 j=1 

With (2.4) and (3.7) it is now easy to verify that 

1 
(4.16) d-L2(1) = Lo(1) 

and that 

m m m m 
(4.17) (ami-b wi = 1- bi Z = 

- - . 
j=l i=1 j=J 

Together with part d) of Lemma 1 we obtain 

(4.18) Al + A2= tr(A-1B) = Lo(l) (2 + E + E c) 

Since the proof of (4.15) is rather technical we will not present it here; instead, we 
sketch the main ideas. Consider the matrix X = (xij)T%=0 and the corresponding 
characteristic polynomial det(X - Al) = (-1)m+1Am+1 + cemAm + amlAm-l + 
... + a0. Then the coefficient a.~1 is given by 

(_l)m+l ) 2) (4.19) amn-l 
- (1) ((tr(X))2 - tr( 

(see e.g. [6, p. 130]). Since A-1B is of rank 2, the coefficient of Am-' in the 
characteristic polynomial is equal to (-I)m+l times the product of the two nonzero 
eigenvalues. Applying (4.19) to A-1B, making use of (4.16), (4.17), and 

Z(ami - bi)di = amo - bo + Lo(l), 

ZLZ(1)ZWik =Lo1 -1 E 
i=1 k=1 i=1 j=i 

which one proves using parts f) and e) of Lemma 1, one finally obtains 

A1A2 = -((tr(A'1B))2 - tr((A-B)2)) = (Lo(1))2. 2 
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The eigenvalues are real since (tr(A-1B))2 - 4(Lo(1))2 > 0 and we have 

(4.20) A 2 = 2 (tr(A-B) ? Vl(tr(AlB))2 - 4(Lo(1))2) 

(4.21) A2 = I (tr(A-? B) - (tr(A-1B))2 - 4(Lo(1))2) . 

We can now state 

Theorem 2. Let u be the collocation approximation in S$2)(HN) of the solution y 
of (1.1) and defined by (2.3)-(2.6). If Cm < 1 and if the collocation parameters are 
symmetrical, i. e. if ci = 1 - Cm+-in i = 1,... , m, then the collocation approxima- 
tion u does not converge to the solution y. In particular if m = 1 there does not 
exist a convergent collocation method in S() (HIN). 

Proof. If cm < 1 and if the collocation parameters are symmetrical, one has 
Lo (1)= 1 and 

1?A + 21 2 1+ () >2(m +1) >4. 

Therefore the error recursion (4.13) cannot be stable since at least one eigenvalue 
has absolute value strictly greater than 1. 

For m = 1, the eigenvalues of A-1B are 

2c2-2c, - I -4c +4c +1 

Ali(cl) = 2c 

2c2- 2c, -1- -4c?c 
A2 (C) = 2c+ 

One verifies that -1 < Al(cl) < 0 and A2(Cl) < -1 as cl varies in (0,1). C] 

Theorem 3. Assume that g and K in (1.1) are of class Cm+3. Let u be the 
collocation approximation in S()(HN) of the solution y of (1.1) and defined by 
(2.3)-(2.6). If m > 2 and Cm < 1, then the collocation approximation u converges 
to the solution y if and only if 

(4.22) Q = max{|Al1, 1A21} < 1, 

where Al and A2 are given in (4.20), (4.21) and (4.18). The collocation error 
e = y - u satisfies 

flefll. = sup je(t)j = 0(htm) if I~ and mis even, h --*-0, Nh =T. 
ll t(=I ( c0(hm+l) otherwise, 

Proof. We prove the result for constant kernel K(t, s) _ 1. For non-constant kernel 
we refer to Section 5. Since A-1 B is diagonalizable, there exists a nonsingular 
matrix P such that A-1B = PDP-1 with D = diag(A1,A2, 0,... ,0). We next 
multiply the recursion (4.13) by P-1 and define Zn = P-lEn. We find that 

n 

Zn = DZnl + P-lA-lRn, Zn = DnZo + E Dn-vP-lA-l Rv. 
11=1 

We conclude as in the case cm = 1. Since 1JEofl = 0(hm+l) and jfRnjj = 0(hm+'), 
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FIGURE 1. Domain of convergence for m = 2 

n= 1,... ,N, (see(4.2)), it holds that Z, = 0(hm) if g = 1 and m is even and 
Zn = (9(hm+l) otherwise. With En = PZn, the result immediately follows. O 

Remarks. a) Condition JLo(1)J < 1 is a necessary condition for convergence since 
in case of convergence (Lo(1))2 = A1A2 < 1. However it is not sufficient. This can 
be seen for the example m = 2, cl = 3, C2 = 19 Here Al > 1 but ILo(1)I < 1. 

b) Another sufficient condition for convergence is 

(4.23) 1A + A21 (FlcH)2 + Z-+ Zi < 1. 
(4 23) | 1 1 (a1 c Ci ) - Ci l ) 

Condition (4.23) implies (4.22), but (4.23) is stronger than (4.22). Indeed for m = 2, 
cl = 3/4 and c2 = (3+ 13)/8+5 10-4, we obtain Al 1 0.9976 and A2 , 4.929-10-3 
but A1 + A2 I 1.0026 (see also Method 6 of Section 6). 

c) For a given m and cm < 1, we are interested in the region in which the 
collocation parameters have to lie such that the collocation method is convergent. 
For m = 2, we looked for the curve (in [0, 1] x [0, 1]) defined by Al (cl, c2) = 1. This 
curve is part of the ellipse given by 

2c2 + (-3 + 2c2)cl + 1 - 3c2 + 2c2 = 0. 

This ellipse has center (1/2,1/2), principal axes (1, -1) and (1, 1) and half axes 
v'2/2 and V6_/6. One has convergence if cl and C2 lie in (0,1) x (0,1) and "above" 
this curve (see Figure 1). 

d) A necessary and sufficient condition similar to (4.22) for convergence of piece- 
wise polynomial spline approximations with possible jump discontinuities for solving 
(1.1) with K(t, t) = 0, t E I, g(O) = g'(0) = 0, has been given in [5]. 

5. CONVERGENCE FOR GENERAL KERNELS 

In this section we prove the results of Theorems 1 and 3 for general, non-constant 
kernels. We first rewrite (4.4) for n - 1 with j = m and subtract it from (4.4). We 
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obtain 

(5.1) 
rCi 

K(t j, tn + Th)e,(t, + Th) dT 

c m 

= j K(tn_1mitn-1 +wh)en-1(tn-1+ ?Th)dT 

jK(tnj tn 1 + Th)en- 1 (tn- + T h) dT 

n-2 

+ zj (K(tn-lm, tv + Th) - K(tnj tv + Th))e,4(tM, + Th) dT, 

We again have to distinguish between the two cases cm = 1 and cm < 1. We 
investigate in detail the case cm < 1. The "easier" case cm = 1 can be treated quite 
similarly. We next rewrite (5.1) with n replaced by n - 1 and subtract it from (5.1). 
This yields 

j K(tnj ,tn + Th)en(tn + Th)dT = j K(tn- itn- I + Th)en I(tn-j +'Th)dT 

+ j K(tn- mtn- + Th)en- (tn-1 + Th) dT 

- K(tnj, tn-i + Th)en- 1 (tn- + Th) dT 

rC71rt 

j K(tn_2m, tn-2 + Th)en-2(tn-2 + Th) dT 

+ j K(tn-1j tn-2 + Th)en-2(tn-2 + Th) dT 

1 

+ j (K(tn-1m tn-2 + Th) - K(tnj ,tn-2 + Th))en-2(t,-2 + Th) dT 

n-3 1 

+ Z (K(tn- 1m iti + Th) - K(tnj tv + Th) 

- K(tn-2m, tz, + Th) + K(tn- l1 t,. + Trh))e, (tv, + Trh) dr. 

We now use 

K(tnilmitn-2 + Th) - K(tnjtn-2 + Th) = h(cm - c. - 1)Kt(/nitn-2 + Th), 

K(tn-lm ti, + Th) - K(tnji tv + Th) - K(tn-2m, ti + Th) + K(tn-1jt, + rh) 

= h2ajm Ktt (7jn, tv + Th), 

where tn-lm < En < tnj, tn-2m < in < tnj and the amj are constants depending 
only on the parameters c; and insert (4.3) in the above equation. According to 
(3.1) we may write the integrals of the kernel multiplied by a Lagrange polynomial 
as 

Cj t 

Ktnj XX, tn + ThL& dT = K 1n tna 
_ 

,() f> = L1 .. I 
r 



and 

K(tnj, tn-1 + Th)Le(T) dT = K(tn-li tn-i)be + 0(h), e = 0, ... m 

etc. and divide by K(tn, tn) which is possible because we assumed that JK(t, t)I > 
K > 0. For 1,. .. , m, we obtain 

m 

(ajo + 0(h))en(tn) + E(aje + 0(h))en(tne) 
e= 1 

m 

= (ano ? 0 0(h))e en1(t tn1) ? Z(ane ? 0O(h))ei- (tn ie) 
e= 1 

m 

? (am0 -b0 ? (0(h))en-l(tn-) ? Z(ame -be ? 09(h))en-i(tn-ie) 
e= 
m 

- (amo - bo + 0(h))en-2(tn-2) - (ame -be ?+ (h))en-2(tn-2f) 
e=1 

n-3 n-3 m 

+ h2 C(n) e. (t11) + h2 EDZnD ) e,(tie) + rnj, 
^,=o l,~~~=o e=i 

where rnj contains all the remainder terms and satisfies rnj = 0(hm+2) since 
rn(T) - rn-(T) = 0(hm+2) (see (4.2)). Next we rewrite (4.12) for n - 1 and 
subtract it from (4.12). Using the same notations as in Section 4, Case II, we 
finally obtain the error recursion for En = (en(tn), en(tnl), en(tn))T 

n-3 

(A + 0(h))En = (A + B + 0(h))En- -(B + 0(h))En-2 + h2 E DnEv + Rn 
z=O 

with Rn = 0(hm+2) and with bounded matrices Dnv (whose meaning is clear from 
the above). If h is sufficiently small, the matrix A+ ? (h) is invertible and it follows 
that 

n-3 

E= (I A-1B + hVn-1)En- - (A-1B + hWn2)En-2 + h2 GnvE (I+ Rn, 
z'=O 

where Gnv, Vn and Wn are bounded matrices and Rn = 0(hm+2). We now define 

H (vn-i -wn-2) Mlmn = (GflL 0) Rn =( ) 

and obtain 
n-3 

(5.2) Xn= (F + hHF1)Xn1 + h2 I MmXv + Rn 

0 0~~l= 

If-1 < A1,A2 < 1, the matrix F is diagonalizable and there exists a nonsingular 
matrix T such that 

T1FT= D= diag(1,. . ,1,A1,A2,O,* *,), 
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with each diagonal block diag(1, .. ., 1) and diag(A1, A2, 0, . . . , 0) of dimension m + 
1. Multiply (5.2) by T-1 and define Zn = T-1X, to obtain 

n-3 

Zn = (D + hT-1Hn-iT)Zn-l + h2E T-1 MnTZ, + T-1Rn 
1=0 

Taking norms, we arrive at an inequality of the form 

n-3 

11Zn 11 < (1 + (9(h)) IZnj 1 || + h2L E IIZJ II + (9(hm+2). 
V=O 

Lemma 6 of [7] shows that IIZnII = O(hm+l) and the result of Theorem 3 immedi- 
ately follows. 

It remains to show convergence of order m if A1 = 1. This can be done in the 
following way. We first write the collocation approximation un on [tn, tn+1] in the 
form 

m~~~~~m 

Un(tn + Th) 
= 

ZLe()un(tne) ? htm i 

) E 

where Le(T), e = 1,... , m, are the Lagrange polynomials of degree m - 1 defined 
with respect to the points 0 < c1 < ... < cm < 1, i.e. 

m 

Le(T) = rJ (T-Ck)/(ce-Ck), =1,...,m. 
k=1 

The exact solution can be written in a similar way, namely 

y~t~ 'i-) =n y(m) (((T)) rn 
Y(tn + rh) = jEZLe(T)y(tne) + hnm m jKT(Qr - T) r AO. 1], 

e=i i=1 

such that the error on [tn tn+ 1 ] can be expressed as 

m 
(5.3) en(tn + Th) = EL&(T)en(tnf) + 0(hm), T E [0, 1]. 

* e= 

We now proceed as in the convergence proof of collocation approximations in the 
spline space S( 1) HN). Let A = (aie) and b = (bi,... , bm). be the coefficients 
of the implicit Runge-Kutta method defined by 

aje= j Le(T)dT, beJ Le(T)dT, j, f 1,...,m. 

Since this Runge-Kutta method satisfies condition C(m) (see Theorem 11.7.8 of [8]), 
the matrix A is invertible. We insert (5.3) into (5.1) and proceed as previously. We 
obtain the following recursion for En = (en(tnl), en,(tn))T 

n-2 
(A + 0(h))En 

T A - + h) +h Qn1Ev + 0(hm). 
1=o 
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If h is sufficiently small, A + 0(h) is invertible and it follows that 

n-2 

(5.4) En = MOEr- 1 + h E Q7,rlEl, + 0 (hnm) 
z=O 

where 

=A/Io=A A m(eMA b) 

and e=(O.. . , O, 1)T E Rm. 

Lemma 3. Let MO be defined as above. Then MO has rank one and its only nonzero 
eigenvalue is 

m 

R(oo) =(-1)mfJ 1-cI 
iCl 

where R(z) denotes the stability function of the Runge-Kutta method (A, b,c). 

Proof. MO has rank one because (em - bT) has rank one. Therefore the nonzero 
eigenvalue of MO is equal to its trace. Let A-1 = (Wj)Tmj=. Then 

m m 

tr(Mo) = Z(ami b) Zhi; = 1--bbTAl m R(cxD). 
i=1 j=1 

The result now follows from Theorem IV.3.9 of [9]. 

Since MO is diagonalizable, there exists a nonsingular matrix P such that MO = 

PDP-1 with D = diag(R(oo), O, ... , O). We now multiply (5.4) by P-' and define 
Zn = P-' En. Hence 

n-2 

Zn = DZn-1 + h E P-1Q PZv + ?0(hm) 
V'=0 

Since Al = 1, by Lemma 3 and (4.15) it now holds that 

lDII = JR(oo)K= JCi = A2 < 1. 
i=1 

Therefore 
n-2 

flZnil < A-2lZn1 ll + hL E flZ1,l + 0(hnm) 

and applying Lemma 6 of [7] we conclude that IlZZnl 0= 0(hrm). Thus IIEnfl 0= 0(htm) 
and the result follows from (5.3). In the case Al = 1 the estimate jjeljK, = 0(hnm) 
is optimal, the order of convergence does not exceed m. This has been confirmed 
in numerous numerical experiments. 

6. DISCRETIZED COLLOCATION AND NUMERICAL ILLUSTRATION 

The integrals in (2.5) can in general not be computed explicitly, and thus one has 
to use appropriate quadrature formulas to approximate them. Since the collocation 
methods are convergent of order m + 1 (see Theorems 1 and 3), one has to choose 
quadrature formulas of order at least m + 1 (i.e. of degree of precision at least 
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m). It is natural to use the quadrature formula based on b = (bo,... , b,)T and 
c = (c0,... , Cm)T (i.e. satisfying B(m + 1)) to approximate the definite integral of 
a function over the interval [0,1], 

r1 m 
(6.1) j f (T) dT E bjf (cj). 

j=O 

To approximate the definite integral of a function over the interval [0, c;], one has 
two possibilities. If the kernel K(t, s) is defined also for s > t, one can use 

Cj ~m 

(6.2) f f(T) dT E ajef(ce) 
JO e=o 

This method uses (aje)me=0 defined by C(m+ 1). If K(t, s) is only defined for s < t 
or if one wants to use only values of K(t, s) with s < t, one uses 

(6.3) f (T) dT ci E be f (c cf) 
e=o 

Let it E S$() (UN) denote the resulting discretized continuous collocation approxi- 
mation of y. One shows that the error e = y - it has the same order of magnitude 
as e = y - u. It is sufficient to show that u - it satisfies the estimate 

Hlu -u fzjoc = 09(hm+ 1 ). 

This again leads to recursions of the form encountered in Sections 4 and 5. We 
omit the details. The convergence analysis of the fully discretized method in the 
case cm = 1 can be found in [11]. 

To illustrate the theoretical findings of the preceding sections, we solved (1.1) 
on I = [0,1] with K(t, s) = exp(-ts) and g(t) such that y(t) = exp(-t) cos(t). 
We used the quadrature formulas (6.1) and (6.2) to approximate the integrals in 
(2.5). In Figure 2 we represented the maximal error on [0,1] versus the stepsize 
h = 1/N with N 2,4,8,... ,256. We used double logarithmic scales such that 
one observes the slope p for a method whenever this method has order p. We 
employed the following methods, those with cm = 1 are represented in Figure 2.a), 
those with cm < 1 in Figure 2.b). 

Method 1: m = 1, c1 = 1, (o in Fig. 2.a)). 
Method 2: m = 2, c1 = 1/2, C2 = 1, (x in Fig. 2.a)). 
Method 3: m = 2, c1 = 2/3, c2 = 1, (+ in Fig. 2.a)). 
Method 4: m = 3, c1 = 1/3, c2 = 2/3, C3 = 1, (* in Fig. 2.a)). 
Method 5: m = 2, c1 = 4/5, C2 = 19/20, (o in Fig. 2.b)). 
Method 6: m = 2, c1 = 3/4, C2 = (3 + 13)/8, (x in Fig. 2.b)). 
Method 7: m = 3, c1 = 3/7, C2 4/5, c:3 = 8/9, (+ in Fig. 2.b)). 
Method 8: m = 4, cl = 4/10, C2 7/10, C3 = 8/10, C4 = 9/10, (* in Fig. 2.b)). 
It can be seen that methods 1, 3, 4, 5, 7 and 8 converge with order m + 1. For 

methods 2 and 6 one observes an order reduction: these methods only converge 
with order m. For method 2, R(oo) = 1, for method 6, 0 < A2 < A1 = 1. 
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a) cm = 0 b) cm < 1 
10 10 

0 00 

10-11 10-10 

i0-2 10-1 10 0 10-2 10-1 10 0 

logic O(h) logic O(h) 

FIGURE 2. Error versus stepsize 

7. CONCLUDING REMARKS 

1) For collocation approximations in S$2)(RN) of the solution of a first kind 
Volterra equation, one does in general not observe (local) superconvergence, neither 
at the mesh points t, nor at the collocation points tnj. The error is O(hm+l) in 
all points of [O,T] if-i < R(oo) < 1 or -1 < A1,A2 < 1 and 0(hm) if m is even 
and e = 1 (with cm < 1 ) or R(oo) = 1 (with cm = 1). However in the latter 
case superconvergence is possible if one chooses as collocation parameters 0 < cl < 
... < Cm = 1 the m nonzero Lobatto points in (0, 1] and evaluates the collocation 
approximation at the points t, + vjh where {vj: j = 1,... ,m} are the Gauss 
points in (0, 1). In this case one observes numerically je,(t, + vjh)l = 0(hm+') 
j = 1,. .. ,m, n = 0, . . . ,N-1. This is the case forexample if cl = 1/2, C2 = l and 
v = (3 - x/"3)/6, V2 = (3 + vf3)/6. This property will be investigated elsewhere. It 
is similar to the increase of the order of convergence for collocation approximations 
in S 1) (RN) established in [3]. 

2) The results of this paper can be extended to nonlinear first kind Volterra 
equations 
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Here, in addition to the conditions for g (cf. Section 1), one has to assume that k 
is sufficiently smooth and ak/ay(t, t, z) is bounded away from zero for all t e [0, T] 
and z in a neighbourhood of the solution. In the error recursion (4.4) K(tj , t, +Th) 
then has to be replaced by ak/&y(tnj, t, + Th, ) where* is between y(t, + Th) and 
u(t, + Th). 
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