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EQUIVALENT FORMULAE FOR THE SUPREMUM AND 
STABILITY OF WEIGHTED PSEUDOINVERSES 

MUSHENG WEI 

ABSTRACT. During recent decades, there have been a great number of research 
articles studying interior-point methods for solving problems in mathematical 
programming and constrained optimization. Stewart and O'Leary obtained an 

upper bound for scaled pseudoinverses sup (W X)+W2 112 of a matrix X 

where P is a set of diagonal positive definite matrices. We improved their re- 
sults to obtain the supremum of scaled pseudoinverses and derived the stability 
property of scaled pseudoinverses. Forsgren further generalized these results to 

derive the supremum of weighted pseudoinverses sup II(W X) W2 112 where 

P is a set of diagonally dominant positive semidefinite matrices, by using a 
signature decomposition of weighting matrices W and by applying the Binet- 
Cauchy formula and Cramer's rule for determinants. The results are also 
extended to equality constrained linear least squares problems. 

In this paper we extend Forsgren's results to a general complex matrix X to 

establish several equivalent formulae for sup (W X)+W 112, where P is a 
W EP 

set of diagonally dominant positive semidefinite matrices, or a set of weighting 
matrices arising from solving equality constrained least squares problems. We 
also discuss the stability property of these weighted pseudoinverses. 

1. INTRODUCTION 

In this paper we will use the following notation. cmxn (Rmxn) is the set of 
m by n matrices with complex (real) entries, 0r7L is a subset of 0mxn in which 
any matrix has rank r, Cm(Rm) = Cmxl (RmXl). Im denotes the identity matrix 
of order m, Omxn is the m by n matrix with zero entries (if no confusion occurs, 
we will omit the subscript), and 2 is the Euclidean vector norm or 
the spectral matrix norm. For any matrix X C C;0nxn X+ is the Moore-Penrose 
pseudoinverse of X, XT is the transpose of X, XH is the conjugate transpose of 
X, rank(X) is the rank of X, R(X) is the range of X. X() -< X means that X(i) is 
a submatrix of X formed with a set of rows of X. P(X) is a set of real symmetric 
positive semidefinite matrices of order m = rows of X such that for any W E P(X), 
rank(WX) =rank(X). inf+(X) denotes the smallest nonzero singular value of X. 
For a vector of sequence of increasing r integers J = {il, . i} C {1, ...M, 
X E CmXnf and D = diag(di,. , dm), Xj denotes a submatrix of X formed with 
those rows i1, ir c J and DJJ = diag(dil . dir) J(X) is a set of indexes 
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defined by 

(1.1) 
J(X) = {J = {Jil, ir} 1 < i < < ir < m, rank(Xj) = rank(X) = r}. 

Consider the following mathematical programming and nonlinear constrained 
optimization problem 

(1.2) min f (y), subject to y > 0 and Cy = d, 
yERn 

in which f: Rff ) R, C C R'nx and d C Rm are given. When solving (1.2) by 
an interior method [1], [5], [6], [17], [22]-[24], one will obtain the following weighted 
least squares (WLS) problem 

(1.3) mm IIW2 (Xx - g) 
xERn 

where W = W(r) C 7P(X), T > 0 is a parameter. Similarly, when solving the 
equality constrained least squares problem (LSE) [9] 

(1.4) min IIW2 (Kx -92)11 subject to Lx = gl 

by the weighting method, one will also obtain a WLS problem like (1.3). When 
T -* +oo, the minimum 2-norm solution of (1.3) will tend to the minimum 2-norm 
solution of (1.2) or (1.4). 

Let X C CmXn, g C Cm and W = W(r) C 7P(X) be given. Let X = X + 
6X and - 

= g + 6g be the perturbed versions of X and g respectively satisfying 
rank(W2X) = rank(W2X). Then the minimum 2-norm least squares solutions ir 
and 7r of the problems 

(1.5) min IIW2 (Xx - 9)|I and minmIIW2 (Xx -9)I 
XECn XGCnC 

are respectively 

(1.6) 7r = (W2X)+W'g and r = (W2X)+Wg. 

It is well known [7], [16] that when 116XII -* 0, 116gI -* 0 and rank(W2X) = 

rank(W2X), then 

-r ir. 

In general, when the parameterT -* +xoo, the condition number of the matrix 
W2X would be unbounded, so in this case the WLS problems (1.5) would be "ill- 
conditioned". On the other hand, the boundedness of ir and 7r respectively depend 
upon the upper bounds of 11(W X)+W l1 and 11(W2 X)+W 

1 
when W ranges over 

a subset P C 7P(X). Also, the perturbation bound of 117r - 7rIH depends upon the 
upper bounds of II(W X)+W2 11 and II(W X)+W2 11 when W ranges over a subset 
P C 7P(X), as well as the bounds II1XII and 116g I. So the problems of specifying 
sets P7C P (X) such that sup II(W X)+W~I < +oo and determining conditions 

W C7 

such that sup sup 1K(W WX)W 11 < +oo for some constant q are important 
IIX-XII<77 WEP 

subjects. 
By applying the Binet-Cauchy formula for determinant and Cramer's rule for 

solving a system of linear equations, the authors of [2], [3], [4], [10], [13], [17] 
discussed the geometry of the minimum 2-norm solution of the WLS problem (1.3) 
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and linear equations. The authors of [5], [6], [8], [17], [18], [22]-[24] proposed several 
algorithms and discussed stability for solving the constrained optimization problem. 

When X C R'n', Stewart [15] and O'Leary [12] showed that when P is the set 
of positive diagonal matrices of order m, then sup JI(W2 X)+W2 11 < +oo. They 

WC7s 

also provided an estimate for sup II(W X)+W2 11. We [21] generalized their result 
WE7 

to obtain = min inf+(X(O)). Recently Forsgren [4] further 
sup 11I(WaX)+W 11 X(i) <X 

WE-P 

generalized this result to the case when X Cf RnXn and P C P(X) is a set of 
diagonally dominant positive semidefinite matrices, or a set of matrices arising from 
handling the LSE problem (1.4) by the weighting method. Forsgren constructed 
a signature decomposition of any matrix W E P and applied the Binet-Cauchy 
formula and Cramer's rule to derive these results. 

In this paper we extend Forsgren's results to a general complex matrix X to es- 
tablish several equivalent formulae for sup 1(W X)+W with some P C 1P(X). 

WC7w 
In particular, we will discuss the case that P C 1P(X) is a set of semi-positive diag- 
onal matrices, a set of diagonally dominant positive semidefinite matrices, or a set 
of weighting matrices arising from solving the LSE problem (1.4) by the weighting 
method. We also discuss stability properties of these weighted pseudoinverses. 

The paper is organized as follows. Section 2 will derive equivalent formulae for 
the supremum of weighted pseudoinverses; Section 3 will derive equivalent formulae 
for the supremum of weighted pseudoinverses arising from the LSE problem with the 
weighting method; Section 4 will discuss the stability of weighted pseudoinverses; 
Section 5 will conclude the paper with some remarks. 

In ??3-4, we need the following fact. 

Lemma 1.1. Suppose that L C CmlXn and K C Cm2xn. Let 

(1.7) X (i), ' = (KL+L K(In - L+L)) ' In-L+L 

Then 

(1.8) rank(X) = rank(Y) = rank(L) + rank(K(In - L+L)). 

Proof. It can be shown that X = YZ and Y = XZH. From this we have 

rank(X) > rank(XZH) = rank(Y) > rank(YZ) = rank(X). 

Combining above inequalities and (1.7), the equalities in (1.8) follow. E 

2. EQUIVALENT FORMULAE FOR THE SUPREMUM OF WEIGHTED 

PSEUDOINVERSES 

In this section, we will derive several equivalent formulae for the supremum of 
weighted pseudoinverses of a matrix X E Cr x . We first derive the Moore- Penrose 
pseudoinverse of (W2 X)+W for any W C 1P(X). Let the unitary decomposition 
of XH be 

(2.1) XH =QA soX=A HQH, 

in which QHQ = Ir and A has full row rank r. Then we have 
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Lemma 2.1. For a given matrix X c C7x aind any weighting matrix W e P(X), 
define 

(2.2a) B = (W X)+W2 and C = WX(WX)+X. 

Then 

rank(B) = rank(C) and B+ = C. 

Proof. Let the unitary decomposition of X be as in (2.1). It can be shown that if 
rank(WX) = rank(X) = r, then 

rank(AWAH) = rank(AW2AH) = rank(X) = r, 

so both AWAH and AW2AH are nonsingular. Then 

B = (W2AHQH)+W 2 = Q(AWAH) -lAW, 

(2.2b) C =WAHQH(WAHQH)+AHQH = WAH(AW2AH) 1AWA HQH 

and so 

BC = (Q(AWAH)-l AW)(WAH(AW2AH)l AWA HQH) = QQH = (BC)H, 

CB = (WAH (AW2AH) -1AWAHQH) (Q(AWAH) -1AW) 

= WAH(AW2AH) -1AW= (CB)H. 

From this it is obvious that 

BCB = (BC)B = QQHB =B and CBC= C(BC) = CQQH = C; 

that is, C satisfies all four conditions as the unique Moore-Penrose pseudoinverse 
of B [1]. So C= B+. O 

For given X E C;Xfl and a set P C P(X), we define the following two sets of 
vectors. Let 

X = {x E R(X): JjX+xIH = 1}, 

(2.3) Y(P) = {Y E Cm there exists W E P such that (WX)Hy = O}, 

p(P)= inf lHx-YH1. 
xCX, yEY(P) 

We now present the first main result of this section. 

Theorem 2.1. Suppose that X E Cmxn with r > 0, and a set of matrices P C 
P(X) such that 

(2.4) sup II (W 2 X)+W < +oo. 
WEP 

Then 

(2.5) = inf inf+(WX(WX)+X) = p(P). 
sup II W 1X)+WH WII 

Proof. (1) We first prove that 

W = inf inf+(WX(WX)+X). 
sup II (W X)+ 

* ~WEP 
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Let W E P be given. From Lemma 2.1, ((W X)+W )+ = WX(WX)+X. Let the 
nonzero singular values of (W2 X)+W2 and WX(WX)+X be arranged respectively 
in decreasing order, 

(2.6) Ol ((W 1X)+W 1) >.. > 0r((W X)+Wl) > O. 

011(wX(WX)+X) > ... >- gr(WX(WX)+X) > O. 

Then we have 

(2.7) Xj(WX(WX)+X) f o(( X)+w) j=1 . 

Therefore 

inf+(WX(WX)+X) =- r(WX(WX)+X) - 1 
or ((W2 X)+W2) (W2 X)+W2H 

1 

- sup II(W2 X)+W2- 
WEP 

Because the above inequality holds for any matrix W E P, 

inf inf+(WX(WX)+X) > 1 
WC7' sup II (W 2 X)+W2 

WEP 

By reversing the above procedure, we obtain that for any matrix W E P, 

IKW lX) WlH = inf+(WX(WX)+X) > inf inf+(WX(WX)+X), 

so 

sup >WX WI ?inf inf+(WX(WX)+X). 
sup 1l (W 2 X)+ W21l 

> 

WEP 

(2) We then prove that 

inf inf+(WX(WX)+X) = p(P). 
WE7' 

Let the unitary decomposition of X be as in (2.1). Then from Lemma 2.1, for given 
W E P. 

WX(WX)+X = WAH(AW2AH)-1AWAHQH. 

Let z be the right singular vector of WAH(AW2AH)-1AWAH associated with 
inf+(WX(WX)+X), where IIzlI = 1. Then 

inf+ (WX(WX)+X) = fIWAH(AW2AH) - 1AWAHzIj = IIWX(WX)+X(Qz)ll 

and it can be shown that x = X(Qz) E X. Let y = (I - WX(WX)+)x. Then 
(WX)Hy = 0 so y E Y(P) and 

inf+(WX(WX)+X) = IIWX(WX)+xll = - yll > p(P). 

Because the above inequality holds for any W E P, 

WnEf inf+(WX(WX)X) > p(P). 
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On the contrary, for any e > 0, there exist xE E X, We E 'PI ye E Y(P) such that 
(WEX)HyE = 0 and 

p(P) > X|E - YEll 1 

Because (WEX)HyE = 0, Ye should be of the form Ye = (I - WEX(WEX)+)z for 
some vector z E cm. From the knowledge of the least squares problem [7] and 
noting that xE = XX+xE, we obtain 

IIXE - YEll > min IIxE - (I - WEX(WEX)+)vll = llxE - (I - WEX(WEX)+)xEl 
VEC- 

- llWEX(WEX)+X(X+xE)Il > inf+ (WEX(WEX)+X), 
so 

p(P) > inf+(WEX(WEX)+X) -, > inf inf+(WX(WX)+X) -,E. 

Because e > 0 is arbitrary, letting C-+ 0+ we obtain 

p(P) > inf inf+(WX(WX)+X), 

proving the assertions of the theorem. FII 

Notice that Theorem 2.1 is a generalization of [15], [12], [21]. 
Next we will present the second main result of this section by using an idea in 

[4, Theorem 3.1]. 

Theorem 2.2. Suppose that X E CYLXf with r > 0, integer 1 > r. Let U C R"' 
and P C P(X) be two given sets of matrices which respectively satisfy 

VU E U, rank(UTX) = r, 
(2.8) sup max (UjTX)'UjT <? oo, 

UEU JEJ(UTX) 

where UJT (UT)j, and 

P = {W = UDUT: U e U, D = diag(di, - ,di) > 0 

(2.9) such that rank(WX) = rank(X)}. 

Then 

_ _|| _2 W 2 | sup max ll (UjTX)'UJ'll sup IIl(WX) W+l 
W EP ~~~UEU JCJ(UTX) 

(2.10) - inf inf+(WX(WX)+X) 

-inf min inf? ((UjT) +UjTX). 
UGU JGJ(UTX) 

Proof. Notice that P C P(X). 
(1) We first prove that 

inf min inf+((UjT)+UjTX) = 1 
UEU JEJ(UTX) sup max ll(UjTX)+UjTll 

U JEJ(UTX) 

Let the unitary decomposition of X be as in (2.1). For any U e U and J E J(UTX), 
we have (UTX)j = UJTX and (see (1.1)) 

rank((UTX)J) = rank(UJTX) = rank(UTX) = rank(X) = rank(UjTAH) = r, 
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so UTAH is nonsingular and UJT has full row rank r. Then we have the following 
identities 
(2.11) 

((UT )+ T)+ = (Q(UTA H1UT)+ - (UT)+(UJTAH)QH = (UJT) UJ'X, 

from which we obtain by using the same argument as in step (1) of the proof of 
Theorem 2.1, 

inf min inf+ ((UjT) UjTX) > 1 
UEU JEJ(UX) sup Max I(UTX+UI >O 

ucu JEJ(UTX) 

(2) We then prove that 

sup I|(W2X)+W2 || = sup max 11I(UjTX) UJIl 
Wc7' UcU JCJ(UTX) 

by applying the Binet-Cauchy formula and Cramer's rule. For given W - UDUT E 
P with U E U we have rank(WX) = rank(X) = r. Then 

rank(X) > rank(UTX) > rank(DUTX) > rank(WX) = rank(X); 

that is, 

(2.12) rank(UTX) = rank(DUTX) = rank(WX) = rank(X), 

so AWAH is nonsingular. For any vector g E cm, let 

(2.13) X = (W2X)+W2g = Q(AWAH)-AWg = Q(AHDA)-'AHDg 

in which A = UTAH and j = UTg. Notice that for any J E J(UTX), Ai = 

(UTAH)j = UJTAH is nonsingular. Then by applying the Binet-Cauchy formula 
and Cramer's rule [11], 

(QH), = [(AHDA)-lAHDj]i 

det(AHD(A + (g - Ae)e[i)) 

det(AHDA) 

= det((Aj)H) * det(Djj) * det(Aj) 

JEJ(UTX) ENCJ(UTX) det((AN)H) det(DNN) det(AN) 

Notice that AjQH = UjTX and 9j = UJTg. Then we deduce that 

(2.14) 

n= Q(QH7r) =det(Aj)1 2det(Djj) 

= = ~JCJ(UTX) ZNCJ(UTX) Idet(AN) 2 det(DNN) (jX~jg 

From (2.14), wr is the convex combination of the basic solutions. Then in exactly 
the same way as in the proof of [4, Theorem 3.1, Corollary 5.2], we obtain 

(2.15) sup 1I(W2X)+TW2gI - sup max 1I(UJTX)+UjTll 
WEP UEU JCJ(UTX) 

and 

(2.16) sup ll(W2X)+W< 2|- sup max ll(UJ X)+UJ 11 
wThe Urnu JEJ(UTX) 

The remaining equalities of (2.10) follow from Theorem 2.1. L 
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From Theorem 2.2, with U satisying (2.8) and P defined in (2.9), one of the 
following inequalities implies the other: 

sup max )|(UjX)'UjT|| < +oo, 
UcU JEJ(UTX) 

sup II (W 2X) + W 2l < +0. 

WEP 

Especially, if U only contains a finite number of matrices, then the above inequalities 
are always true. 

In the case that 1 = m and U = {Im} so that P is a set of semi-positive diagonal 
matrices, we then obtain essentially the same results as in [21]. 

Corollary 2.1. Under the notation and the conditions in Theorem 2.2, if 

P = {W = diag(di, ...dm) :dj > O for j = 1, ..,m, 

(2.17) such that rank(WX) = rank(X)}, 

then 

(2.18) 1 1 = P(P) = min inf+(X(2)), 
su 2l(WX)W 1 maxfjX(i)+II 

wow 

in which the maximum or minmum is taken over all X() -< X such that rank(X(2)) 
= r = number of rows of X(i). D 

In the case that P is a set of m x m real symmetric diagonally dominant pos- 
itive semidefinite matrices, Forsgren [4] has constructed an interesting signature 
decomposition of W = UDUT E P, where U _ U(s) has the following form, with 

m(m+l) 
2 

U(s) (u(s) 1, , u(s)i) c RmX I with 

(2.19a) u(s), = ei for i = 1,... , m, 

u(s)m+t(ij) = e. + st(.,j)ej for 1 < i < j < m, 

in which ej is the j-th column of the identity matrix Im, and for 1 < i < < m, 

t(ijj) = m(i - 1) - i(i 1) + j and st(ij) = if Wj < 0, 
- 2 {-1 if wij < 0, 

and 
m 

D = diag(d1, ,di) with di = wii- E Iwij for i = 1, ...m, 
(2.19b) j=1, joi 

dm+t(i,j) = 1wij I for 1 < i < j < m. 

For a detailed description of the signature decomposition of W, we refer to [4]. 
From (2.19a) and (2.19b) we see that U only contains a finite number of m x I 
matrices. Then we obtain the following results by applying Theorem 2.2 and [4, 
?3-?5]. 
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Corollary 2.2. Under the notation and the conditions of Theorem 2.2, if further- 
more, P is the set of real m x m symmetric positive semidefinite diagonally dominant 
matrices, then with U E U defined in (2.19a), we have 

sup II(W2X)+W2 II sup max l(UJ X)+ UJ II 
WE? UCU JCJ(UTX) 

(2.20) = inf inf+ (WX(WX)+X) 
W E? 

= inf min inf+ ((UjT)+Uj X). E Ucu JEJ(UTX) 

Remarks. 1. For given X c CrXn, U satisfying (2.8), P defined in (2.9), (2.14) 
provides the geometric structure of the minimum 2-norm WLS solution 7r of (1.3) 
for given W E P, which is a generalization of well known formulae in [2], [3], [4], 
[10], [13], [17]. 

2. Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 provide several equivalent formulae 
for sup II(W X)+W2IL which extend the results in [15], [12], [21], [4]. 

WE? 

3. EQUIVALENT FORMULAE FOR THE SUPREMUM OF WEIGHTED 

PSEUDOINVERSES ARISING FROM SOLVING EQUALITY CONSTRAINED LINEAR 

LEAST SQUARES PROBLEMS WITH THE WEIGHTING METHOD 

In [4] Forsgren also used the Binet-Cauchy formula and Cramer's rule to obtain 
the supremum of weighted pseudoinverses arising from solving the LSE problem [9] 

(3. la) min W 2 (Kx-g92)11, subject to Lx = gi, 
X 

where L E RI'ml, K E Rm2xn are given matrices, and 91 E Rml, 92 E Rm 
are given vectors. In this section we will generalize Forsgren's results to derive 
equivalent formulae for the supremum of such weighted pseudoinverses for general 
complex matrices L, K and some set P2 C P(KP) with P = n- L+L. 

Let L E C0Mlxn, K E Cm2xn, gi E Cml and 92 E CM2 be given. One method of 
solving (3.1a) is the weighting method. Let m = m1 + m2 and define 

(3.2) g= (91) L(K) and W(r)= (jml W) 

Suppose that rank(X) = r. Let 7r(-r) be the minimum 2-norm least squares solution 
of 

(3.lb) min IIW(T)2 (Xx - g)I 
x E C" 

so 

ir(T) = (W(T) X)+W(r) g. 

Then with 

(3.3) r= lim 7r(T) = lim (W(r) X)+W(r) 9, r +00 r---+oo 
ir is the minimum 2-norm solution of the LSE problem (3.1a). 

In this section we will derive equivalent formulae for the supremum 

(3.4) sup lim II(W(T)2X) W(r)2 11(< +oo) 
WEf2 s-o+ sWu 

for some set P2 C P(KP). We first need the following result: 
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Lemma 3.1. Let LE Cmxn, K E Cm2xn and W E Rm2Xm2 be given matrices. 

Suppose that rank(X) = r and rank(L) = p, where X = (K). Then with W(r) 

defined in (3.2) such that rank(W(-r)X) = rank(X), 

lim (W() 2X)+W(r) - (L+ (W KP)+W 

lim W(r)X(W(T)X)+X = 
r+oo \WKP(WKP)+K 

in which 

(3.6) P = I -L+L' L+ (I -(W2 KP)+W21 K)L. W2K 

So 

(3.7) (WKP(WKP)+K) = (L+ K (W KP)+W 2). 

Proof. Let K = WqK (q = , 1) and let the SVD of (K) be [7] 

(3.8) X-(K) = ZTHH = TH 

where Z, H are unitary matrices of appropriate sizes, 

T = diag(T1, 0), Ti = diag(t1,.. , tr) 

with t? > ? tr > 0 the nonzero singular values of X, Z1, H1 are respectively 
the first r columns of Z, H. Let the CSD of Z be [14] 

(3.9) (Z1 1 Z21 n m1 _ Ui N(Di, D12 '(1H 
( Z Z21 Z22}m2 U2 (D21 D22)J( V2H 

r, m-r 

where U1, U2, V1 and V2 are unitary matrices, 

(3.10) D = diag(IjC,0), D12 = diag(0,SIm1-p) 
D21 = diag(0, S, Ir-p), D22 = diag(Im2+jr, -C,0), 

in which C, S are positive definite diagonal matrices of order p - j with c2 +52 = 

IP-j (when p - j = 0, both C and S are naught). Then from (3.8)-(3.10), 

(3.11) 
lim (W(-r)qX)+W(_r)q 

T 4+00 

= lim (H1T1Qr2qZjHZll + Z2IZ21)T1Hf)+HT1(1r2qZjH, Z2HW') 
,r + oo 

= lim H1 Tl(T Z- 1 Z1 + Z21 Z2 1)1 (2Z z z Wq) 
,r ++oo 

= HT-1(Vidiag(Ij,C-1,o)U[H, Vldiag(O, 0, Irp)U2HWq) 

= HiT-1(Zj+, (Ir -Z+ZjZ)Z2ll Wq). 
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Also from (3.8)-(3.10), 

(3.12) 

liM W(r)qX(W(T)qX)+X liM 
T1 

q 
(z Y) TH H((T Zi1) Ti Hj ) X 

= urn ( (Zr2qZH1Zl + 1H (1q" ZH7)X -r + +oo Z21 

= (zzI I-Z22Z+)X. 

So with q= we have from (3.11) and [19, (3.1)-(3.3), (3.7), (3.8), (3.11)] that 

lim (W(r) 4X)+W(T) = (H1T-1 Zj+', HiT71 (I-Zj 2Z )Z2W 2) 
r- +00 

(3.13) - (Lw1 (W KP) W:), 

where L+ defined in (3.6) is the weighted pseudoinverse for the LSE problem 
W~K 

(3.1a). 
With q = 1 we also have from (3.12) and [19, (3.1)-(3.3), (3.7), (3.8), (3.11)] that 

(3.14) lirm W(r)X(W(T))X)+X ((If=Zt)K) - (wKP(vKP)+K) 

Then (3.7) follows from Lemma 2.1 and (3.5). 

Now we can present the main result of this section by applying Theorem 2.1, 
Lemma 3.1 and by using the idea in [4, ?6]. 

Theorem 3.1. Let L E Cmlxn, K E Cm2xn be given and X = (i) Suppose 

that rank(X) = r and rank(L) = p. Let U2 C Rm2x1 be a given set of matrices for 
some integer 1 > m2, such that 

VU E U2, rank(UTKP) = rank(KP) = r -p, 

(3.15) I 

UEU2 JEJ(UTKP) (UTK) (I u) 

where J(UTKP) is a set of vectors of indexes, 

(3.16) J(UTKP) = { J = {i,.. * * I ir-pi} rank(UJTKP) = rank(KP) = r -p, 

and let P2 be a set of m2 X m2 real matrices defined by 

3.17\ P2 = {W = UDUT: D is a semi-positive diagonal matrix of order 1, 
(3.17) U E U2 such that rank(WKP) = rank(KP)}. 
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Then with W(T) defined in (3.2), 

(3.18) 
1 1 

sup lim ||(W(T)2X)+W(T)I sup maxP (LK (I ) 
WE7'2 + K+)O I suprn max TT 

ueu2 JEJ(UTKP) \J UT K 2J 

inf infm (WKPL )+ = inf min inf1 ((U )( UT) 
W EIP2 WK+(WKP)+K UEU2 JEJ(UTKP) jT j 

1 

sup X=(L+ 1 (W KP)+W )H 

Proof. (1) We first prove that 

su21 urn) =(W(T)2X)+W(T)4 sup m H(u4HK) (' uy) 3 
(3.22) (+) ueu2 JEJ(UTKP) = UT 

by applying the Binet-Cauchy formula and Cramer's rule. 
Let the unitary decomposition of X be as in (2.1), 

(3.19) X () A HQH =rnd (D)Q H. 

Then rank(Li) = rank(L) = p. Let the unitary decomposition of L, be 

(3.20) l, = MLc 

where MHM = 42 and L has full row rank p. For any W = UDUT E 72, T > 0 

and g= 9 (i eCm, let 
9Y2 

(3.21) 7r(Tr) = (W(T) X)+W(,T) 1g = Q(AHD(Tr)A)'AD(-T)?, 

in which 

(3.22) A Leumk D(1) w (TIA D ) and uT(9) 
Then with exactly the same procedure as deriving (2.14), 

(3.23) lr(T) = zIdet(Aj) 12- det (D (Tr)jj ) (3.23) 7r 
J J(A) NEJ(A) Idet(AN) 12 -det (D6(T)N N)Q(Ajgj 

Notice that det(Db(T)jj) has the maximum power TrP of Tr if and only if Aj contains 
entire L. Therefore when Tr -* +00, in both denominators and numerators of 
(3.23) only those terms with Ai and AN containing entire L remain. So when 
Tr -* +00, (3.23) only contains those J, N E J(A) such that {1, ... IP} C J and 
{1, ... ,p}c N. 

On the other hand, for each J E iJ(A) such that {1. I ,P} C J, denote J= 

{1, ... Ip, ip+1,I... , ir } and J2 = ip+ - PI,... Ii - P}. Notice that from (3.19)- 
(3.20), KI-L+)QH = KP, so rank(Uj3K(Ir - L+L)) = rank(Uj KP). Then 

from (3.19)-(3.22) and Lemma 1.1 we have Ai U'k and 

(3.24) r = rank(Aj) = rank(L) + rank(UL K(Ir - L L)) = p + rank (UjTKP), 
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from which we see that J E J(A) with {1,.. , p} C J, if and only if J2 E J(UTKP). 
With the above observation, we obtain by letting r -* +00 in (3.23), 

(3.25) 

7r= lim 7r(r) 
r-+ +00 

-det (uLk) 2 det(Djj) (UL )1 MH 

JEJ(UTKP) ZNEJ(UTKP) Idet (Jk) 2 det(DNN) UJ 92 

in which for simplicity we have used J, N E J(UTKP) instead of J2, N2 E 

J(UTKP). Notice that for any J E J(UTKP), (U~k) is nonsingular. By using 

the notation in (2.1), (3.19) and (3.20) we have 

L 91 A MQH A+ K1 =Q K M Hg, 
(UT 7g) UT7kQ H)~( ( y ( H 

VUJ K J UjT92 J U KQH U 92 J UJ UJT92J 

Substituting this into (3.25) we get 

(3.26) 

7r= lim (W(T) 2X)+W(T)29 
r- +0o 

I-det (uLk) 2 det(DJJ) ( 

JEJ(UTKP) ENEJ(UTKP) Idet (uLk) 2 det(DNN) 

Then by applying the same argument as in [4, ?6], 

(3.27) 

sup lim 2WT)X)W()gH = sup max H(L)(Y\ 
WsP2 i+m00 

(W 
(Ur) EX) 

W ( 
UT) UEU2 JEJ(UTKP) (UJK) 

( 
IUJ92) 

sup lim 2WT X 2(T~= u max (L (m T'V 
sup% 

lim 1 
(WU(e) 

X) 
&W(T) sup 

J(UTKP) \UJTK1 
( UKj 

(2) We then prove that 

inf min inf+ 
L 

UE&12 JEJ(UTKP) k(U3jT)+UjTK} su+JJUTP" UK) , 
UEU2~ ~ ~ ~~~~~UU JE(UKP J(U KP UTJ)U ) sp m l(L)(m 

By applying (2.1), (3.19) and (3.20) we have 

(UJ K) +( J ) (UJK )+( U) 

Q(U 4K) ( UJ ) 
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Because QHQ = Ir and (MH ) has full row rank r, from the above identity 

we obtain 
(3.28) 

((u>K) ('ml UT))+ - (M (U)+) (UP) QH = 

Notice that the above equality holds for any U E U2 and J E J(UTKP). We obtain 
by using the same argument as in step (1) of the proof of Theorem 2.1, 

inf min inf+ 
(T 

I 

UEU2JEJ(TKP) (UT)+UjKj su E(TK)( +) UT) 

UEU2 II JK ) K) 

The remaining equalities of the theorem can be proved by applying Theorems 2.1, 
2.2 and Lemma 3.1. 0 

In the case that 1 = m2 and U2 = {I1m2} so that P2 is a set of semi-positive 
diagonal matrices, we have the following result: 

Corollary 3.1. Under the notation and the conditions in Theorem 3.1, further- 
more suppose that P2 is defined as 

(3.29) P2 = {W = diag(d1,... ,dm2) > 0: rank(WKP) = rank(KP) = r -p}. 

Then 
(3.30) 

1 = 1 = Min inf+ ( 
sup lim Wll(W(T)2x)+W(T>)!I 1- mK(i)m 

WE7'2 'r_* maxil 

in which the maximum or minmum is taken over all K(i) <K such that rank(K(2)P) 
= r-p = number of rows of K(i). 

Proof. In Theorem 3.1, take I = m2 and U2 = {I1m2} . 

In the case that P2 is a set of m2 x m2 diagonally dominant positive semidefinite 
matrices, we can use a similar signature decomposition of any matrix W = UDUT E 
P2, as in [4], to obtain the following result: 

Corollary 3.2. Under the notation and the conditions in Theorem 3.1, further- 
more suppose that P2 is defined as 

M2 

(3.31) P2 = {W E P(KP): wii > E lWij~l. 
j=1, j5i 

Let I = m2(m2+1) For any W E P2, define matrices D = diag(d1,... ,dj) and 2 

U EU2c RM2xI as 

(3.32) di = wii- , wij -for 1<i < 2, 
j=1, jfii 

dM2+t(i1J) = Iwij I for 1 ? i < i in2, 
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U -U(s) = (u(s)1,... ,u(s)i) E Rm2xI, 

(3.33) u(s)i = ej fori = 1,... ,m2, 

U(S)m2+t(ij) = ej + st(i,j)ej for 1 < i < iM2, 

in which ej is the j-th column of the identity matrix Im2 and for 1 < i <j < m2, 

t(iij) = M2(i -1)- i(i+1) j and st(ij) 
I if wfji ?0, 

2 ki if wi < 0. 

Then 
(3.34) 

sup urn 1 WE)'2~~in inf+ W 
L 

sup lim II(W(Tr)lX)+W(T)2 WEP(WKP)+K 
WEP2 T- +oo 

=inf min inf+ 
L 

UEU2 JJUX ((UjT) +UT K) (W2KP W2 UE2JEJ(U'''X) supJ 11K SPI(L+ (WKP)+W21 

Proof. From [4, ?3], any matrix W E P2 has the form W = UDUT with D, U 
defined in (3.32) and (3.33). ED 

Remarks. 1. For given L E Cp lx K e 0m2xn such that X = (K) e Crn>2n, u2 

satisfing (3.15), P2 defined in (3.17), (3.26) provides the geometric structure of the 
minimum 2-norm solution ir of (3.1a) for given W E P2, which is a generalization 
of the formula in [4]. 

2. Lemma 3.1 and Theorem 3.1 provide algebraic relations between the ma- 
trix lim (W(r)2X)+W(r)2 and its pseudoinverse, which can be used to study 

Tr-+OO 

properties of the constrained least squares problem. 
3. Theorem 3.1 and Corollaries 3.1, 3.2 provide several equivalent formulae for 

sup lim jj(W(r)2X)+W(-)21j, 
WEP2 T+oo 

which extend the results in [4]. 

4. STABILITY OF WEIGHTED PSEUDOINVERSES 

In the theory of pseudoinverses, one important problem is the boundedness of 
pseudoinverses under small perturbations. Let X E qnxn and X = X + 6X E 
Cmxn. Then the following results are well known (e.g., [16, pp. 136-152]). 

1. If 11XII- IIX+II < 1, then rank(X) > rank(X). 
2. If 116X1 IIX+11 < 1 and rank(X) > rank(X), then IIXI+I > j,. 
3. If 118XII * X+11 < 1 and rank(X) = rank(X), then + I ? 1 X+ ? 

IIx+I1 
1- II6X11IIX+ II 

So IIX+lI are bounded for all small perturbations 6X with 116XII 11X+iI <rq < 1 
iff rank(X) = rank(X), where 0 < rq < 1 is a constant. For stability of weighted 
pseudoinverses, the situation is more complicated. 

In this section we will discuss the stability property of (W2 X)+W i over a set 
P C P(X). We use the following definition. 
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Definition 4.1. For given X E Cm"rL and a set P C P(X), suppose that 

(4.1a) sup Il(WiX)+TW II < +X. 
WEP 

We say that (W2X)+W2 is stable over P, if there exists a constant 77 > 0 which 
does not depend on the choice of W E P, such that 

(4.1b) sup sup 1V(W4(X+6X))+W 1 
<+X. 

X+6XEC-xn-, 116X1 <?, WEP 

We now have the following theorem. 

Theorem 4.1. Suppose that X E C7mx with 0 < r < m, an integer 1 > r. Let 
U C Rmxl andP C P(X) be two given sets of matrices which respectively satisfy 

VU E U, rank(UTX) = rank(X), 
(4.2) inf min inf+ ((UJT)+UJTX) > 0, 

UEU JEJ(UTX) 

(4-3) P = {W =UDUT : D = diag (di I ,. di) > O. U E U. 

such that rank(WX) = rank(X)}. 

Then (W IX)+W2 is stable over P, if and only if for any U E U and any vector 
of sequence of increasing r integers J = {il , * * I ir} with 1 < il < ... < ir < m, 

(4.4) rank(UJT) = r implies rank(UJTX) = r. 

Furthermore, if the condition in (4.4) holds, then for any X = X + 8X E Cr` 
such that 11 6X1 < a p(P) =r- with 0 < a < 1 some constant, we have the following 
estimate: 

(4.5) Ppi) + iI^XII < sup II(WX)WI <p(p) - 6XI 

Proof. Necessity. Suppose that there exists a matrix U E U and a vector of sequence 
of increasing r integers N = {ii...I ir } with 1 < i1 < < ir < m, such that 
rank(Uk) = r but rank(U'X) = q < r. Then with the unitary decomposition of 
X = AHQH, see (2.1), for any e > 0, there always exists a matrix EE E Cmxr, 

such that ilEE I < . p(P) and with Ae' - AH + Ee, TJAH is nonsingular. Let 
XE = A HQH. Then Xe E Ce -nx N E J(UTXE) and 

inf min inf+((UJT)+UjTX,,) < inf+(((uNT)+(uNTXE) = or((UN)+UNXe) 
UEU JEJ(UTXE) 

< 0r((UNT)+UNX) + ||(UNT)+UNTEeQH| < 11EE11 < Ep(P). 

So according to Theorem 2.2, for any constant 71 with 0 < 7 <K 1, 

sup sup Hl (W42 (X +8bX))W2 2 1? > lim sup II (W2XE)+W 2H 

X+bXECrcn Xn, I 6XI <r1, WETp E?+O WEP 

> lim +00. E- 0+ ep(P) 

So when the condition in (4.4) does not hold, (W2X)+W2 is not stable over 'P. 
Sufficiency. Suppose that the condition in (4.4) holds. Let 0 < a < 1 be a constant 
and let 7r _ a p(P). Suppose that any matrix 6X e CmXn satisfies 116XI < oa.p(P) 

and X = X + 8X E C7!Xfn. Then for any U E U and any vector N E J(UTX), 
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rank(UT) = r and so N E J(UTX). We then have from the perturbation of the 
singular values [7], [16], 

r ( (UN) +UNX) ? r((UN) UNX) - ||(UN)+UN6X|| 
> P(P) - H16XIH > (1 - a)p(lP) > 0, 

(4.6) Or((UN)+UNX) < 0r((UN)+UNX) + II(UN)+UN6XII 

? Nr((U)+UNTX) + 116X||. 

Notice that (4.6) holds for any U E P and any N E J(UTX). We conclude by 
applying Theorem 2.2 that 

1 
~~~I(iM+i 1I 

1 

p(P) + IISXII WEup I!(W2X)W (P)- 6XII < (1 -a) ( ))' 

proving (4.5). Because the above estimate holds for any X = X + 6X EC;:" 
with 1&6XII < a p(P), (W X)+W 

1 
is stable over 'P. 

In the following we specify two special cases. 

Corollary 4.1 [21, Theorem 3.1]. If in Theorem 4.1, 

(4.7) P = {W = diag(di, , dm): 0 < W E P(X)}, 

then (W 2X)+W2 is stable over]P, if and only if 

(4.8) any r rows of X are linearly independent. LI 

Corollary 4.2. If in Theorem 4.1, 
m 

(4.9) P = {W EP(X): wii > E IwijI11 
j=1, jsi 

then (W X)+W is stable over P, if and only if the following condition holds: 
Let e[T and xi respectively be the i-th row of Im and X for i = 1, , m. Let UJT 

and UJTX have the forms 

eT 

(4.10) UJT T e, UJTX X| q 

eT> ?eT Xj,-~q ?Xkr-q 

in which q is any integer satisfying q < r, 1 ?i1 <...< iq < m and 1 < it < kt < 
fort= 1, ,r-q. Then 

(4.11) rank(UJT) = r implies rank(UJTX) = r. 

Proof. Under the condition of the corollary, any W E P has the signature decompo- 
sition W = UDUT [4], where U E Rmr< (I - m(mr+1)) has the form in (2.19a) and 
D has the form in (2.19b). Let a vector of indexes J be of the form J = {i1, i, I} 
with 1 < i1 <.. < ir < 1. Then UJT and UJTX respectively have the forms in 
(4.10). So by applying Theorem 4.1 we obtain the condition in (4.11). El 
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Now we consider the stability condition for lim (W(Tr) 2X)+W(r) 2 arising 
T-+ 

00 

from solving the LSE problem (1.4) by the weighting method. 
Suppose that 

(4.12a) 

L Cmxn K E Cm2xn X = (K) E CmXn and W(r) - ( w)' 

where m =m1 + M2, W E P(KP), and 

(4.12b) L = L+ EL, k= K+ EK and X= (K) X +Ex 

are the perturbed versions of L, K and X, respectively. From (3.5) and (3.7) we 
see that for given W E P(KP), lim (W(r)2X)+W(r)2 is bounded for all small 

T -+00 
perturbations EL, EK and EX; we need conditions 

(4.13) rank(L) = rank(L) = p and rank(X) = rank(X) = r. 

Now we define the stability of lim (W(T) 2 X)+W(r) 2 over a set P2 C P(KP). 
T + 00 

Definition 4.2. Let L, K, X be given as in (4.12a) and P2 C P(KP) be a given 
set of matrices. For any W E P2, W(-r) is defined in (4.12a). Suppose that 

(4.14a) 1 = sup lim II(W(T)2X)+W(r)H2 1 < +0. 

P(lA) - WE P2 -4?+0O 

We say that lim (W(T)2X)+W(T) 2 is stable over P2, if there exists a constant 
T-rO+ 

r} > 0 which does not depend on the choice of W E P2, such that 

(4.14b) sup sup lim 1I(W(T) 2 (X + Ex))+W(T)AII < +o. 
X+Ex Crn jjExjj<?7 WEP2 T-*+00 

L+ELECP 1 X n 

We now state the following theorem. 

Theorem 4.2. Suppose that L, K, X are as in (4.12a), U2 satisfies (3.15) and P2 
is defined in (3.17). Then lim (W(T) 2X)+W(-r)2 is stable over P2, if and only 

if for any U E U2 and any set of indexes J = {il - ir-p} with 1 < il < ... < 
ir-p < M2, 

(4.15a) rank(UjT) = r -p implies rank(UjTKP) = r -pi 

which is equivalent to 

(4.15b) rank(UJT) = r - p implies rank (U4l'K) = r. 

Furthermore, if the condition in (4.15a) holds, then for any L, K and X which are 
defined in (4.12b) and satisfy the conditions in (4.13), such that IIExII < a p(P2) 
17 with 0 < a < 1 some constant, we have the following estimate: 

(4.16) 
1 < sup lim II (W(r) 2 2X)W()I < 1 

P(7P2) + IlExil1 - P2 r-*?00 - (P2) - hlEx II' 
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Proof. Necessity. If there exists a matrix U E U2 and a set of indexes N = 

{ill.. , Iir-p} such that rank( UI) = r - p but rank(UkKP) = q < r - p, then for 
any e > 0, we can add into K a small perturbation EK such that IIEKHI <e P2) 

and rank(UNKP) = rank(KP) = r - p. Let XE = (K) then rank(X,) =rank(X) 

= r and N E J(UTKP). So by applying Theorem 3.1 we have 

inf min inf+ (TI T < ar (T LT' 
UEU2 JEJ(UTkp) (UjT) + UJK) - (UNT) + UN K) 

<- r ((U L)+ukK) + (UNT)+UNEKII < ||EK|| < Ep(P2), 

because in this case rank ((UT)L4T ) = rank(L) + rank((UN)+UNKP) < r by 

applying Lemma 1.1. So according to Theorem 3.1, for any 0 < r1 << 1, 

sup sup lim H(W(T) I(X + Ex))+W(T),T) 
X+ExEC-XnI1Exj?< 7 WEP2 T->+OO 

L+ELECP071 X n 

> lim sup lim H(W(T) XE)+W(T) H > lim 1 0 = 
'E-0+ WET'2 T+ COO0 E-ON P( 

So when the condition of the theorem does not hold, then lim (W(T)2X)+W(,T) 

is not stable over P2. Sufficiency. Suppose that the condition in (4.15a) holds. Let 
a be a constant satisfying 0 < a < 1 and let -= a p(P2). Let L = L + EL, K = 

K+EK, X = L+Ex be any perturbed matrices satisfying conditions in (4.13) with 

11 Ex IH < r. Then for any U E U2 and N E J(UTKP), rank(UNT) = rank(UNTKP) = 
r - p and so rank(UNTKP) = r - p. We then have from the perturbation of the 
singular values [7], [16], 

((UT) + uK) - r ((UNT )+UNK) 
- l ((UT)+UNEK) 

(4.17) P(P2) - IlEx H1 > (1- a)P(P2) > 0, 

((Ur +uK <) ?r L(Uk UK) + IEx II. 

Notice that (4.17) holds for any U E P2 and any N E J(UTK)). We conclude by 
applying Theorem 3.1 that 

P(12) + suEx 11 < up lim IIV(W(T) 2X)+W(T) 2 

1 1 

P(P2) - IlEx 11 (1- a)p(P2)' 

proving (4.16). Because the above estimate holds for any L, K, X satisying (4.13) 
and IIEx I a- p(P2), lim (W(-r) X)+W(T) is stable over P2. The equivalence 

of (4.15a) and (4.15b) is supported by Lemma 1.1. L 

In the following we specify two special cases. 
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Corollary 4.3. If in Theorem 4.2, 

(4.18) P2 = {W = diag(d1, , dm2): 0 < W E P(KP)}, 

then lim (W(T)2X)+W(T)2 is stable over P2, if and only if for any vector of 
r- +00 

r-p indexes J = {il,. ,irp} with 1 < ii < ...< ir-p < m2, 

(4.19a) rank(KjP) = r -p, 

which is equivalent to 

(4.19b) rank (K) =r. 

Proof. In this case U = {1m2 }. So for any vector of indexes J = {il, X *Xp} with 
1 < i ... < ir-p < M2, UjT is of full row rank, and UJTKP = KJP. Then by ap- 
plying Theorem 4.2 we immediately reach the assertion in (4.19a). The equivalence 
of (4.19a) and (4.19b) is supported by Lemma 1.1. E 

Corollary 4.4. If in Theorem 4.2, 
M2 

(4.20) P2 = {W E P(KP): Wii > E 1wijil 
j=1, j5i 

then lim (W(Tr) X)+W(T) is stable over P2, if and only if the following condi- 
,r + oo 

tion holds: 
Let eT and ki respectively be the i-th row of 1m2 and K for i = 1, , i2. Let 

UJT and UJTK have the forms 

eTki 

T TTTT~e kiq 
(4.21) U = eT 

q 
T 1 JTK = 

eT eT kj ki P ej-p-q ? 1 -pq -p- ____ 

in which q is any integer satisfying q < r - p, 1 < i1 < ... < iq < m2 and 
1 < jt < lt m2 for t = 1 ... r-p-q. Then 

(4.22a) rank(UJ) = r - p implies rank(UJTKP) = r -p, 

which is equivalent to 

(4.22b) rank(UJT) = r - p implies rank (U~K) = r. 

Proof. Under the condition of the corollary, any W E P2 has the signature de- 
composition W = UDUT [4], where U E Rm2xI (I = m2(m2+1)) has the form in 
(3.33) and D has the form in (3.32). Let any vector of indexes J be of the form 
J = {il,*. i ir-p} with 1 < i1 < .<.r< p < 1. Then U3T and UJTK respectively 
have the forms in (4.21). So by applying Theorem 4.2 we obtain the equivalent 
conditions in (4.22a) and (4.22b). O 
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Remark. As mentioned at the beginning of this section, for a given matrix X, rank 
preserving of perturbed matrices X = X + 8X guarantees boundedness of IfX+ 1+ 
for all small perturbations 8X satisfying 116XII . IIX+II < < 1 for any constant 
0 < 7r < 1. 

From the discussion of this section, we see that when analyzing stability of 
weighted pseudoinverses of X, rank preserving of perturbed matrices X is not 
adequate to guarantee the stability of weighted pseudoinverses of X over a set P or 
P2. We need some extra structural conditions on the matrix X. So when analyzing 
stability properties of interior methods, one should take special care. 

5. CONCLUDING REMARKS 

In this paper we have discussed equivalent formulae and the stability properties 
of weighted pseudoinverses (W(r)lX)+W(r)l over a set P C P(X) when the 
supremum is finite. We have also considered several specific cases when the sets of 
weighting matrices are semi-postive diagonal, real symmetric diagonally dominant 
positive semidefinite matrices, and weighting matrices arising from solving the LSE 
problem. The results generalize those in [15], [12], [21], [4]. 

We have also studied algebraic properties of the weighted pseudoinverses arising 
from solving the LSE problem, which can be used to further study the LSE problem. 
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