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EQUIVALENT FORMULAE FOR THE SUPREMUM AND
STABILITY OF WEIGHTED PSEUDOINVERSES

MUSHENG WEI

ABSTRACT. During recent decades, there have been a great number of research
articles studying interior-point methods for solving problems in mathematical
programming and constrained optimization. Stewart and O’Leary obtained an

upper bound for scaled pseudoinverses sup H(W%X )"’W% |l2 of a matrix X
wepP
where P is a set of diagonal positive definite matrices. We improved their re-

sults to obtain the supremum of scaled pseudoinverses and derived the stability

property of scaled pseudoinverses. Forsgren further generalized these results to

derive the supremum of weighted pseudoinverses v?/up |[(W% X )"‘W% ||2 where
P

P is a set of diagonally dominant positive semidegnite matrices, by using a

signature decomposition of weighting matrices W and by applying the Binet-

Cauchy formula and Cramer’s rule for determinants. The results are also

extended to equality constrained linear least squares problems.
In this paper we extend Forsgren’s results to a general complex matrix X to

1 1
establish several equivalent formulae for sup ||(W2X)tW 2|2, where P is a
weP
set of diagonally dominant positive semidefinite matrices, or a set of weighting

matrices arising from solving equality constrained least squares problems. We
also discuss the stability property of these weighted pseudoinverses.

1. INTRODUCTION

In this paper we will use the following notation. C™*™ (R™*") is the set of
m by n matrices with complex (real) entries, C**™ is a subset of C™*™ in which
any matrix has rank r, C™(R™) = C™*! (R™*!). I,, denotes the identity matrix
of order m, O, xn is the m by n matrix with zero entries (if no confusion occurs,
we will omit the subscript), and || - || = || - ||2 is the Euclidean vector norm or
the spectral matrix norm. For any matrix X € C™*" X is the Moore-Penrose
pseudoinverse of X, X7 is the transpose of X, X is the conjugate transpose of
X, rank(X) is the rank of X, R(X) is the range of X. X(¥ < X means that X(® is
a submatrix of X formed with a set of rows of X. P(X) is a set of real symmetric
positive semidefinite matrices of order m = rows of X such that for any W € P(X),
rank(W X) =rank(X). inf;(X) denotes the smallest nonzero singular value of X.
For a vector of sequence of increasing r integers J = {i1,---,4,} C {1, -, m},
X € C™*™ and D = diag(dy,- - ,dm), X denotes a submatrix of X formed with
those rows i1,--- ,i, € J and Dy ; = diag(d;,, - ,d;.). J(X) is a set of indexes
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defined by

(1.1)
JX)={J={t1, - ,ir}:1 <4 <+ <% <m, rank(X;) = rank(X) =r}.

Consider the following mathematical programming and nonlinear constrained
optimization problem

(1.2) Iél}lrin f(y), subject toy >0 and Cy =d,
y n

in which f: R* - R, C € R™*™ and d € R™ are given. When solving (1.2) by
an interior method [1], 5], [6], [17], [22]-[24], one will obtain the following weighted
least squares (WLS) problem

. 1
(1.3) nin [W?2(Xz —g)l,

where W = W(r) € P(X), 7 > 0 is a parameter. Similarly, when solving the
equality constrained least squares problem (LSE) [9)

(1.4) rg}rcn ||W2%(Km —g2)|| subject to Lz = ¢;
T n

by the weighting method, one will also obtain a WLS problem like (1.3). When
T — 400, the minimum 2-norm solution of (1.3) will tend to the minimum 2-norm
solution of (1.2) or (1.4).

Let X € C™*", g € C™ and W = W(r) € P(X) be given. Let X = X +
6X and § = g + 6g be the perturbed versions of X and g respectively satisfying
rank(W 2 X) = rank(W 2 X). Then the minimum 2-norm least squares solutions 7
and 7 of the problems

. 1 . 1, & —
(1.5) min[[W=(Xz—-g)| and min|W2(Xz - g)l

are respectively
(1.6) r=(WiX)*Wig and 7= (W2X)*Wzj.

It is well known [7], [16] that when [|6X]| — 0, ||6g]| — O and rank(W2X) =
rank(W2X), then

T — .

In general, when the parameter 7 — +00, the condition number of the matrix
W2 X would be unbounded, so in this case the WLS problems (1.5) would be “ill-
conditioned”. On the other hand, the boundedness of 7 and 7 respectively depend
upon the upper bounds of ||(W 2 X)*Wz|| and ||(W%X)+W% || when W ranges over
a subset P C P(X). Also, the perturbation bound of |7 — 7|| depends upon the
upper bounds of ||(WzX)*Wz|| and ||(WzX)TWz| when W ranges over a subset
P C P(X), as well as the bounds ||§X|| and ||6g||. So the problems of specifying
sets P C P(X) such that :}ul; [(WzX)*Wz| < 400 and determining conditions

€

such that sup  sup ||(WzX)*Wz|| < +oo for some constant 7 are important
IX-X[<n WEP
subjects.
By applying the Binet-Cauchy formula for determinant and Cramer’s rule for
solving a system of linear equations, the authors of [2], [3], [4], [10], [13], [17]
discussed the geometry of the minimum 2-norm solution of the WLS problem (1.3)
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and linear equations. The authors of [5], [6], [8], [17], [18], [22]-[24] proposed several
algorithms and discussed stability for solving the constrained optimization problem.
When X € R™*"  Stewart [15] and O’Leary [12] showed that when P is the set

of positive diagonal matrices of order m, then sup ||(W2X)*Wz|| < +oco. They
WweP

also provided an estimate for sup ||(W2X)*Wz|. We [21] generalized their result
wepP

e Sevens Tl XI(’El)iilx inf, (X®). Recently Forsgren [4] further
wepP

generalized this result to the case when X € R™*™ and P C P(X) is a set of
diagonally dominant positive semidefinite matrices, or a set of matrices arising from
handling the LSE problem (1.4) by the weighting method. Forsgren constructed
a signature decomposition of any matrix W € P and applied the Binet-Cauchy
formula and Cramer’s rule to derive these results.

In this paper we extend Forsgren’s results to a general complex matrix X to es-
tablish several equivalent formulae for sup ||(WzX)*Wz|| with some P C P(X).

WeP

to obtain

In particular, we will discuss the case that P C P(X) is a set of semi-positive diag-
onal matrices, a set of diagonally dominant positive semidefinite matrices, or a set
of weighting matrices arising from solving the LSE problem (1.4) by the weighting
method. We also discuss stability properties of these weighted pseudoinverses.

The paper is organized as follows. Section 2 will derive equivalent formulae for
the supremum of weighted pseudoinverses; Section 3 will derive equivalent formulae
for the supremum of weighted pseudoinverses arising from the LSE problem with the
weighting method; Section 4 will discuss the stability of weighted pseudoinverses;
Section 5 will conclude the paper with some remarks.

In §8§3-4, we need the following fact.

Lemma 1.1. Suppose that L € C™*™ and K € C™2*™. Let

7 X= (IL(> , Y= (KLL+L K(I,,EL+L))’ Z= (InL—+LL+L)'

Then
(1.8) rank(X) = rank(Y) = rank(L) + rank(K (I, — L*L)).
Proof. It can be shown that X =Y Z and Y = XZ. From this we have
rank(X) > rank(X Z¥) = rank(Y') > rank(Y Z) = rank(X).
Combining above inequalities and (1.7), the equalities in (1.8) follow. a
2. EQUIVALENT FORMULAE FOR THE SUPREMUM OF WEIGHTED

PSEUDOINVERSES

In this section, we will derive several equivalent formulae for the supremum of
weighted pseudoinverses of a matrix X € C*". We first derive the Moore- Penrose

pseudoinverse of (WzX)*Wz for any W € P(X). Let the unitary decomposition
of X be

(2.1) XH=QA soX=AHQH,

in which QfQ = I, and A has full row rank . Then we have
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Lemma 2.1. For a given matriz X € C™*™ and any weighting matriz W € P(X),
define

(2.2a) B=(WiX)*W? and C=WXWX)*X.
Then
rank(B) = rank(C) and BT =C.
Proof. Let the unitary decomposition of X be as in (2.1). It can be shown that if
rank(W X) = rank(X) = r, then
rank (AW Af) = rank(AW?A¥) = rank(X) = r,

so both AW AF and AW?AH are nonsingular. Then
(2.25) B=(W2AHQH)tW2 = QAW AH) 1AW,

C=WAHQH(WAHQMYT AHQH = WAH (AW?2AH)~ 1AW AHQH,
and so

BC = (Q(AW AR 1AW (W AH(AW?2AF) 1AW AHQH) = QQF = (BC)*,
CB = (WAH(AW2AT) 1AW AR QH ) (QAW AT) 1 AW)
= WAH(AW2 AT AW = (CB)H.
From this it is obvious that
BCB=(BC)B=QQ"B=B and CBC=C(BC)=CQQ" =cC;
that is, C satisfies all four conditions as the unique Moore-Penrose pseudoinverse
of B [1]. So C = B*. g

For given X € C™*™ and a set P C P(X), we define the following two sets of
vectors. Let

X ={zeR(X): |X*a =1},
(2.3) V(P)={ye€C™: there exists W € P such that (WX)*y = 0},

P) = inf z -yl
p(P) :ceX,ye;v(P)” yll

We now present the first main result of this section.

Theorem 2.1. Suppose that X € CI**™ with r > 0, and a set of matrices P C
P(X) such that

(2.4) sup [(W2X)TW?|| < +oo.
wep
Then
1 e + _
(2.5) = v‘llrg;)mﬁ(WX(WX) X) = p(P).

sup [|(W2X)*Wz||
WeP
Proof. (1) We first prove that
1
infp inf, (WX(WX)*X).

sup [(WEX)¥WE|| ~ we
wep
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Let W € P be given. From Lemma 2.1, (W2 X)TW2)* = WX(WX)* X. Let the
nonzero singular values of (W2 X)*W? and W X (W X)* X be arranged respectively
in decreasing order,

o (WEX)tTW32) > .. > 0, (W2 X)TW2) >0,

(26) o (WXWX)TX)> - > o (WX(WX)TX) > 0.

Then we have
@7 o (WX(WX)™X) = !

: — forj=1,---,7
ort1-; (W2 X)*W2)

Therefore

1 1

inf (WX (WX)*X) = or(WXWX)*X) = s = Ty

1
= sup [[(WEX)TWi||
wWeP

Because the above inequality holds for any matrix W € P,
1

sup ||(W2 X)* W3
weP

. . + >
ul/réfp inf,( WX(WX)"X) >

By reversing the above procedure, we obtain that for any matrix W € P,
1

— = inf,( WX(WX)TX) > inf inf, ( WX(WX)TX),

TR = VX OVX)TX) 2 i, (WX (X))

SO

11 — > inf inf, (WX(WX)"X).
sup [[(W2X)*Wz| — wep
wep
(2) We then prove that
i +x) —
ul/réfp infy ( WX(WX)TX) = p(P).
Let the unitary decomposition of X be as in (2.1). Then from Lemma 2.1, for given
WeP,
WXWX)TX = WAH (AW?2AT) 1AW AHQH.
Let z be the right singular vector of WAH(AW?2AH)~1 AW AH associated with
inf, (WX (WX)*X), where ||z|| = 1. Then
inf, (WX(WX)TX) = |[WAH(AW2AT)TTAW AT 2| = |[WX(WX)T X (Q2)

and it can be shown that z = X(Qz) € X. Let y = (I — WX(WX)")z. Then
(WX)Hy =0s0ye€ Y(P)and

inf, (WX(WX)*X) = [WX(WX)*a| = |lz - yl| > p(P).
Because the above inequality holds for any W € P,
. . + >
ul/réfp inf,(WX(WX)TX) > p(P).
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On the contrary, for any € > 0, there exist z. € X, W, € P, y. € Y(P) such that
(WX)Hy. =0 and
p(P) > ||lze — yell — €

Because (W.X)fy. = 0, y, should be of the form y. = (I — W. X(W.X)")z for
some vector z € C™. From the knowledge of the least squares problem (7] and
noting that r. = X X*z., we obtain

”xe - ye” > Igg}n”we - (I - WeX(WeX)+)U|I = ”ze - (I - WeX(WeX)+)x6”
= ||W€X(W€X)+X(X+xe)|| > infy (WEX(WeX)"'X),
SO
p(P) > infy (WX(W.X)*X) = e 2 inf infy (WX(WX)*X) e

Because € > 0 is arbitrary, letting ¢ — 0" we obtain
> . . +
p(P) 2 jnf inf  (WX(WX)"X),

proving the assertions of the theorem. ]

Notice that Theorem 2.1 is a generalization of [15], [12], [21].
Next we will present the second main result of this section by using an idea in
(4, Theorem 3.1].

Theorem 2.2. Suppose that X € C™*™ with r > 0, integer | > r. Let Y C R™*
and P C P(X) be two given sets of matrices which respectively satisfy

YU € L{,rank(UTX) =r,

su max |[((UTX)*UT|| < o0,
UEIL JEJ(UTX)”( JX)TUS

where UT = (UT),, and
P={W=UDUT: Uecl, D=diagd, - ,d)>0
such that rank(W X) = rank(X)}.

(2.8)

(2.9)

Then
1 1

Wi+ Wil sup max |(UTX)TUT||
v?}g;”( X)WL swp ek 105 %) 1

(2.10) _ inf s +
v{l/%f;D inf, ( WX(WX)"TX)

= inf in __infy (UT)YUTX).
Sl se il P00

p(P)

Proof. Notice that P C P(X).
(1) We first prove that
inf  min inf, (UD)TUTX) = !

UeU JeJ(UTX) Sug JG%%X)||(U}"X)+U31||‘
€

Let the unitary decomposition of X be as in (2.1). Forany U € Y and J € J(UTX),
we have (UTX); = UTX and (see (1.1))

rank((UTX)J) = rank(UfX) = rank(UTX) = rank(X) = rank(UfAH) =r,



THE SUPREMUM AND STABILITY OF WEIGHTED PSEUDOINVERSES 1493

so UT A" is nonsingular and U7T has full row rank r. Then we have the following
identities
(2.11)

(UFX)*UT)*T = (QUFAT)TIUD)* = (UD)*(UTAT)QY = (UT)'UT X,
from which we obtain by using the same argument as in step (1) of the proof of
Theorem 2.1,

inf  min _infy (UT)*UTX) = ! 0.

ved jeJ(UTX sup max U; X)tU
( ) Ueu JGJ(UTX)”( J ) J ”
(2) We then prove that

1 1
sup [[(W2X)tTWz2| = su max urx)tut
WGI;)”( ) Il UEIZ{ JeJ(UTX)”( 7 X)TUT ||

by applying the Binet-Cauchy formula and Cramer’s rule. For given W = UDUT ¢
P with U € U we have rank(W X) = rank(X) = r. Then

rank(X) > rank(UT X) > rank(DUT X) > rank(W X) = rank(X);
that is,
(2.12) rank(UT X) = rank(DUT X) = rank(W X)) = rank(X),
so AW AF is nonsingular. For any vector g € C™, let
(2.13) r=WiX)*Wig=QAWAH) AWy = Q(A¥ DA)~'AH Dg,
in which A = UTA¥ and § = UTg. Notice that for any J € JUTX), A, =

(UTAH); = UTAF is nonsingular. Then by applying the Binet-Cauchy formula
and Cramer’s rule [11],

(Q"m); = [(A¥ DA)~' 4" D),
_ det(A"D(A + (§ — Aey)e]))
det(AH DA)
det((AJ)H) -det(Dyy) - det(fiJ) S
N Z det((Av)H) - det(D det(A (A1) Gu)s-
JEJ(WUTX) Ynveswrx)det((An)H) - det(Dyn) - det(An)

Notice that 4;Q" = UT X and §; = UTg. Then we deduce that
(2.14)

T =Q(Q"r) =

2
) |det (A,)| ~det(2DJJ) UTX) T,
JeJ(UT X) ZNEJ(UTX) |det(An)|? - det(Dnn)

From (2.14), 7 is the convex combination of the basic solutions. Then in exactly
the same way as in the proof of [4, Theorem 3.1, Corollary 5.2], we obtain

2.15 sup |(W2X)*Wigl| = su max urx)ytu’T
@19 |V Wil = s max I(0FX)*UTol

and

(2.16) (W32X)*Wi||=sup max [(UFX)TUT].

su
WGF;’” Ueu JeJ(UT X)

The remaining equalities of (2.10) follow from Theorem 2.1. a
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From Theorem 2.2, with U satisying (2.8) and P defined in (2.9), one of the
following inequalities implies the other:

su max UTX)*UT| < +oo,
sup _max |(UTX)7UT |

sup |[(W2X)tTW3|| < +oo.
WeP

Especially, if U only contains a finite number of matrices, then the above inequalities

are always true.
In the case that | = m and U = {I,,} so that P is a set of semi-positive diagonal
matrices, we then obtain essentially the same results as in [21].

Corollary 2.1. Under the notation and the conditions in Theorem 2.2, if
P ={W =diag(dy, -+ ,dm) :d; 20 forj=1,---,m,
(2.17) such that rank(W X) = rank(X)},

then

1 _ 1 _
sup ||(W3X)*Wz|  max||XOF]
weP v

(2.18) p(P) = min inf, (X©),

in which the mazimum or minmum is taken over all X() < X such that rank(X ()
= r = number of rows of X ). a

In the case that P is a set of m x m real symmetric diagonally dominant pos-
itive semidefinite matrices, Forsgren [4] has constructed an interesting signature
decomposition of W = UDU” € P, where U = U(s) has the following form, with
1= m(m+1) .

= Tty
U(s) = (u(s)y,-- - ,u(s)) € R™! with
(2.19a) u(s); =e fori=1,---,m,
U(8) mtt(i,j) = € + Sesjye; for 1 <i<j<m,

in which e; is the j—th column of the identity matrix I,,, and for 1 <¢ < j < m,

. : i(i4+1) 1 if wi; >0,
t =m(—1) - —~ d =
(6,) = m(i ) 2 tJ enm St(i.9) {—1 if w;; <0,
and
D = diag(dy,- -~ ,d)) withd; =wi; — > |w|fori=1,---m,
(2.19b) J=1, j#i

Amtt(ij) = lwig| for 1 <i < j <m.

For a detailed description of the signature decomposition of W, we refer to [4].
From (2.19a) and (2.19b) we see that U only contains a finite number of m x [
matrices. Then we obtain the following results by applying Theorem 2.2 and [4,

§3-85].
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Corollary 2.2. Under the notation and the conditions of Theorem 2.2, if further-
more, P is the set of real mxm symmetric positive semidefinite diagonally dominant
matrices, then with U € U defined in (2.19a), we have

1 1

1 1L = UTX +UT =
stuel;ll(WzX) Wz sup Jegr(lg);x)ll( 7 X)tU7|

(2.20) e .
ul/réf‘;D infy( WX(WX)*X)

_ : : T+ 77T
= l}relzfx JeJr(nUHTIX) inf, (U;)"U;X). O
Remarks. 1. For given X € C™*™, U satisfying (2.8), P defined in (2.9), (2.14)
provides the geometric structure of the minimum 2-norm WLS solution 7 of (1.3)
for given W € P, which is a generalization of well known formulae in [2], [3], [4],
[10], [13], [17].
2. Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 provide several equivalent formulae
for sup ||(W?2X)+*Wz||, which extend the results in [15], [12], [21], [4].
wep

p(P)

3. EQUIVALENT FORMULAE FOR THE SUPREMUM OF WEIGHTED
PSEUDOINVERSES ARISING FROM SOLVING EQUALITY CONSTRAINED LINEAR
LEAST SQUARES PROBLEMS WITH THE WEIGHTING METHOD

In [4] Forsgren also used the Binet-Cauchy formula and Cramer’s rule to obtain
the supremum of weighted pseudoinverses arising from solving the LSE problem [9]

(3.1a) min||W%(K:c — g2)|l, subject to Lz = g;,
z

where L € R™*", K € R™2*" are given matrices, and g; € R™, ¢go € R}
are given vectors. In this section we will generalize Forsgren’s results to derive
equivalent formulae for the supremum of such weighted pseudoinverses for general
complex matrices L, K and some set P, C P(KP) with P =1, — L*L.

Let L € Cm ", K € C™2*™, gy € C™ and g € C™? be given. One method of
solving (3.1a) is the weighting method. Let m = m; + my and define

(3.2) 9= (i;) X = (IL() and W(r) = <TI’"1 W).

Suppose that rank(X) = r. Let m(7) be the minimum 2-norm least squares solution
of

(3.1b) min W (r)}(Xz - g)].
SO
n(r) = (W(r)2X)TW(r)ig.
Then with
(3.3) r= lim n(r)= lim (W(r):X)*W(r)ig,

li
T—+00 T—+00
m is the minimum 2-norm solution of the LSE problem (3.1a).
In this section we will derive equivalent formulae for the supremum

(3.4) sup lim |(W(r)2 X)W (r)?||(< +00)
Wep, T+®

for some set P, C P(KP). We first need the following result:
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Lemma 3.1. Let L € C™*", K € C™*™ and W € R™2*™2 be given matrices.

Suppose that rank(X) = r and rank(L) = p, where X = (}é) Then with W ()

defined in (3.2) such that rank(W (7)X) = rank(X),

,(WiKP)*W3),

lim (W(r):X)*W(r)? = (L B

+
T—+00 w

D=

* Jm WnX(W(n) X)X = <WKP(VI€KP)+K) ’
in which
(3.6) P=I-L*L, Lt , =(I- (WiKP)tWiK)L*.
So

L * ) .
(3.7) (WKP(WKP)*‘K) = (L3 o W2KP)TWR).

Proof. Let K = W9K (g =3, 1) and let the SVD of ( IL{) be [7]

(3.8) X= < II}) =ZTH® = 2T HE,

where Z, H are unitary matrices of appropriate sizes,
T = diag(T1,0), Ty = diag(ty,--- ,tr)

with ¢t; > --- > ¢, > 0 the nonzero singular values of X , Z1, H, are respectively
the first r columns of Z, H. Let the CSD of Z be [14]

Zun Zn\mi _ (Ux Dy1 Dio) (Vi
3. Z = =
(3.9) <Z21 Z22)m2 ( Uz) (D21 D22) < |72

where Uy, U, Vi and V; are unitary matrices,

D1y = diag(I;,C,0), D = diag(0,8, Im,—p)

(310) D21 — dlag(O) S’ Ir—p)v D22 = diag(1m2+j—7‘7 _07 0)7

in which C, S are positive definite diagonal matrices of order p — j with C? +S? =
I,—; (when p—j =0, both C and S are naught). Then from (3.8)-(3.10),

(3.11)
lim (W(r)iX)*W(r)?

T—+00
liTw(HlTl(r2qZﬁle + ZEZ) M HE Y H T (+%91ZE, ZEw9)

= lim H\T7 N (r%2{{ 20 + 281 20) " (7241, ZEWY)
T—+00

= H\ T~ (Vidiag(I;,C~*,0)Uf, Vidiag(0,0,I,_,)UfW?9)
= H1T1—1(Zi+-1v (Ir - Z;rlle)Z2Hl'Wq)'
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Also from (3.8)-(3.10),

(3.12)
. q avVtY 1 721 H (71211 Hy+
lim W(r) X (W(r)7X)*X = Tl‘.‘i‘oo( 7 )TlHl (( 7 )X
. 17 -
= lim (TZz1u> (9 Z{1 20 + Z51220) "N (7211, Z31)X
_ (ZuZzf;
- ( I— 7273 X

So with g = } we have from (3.11) and [19, (3.1)-(3.3), (3.7), (3.8), (3.11)] that

lim (W(r):X)t*W(r)? = (H\T7 23, HiT7 (I - 215 211) ZEw ?)

T—+00

(313) = (L}, o~ WEKP)TWE),

where L;/’5 defined in (3.6) is the weighted pseudoinverse for the LSE problem

(3.1a).
With ¢ = 1 we also have from (3.12) and [19, (3.1)-(3.3), (3.7), (3.8), (3.11)] that

. ZnZHL L
(314) lim W(r)X(W(r)X)"X = ((1—12122121;2)1{) = (WKP(WKP)+K>'

Then (3.7) follows from Lemma 2.1 and (3.5). O

Now we can present the main result of this section by applying Theorem 2.1,
Lemma 3.1 and by using the idea in [4, §6].

Theorem 3.1. Let L € C™*", K € C™2*" pe given and X = (}Ié) Suppose

that rank(X) = r and rank(L) = p. Let Uy C R™**! be a given set of matrices for
some integer | > ma, such that

YU € Uy, rank(UTK P) = rank(KP) =r — p,
(3.15) L \" (I
o e (u7c) (1 og) <o
where J(UT K P) is a set of vectors of indezes,
(3.16) J(WUTKP)={J={i1, - ,ir—p} : rank(UT K P) = rank(K P) = r — p},
and let Py be a set of ma X mo real matrices defined by

P, ={W =UDU T'. D is a semi-positive diagonal matriz of order I,

3.17
(3.17) U € Uy such that rank(W K P) = rank(K P)}.
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Then with W () defined in (3.2),

(3.18)
1 _ 1
sup lim [|(W(r)2X)+W(r)3|| L \"(1
weP, + Usggg JGJ(Ua‘;‘xKP)” U;K T ”
= inf inf L inf min inf L
= wep, " \WKPWKP)YK) ~ véw, seslUrkp H \(UT)FUTK

1
sup (LY, ,(WiKP)*W3)|
s I KR W]

Proof. (1) We first prove that
sup _lim (W) X) W(r)}| = sup  max ||( L )+(I T) ||
Wep, T+ veu, JeJ(UTkP) \U; K U;

by applying the Binet-Cauchy formula and Cramer’s rule.
Let the unitary decomposition of X be as in (2.1),

_(L HAH _ L1\ Hu
(3.19) X = (K) AT Q = o <K> Q7.
Then rank(L;) = rank(L) = p. Let the unitary decomposition of L; be
(3.20) L, = ML,

where MHM = I, and L has full row rank p. For any W = UDUT € P3, 7 > 0

and g = <zl> e C™, let
2

(3.21) m(r) = (W(r)2 X)*W(r)tg = QA" D(r)A)~" AD()3,
in which
- I . H
s s (). o= () s (42).
Then with exactly the same procedure as deriving (2.14),
(3.23) m(r) = [det(A,)I? - det(D(r),.1) QAT g,

JeJ(A) 2Nes(A) |det(An)|? - det(D(T)nn)

Notice that det(D(7),,) has the maximum power 77 of 7 if and only if A; contains
entire L. Therefore when 7 — 400, in both denominators and numerators of
(3.23) only those terms with A; and Ay containing entire L remain. So when
T — +00, (3.23) only contains those J, N € J(A) such that {1,---,p} C J and
{1,---,p} CN.

On the other hand, for each J € J (fi) such that {1,---,p} C J, denote J =
{1,--+ ,p,ips1,- -+ »ir} and Jo = {ip41 — p,--- ,ir — p}. Notice that from (3.19)-
(3.20), K(I, — L*L)QH = K P, so rank(U% K(I, — L*L)) = rank(UJ, K P). Then

from (3.19)-(3.22) and Lemma 1.1 we have A; = (ULK) and

(3.24) r =rank(A,) = rank(L) + rank(UT, KI,-L*L)=p+ rank(U;I;KP),



THE SUPREMUM AND STABILITY OF WEIGHTED PSEUDOINVERSES 1499

from which we see that J € J(A) with {1,--- ,p} C J, ifand only if J, € J({UTKP).
With the above observation, we obtain by letting 7 — +o00 in (3.23),

(3.25)

r= lim r(0)

L
|det (Uyk) |2 -det(Dyy)

- 2 3 ?(u7) 1<AU4;51)’
JEIWUTKP) 3 Neywrip)|det (Uﬁf() |2 - det(Dnnw) ’ s
in which for simplicity we have used J, N € J ([:/'TKP) instead of Jo, Ny €
J(UTKP). Notice that for any J € J(UTKP), (
the notation in (2.1), (3.19) and (3.20) we have

(o) () = (07580 ()=o) (272)
UTK UTg2) ~ \UTKQY UTg2)  “\UTK Ulga )"

Substituting this into (3.25) we get

(3.26)
r= lim (W(r)2X)*W(r)tg

T—+00

L is nonsingular. By usin,

L
|det (U;k) |2 det(Dyy)

g - (o) (ki)

L
JEIWTKP) 3 neswr kpy |det (ng) |2 - det(Dnw)

Then by applying the same argument as in [4, §6],

(3.27)
sup  lim [|[(W(r)2X)*W(r)2g| = su ma. ||( )+( 9 )”
Wegz T—+00 g Uegz sesvrkp) \UTK UTg,) ™

L \"(I
1 X +W = mi .
o A IO Wo = s e 1 (ufie) (™ o))

(2) We then prove that

inf min inf L = !
ve, sesutkp) T \(UNTUTK )™ i L\ (L, ) ”'
e, Jeswrxp) \UTK 5]

By applying (2.1), (3.19) and (3.20) we have
L * Im1 — MZ’QH i Iml
UTK ul)  \UTKQY vt
= -1
MH
~2(yrz) (" o7)
J J
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H
Because Q7 Q = I, and <M

we obtain
(3.28)

(<U3L‘K)+<Im‘ o) = (" wpr) (vrk) @ = (wpors)

Notice that the above equality holds for any U € U, and J € J(UT K P). We obtain
by using the same argument as in step (1) of the proof of Theorem 2.1,

Ug‘) has full row rank r, from the above identity

L 1
inf . inf _ )
vet, sesTkp) T ((UJT)+UJTK) L \" (In,
Seb, s \UT K vy)!
The remaining equalities of the theorem can be proved by applying Theorems 2.1,
2.2 and Lemma 3.1. O

In the case that | = my and Uz = {I,,} so that P, is a set of semi-positive
diagonal matrices, we have the following result:

Corollary 3.1. Under the notation and the conditions in Theorem 8.1, further-
more suppose that Py is defined as

(3.29) Py ={W =diag(di, - ,dm,) > 0: rank(WKP) = rank(KP) = r — p}.

Then
(3.30)
1 1

L
: = = min inf. a )
sup  lim |[(W(r) 3 X)*W(r)3| L\" i +((K”))
Wep, TH® m?X“ K® l

in which the mazimum or minmum is taken over all K) < K such that rank(K ®) P)
=r —p = number of rows of K.

Proof. In Theorem 3.1, take | = mo and Uz = {1, }. a

In the case that P is a set of my X ms diagonally dominant positive semidefinite
matrices, we can use a similar signature decomposition of any matrix W = UDUT ¢
P2, as in [4], to obtain the following result:

Corollary 3.2. Under the notation and the conditions in Theorem 3.1, further-
more suppose that Py is defined as

me
(3.31) Po={WePKP): wa> Y. |wyl}
j=1, j#i
Let | = w For any W € P,, define matrices D = diag(dy,--- ,d;) and
Uel, C R™2%! gg
ma
d; = wi; — |w,~j|for1 <1< mg,
(3.32) ],:;#i

Ay +t(ig) = |Wij] for 1 <i < j <ma,
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U=U(s) = (u(s)1, -, u(s)) € R™>!,
(3.33) u(s); =e; fori=1,---,maq,
U(8)mytt(i,g) = € + Se(i )€ for 1 << j <my,

in which e; is the j—th column of the identity matriz I, and for 1 <¢ < j < my,

. . i(i+1) 1 if wi; 20,
=m0 s = {1,
%] .

Then

(3.34)

: = inf inf ( L >
sup lim |(W(r)3X)*W(r)i| wer — \WKPWKP)*K
WeP, T—400

1

L
WEKP) Wh)|

= inf min inf =
Vet sesuix) ot <(UJT)+UJTK) sup [[(LF, ,(
W€P2 WZIK

Proof. From [4, §3], any matrix W € P, has the form W = UDUT with D, U
defined in (3.32) and (3.33). O
Remarks. 1. For given L € C;* ", K € C™2*™ such that X = (II;) € CM*™, Uy
satisfing (3.15), P, defined in (3.17), (3.26) provides the geometric structure of the
minimum 2-norm solution 7 of (3.1a) for given W € P, which is a generalization
of the formula in [4].

2. Lemma 3.1 and Theorem 3.1 provide algebraic relations between the ma-
trix liﬂl_l (W(r)2X)*W(r)z and its pseudoinverse, which can be used to study

T— 400

properties of the constrained least squares problem.

3. Theorem 3.1 and Corollaries 3.1, 3.2 provide several equivalent formulae for

sup lim [[(W(r)2X)*W(r)?|],
WeP; T—+00

which extend the results in [4].

4. STABILITY OF WEIGHTED PSEUDOINVERSES

In the theory of pseudoinverses, one important problem is the boundedness of
pseudoinverses under small perturbations. Let X € C™*" and X = X + 6X €
C™*", Then the following results are well known (e.g., [16, pp. 136-152]).

1. If ||6X]| - | X *|| <1, then rank(X) > rank(X).

2. If |6X|| - | X+ < 1 and rank(X) > rank(X), then || X*|| > X

3. If ||6X] - | X*] < 1 and rank(X) = rank(X), then HII6”+I+-I|I|X+II < |1 X <
+
So || X*|| are bounded for all small perturbations 6 X with [|6X]- | X*|| <n <1
iff rank(X) = rank(X), where 0 < 7 < 1 is a constant. For stability of weighted
pseudoinverses, the situation is more complicated.
In this section we will discuss the stability property of (W%X )+W% over a set
P C P(X). We use the following definition.
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Definition 4.1. For given X € C**™ and a set P C P(X), suppose that
(4.12) sup [|(W:X)tW?| < +o0.
wep
We say that (W2X)+*W? is stable over P, if there exists a constant n > 0 which
does not depend on the choice of W € P, such that

(4.1b) sup sup ||(W2(X +5X))+W%|| < +o0.
X+6X€CT ™, [|I5X||<n WEP

We now have the following theorem.

Theorem 4.1. Suppose that X € CI**™ with 0 < r < m, an integer | > r. Let
UC R™ and P C P(X) be two given sets of matrices which respectively satisfy

YU € U, rank(UT X) = rank(X),
(4.2) . . . Tr4prT
inf i inf, (U;)7U; X) >0,
P={W=UDUT: D =diag(dy, -~ ,d)) >0, U €U,

4.3
(43) such that rank(W X) = rank(X)}.

Then (W%X )+W% is stable over P, if and only if for any U € U and any vector
of sequence of increasing r integers J = {i1,-+- ,ir} with1 <i; <--- < i, <m,

(4.4) rank(UT) =7  implies rank(UTX)=r.
Furthermore, if the condition in (4.4) holds, then for any X = X + 6X € Cm™*"

such that ||6X|| < a-p(P) =n with0 < a < 1 some constant , we have the following
estimate:

1 1 1 1
4.5 —————— < sup |[(WZX)"W?I|| < .
(43 2P+ o] < gl vVE ) #(P) — I6X]
Proof. Necessity. Suppose that there exists a matrix U € U and a vector of sequence
of increasing r integers N = {41,--- ,4,} with 1 <4; < -+ < i, < m, such that

rank(U7) = r but rank(UF X) = ¢ < 7. Then with the unitary decomposition of
X = AHQH see (2.1), for any € > 0, there always exists a matrix E. € C™*",
such that ||E|| < €- p(P) and with A¥ = A¥ + E,, UL AF is nonsingular. Let
X = AHQH. Then X, € C"*™, N € J(UTX,) and
inf in__inf (UD)YUTX) < infy (UH)TULX) = 0 (UF)TUE X,
o JGJI(I}}I;IXG) infy (U;)7U; Xe) < infy (Un)"UnXe) = 0, ((Un)TUnXe)
<o (UR)PORX) + I(UR)TUREQY || < |Ec|| < ep(P).
So according to Theorem 2.2, for any constant  with 0 < 7 < 1,
sup sup [[(W3(X +6X))*W2|| > lim sup [|((W2X)*W3|
X+6XeCT ™™, ||6X||<n WEP 0+ wep
1
> lim —— = .
2 e_l'r(I)l+ (P +00
So when the condition in (4.4) does not hold, (WzX)+*W2 is not stable over P.
Sufficiency. Suppose that the condition in (4.4) holds. Let 0 < a < 1 be a constant
and let 7 = - p(P). Suppose that any matrix X € C™>™ satisfies ||6X|| < a-p(P)
and X = X +6X € C™*™. Then for any U € U and any vector N € J(UTX),
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rank(UY) = r and so N € J(UTX). We then have from the perturbation of the
singular values [7], [16],

o-(UR)PURX) > o, (UR)TURX) - |(UR)TURSX||
> p(P) — I6X|| > (1 - @)p(P) >0,

o-(UR)TURX) < o, (UR)TURX) + | (UR) T URSX ||
<o (UR)TURX) + 16X].

Notice that (4.6) holds for any U € P and any N € J(UTX). We conclude by
applying Theorem 2.2 that

1 PP 1 1
o)+ 16X < o |(WEX)WEI < S5 — 5% < T=a) (P

proving (4.5). Because the above estimate holds for any X = X 4+ 6X € Cm>»
with [|6X]|| < a- p(P), (WzX)+*Wz is stable over P. 0O

(4.6)

In the following we specify two special cases.
Corollary 4.1 [21, Theorem 3.1]. If in Theorem 4.1,
(4.7) P ={W = diag(dy, - ,dm): 0 <W e P(X)},
then (W2 X)*W? is stable over P, if and only if
(4.8) any r rows of X are linearly independent. O

Corollary 4.2. If in Theorem 4.1,

(4.9) P={WePX): wa> Y |wl}
J=1, j#i
then (W3 X )+W% is stable over P, if and only if the following condition holds:

Let eI’ and z; respectively be the i-th row of I,, and X fori=1,---,m. Let UT
and UT X have the forms

T
€ T4y
T e, T Z;
4.10 U; = ba U = ta
(4.10) J eJT1 el ’ J zj, + Tk, ’
T T .
\ejr_q + €k, Tj,_, T Tk, _,

1 which q is any integer satisfyingq <r,1 <4 <---<ig<mandl <j <k <
m fort=1,---,7r —q. Then

(4.11) rank(UT) =7 4mplies rank(UTX) =r.

Proof. Under the condition of the corollary, any W € P has the signature decompo-
sition W = UDUT [4], where U € R™*! (I = MQHZ) has the form in (2.19a) and
D has the form in (2.19b). Let a vector of indexes J be of the form J = {i1,--- ,4,}
with 1 <4, < -+ <4, <. Then UJT and U;X respectively have the forms in
(4.10). So by applying Theorem 4.1 we obtain the condition in (4.11). a
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Now we consider the stability condition for lirf (W(r)2X)TW(r)? arising
T—+o00
from solving the LSE problem (1.4) by the weighting method.
Suppose that

(4.12a)
L 71,
miXn moXn — mxn —_ ma
LeCm»", KeCm ,X—(K)GC,. andW(T)—( W),

where m = m; + mo, W € P(KP), and

(4.12b) fJ=L+EL,K=K+EKandX=<I€)EX+EX

are the perturbed versions of L, K and X, respectively. From (3.5) and (3.7) we

see that for given W € P(KP), lir}_) (W(r)2X)*W ()7 is bounded for all small
T—+400

perturbations Fr, Fx and Ex; we need conditions

(4.13) rank(L) = rank(L) = p and rank(X) = rank(X) =r.
Now we define the stability of lir}_) (W(r)2X)*W(r)z over aset P, C P(KP).

Definition 4.2. Let L, K, X be given as in (4.12a) and P, C P(KP) be a given
set of matrices. For any W € P, W(7) is defined in (4.12a). Suppose that

1 1 1
4.14a = su lim ||[(W(r)2X)TW(r)2]|| < +o0.
( ) P = o, Jim [[(W(7)2X)"W ()2 ||

We say that lir(1)1+(W(7')%X )*W (7)2 is stable over Py, if there exists a constant
T—

n > 0 which does not depend on the choice of W € P,, such that

(4.14b) sup sup  lim [(W(r)}(X + Ex))TW(r)?| < +o0.
X+Ex€Cr ™ ||Ex||<n WEP2 T+
L+ELeCyt™™

We now state the following theorem.

Theorem 4.2. Suppose that L, K, X are as in (4.12a), Uy satisfies (3.15) and P
is defined in (8.17). Then lil’(I)1+(W(T)%X)+W(T)% is stable over Pa, if and only

if for any U € Uy and any set of indexes J = {i1, -+ ,ir—p} with1 < i3 < -+ <
ir-—p < ma,
(4.15a) rank(UT) =7 —p implies rank(UTKP) =r —p,

which is equivalent to
(4.15b) rank(UT) =r —p implies rank <U£K) =r.
J

Furthermore, if the condition in (4.15a) holds, then for any L, K and X which are
defined in ({.12b) and satisfy the conditions in (4.18), such that ||Ex|| < a-p(Ps) =
n with 0 < a < 1 some constant, we have the following estimate:

1A 1
1 <suwp lim |(WE)IX)W(nE| <

4.16 - _—
416) B Ex] S o, Am o (P2) — 1Bx]
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Proof. Necessity. If there exists a matrix U € Uy and a set of indexes N =
{41, ,ir—p} such that rank(U¥) = r — p but rank(U} K P) = ¢ < r — p, then for
any € > 0, we can add into K a small perturbation Ex such that |Ex|| < €- p(Pa2)

and rank(UL K P) = rank(KP) = r —p. Let X, = (fé), then rank(X¢) =rank(X)

=rand N € J(UTRP). So by applying Theorem 3.1 we have

L L
inf min inf. 5 ) <o, -
Ul jeJUTRP) ((UJT)’LU.?K) - ((Uﬁ)JrU%K)
L
<or ((nyfymx ) + 1OR) URBxl < 1Bl < o(Pa),
because in this case rank T f T = rank(L) + rank((UL)*ULKP) < r by
(UN)TUNK
applying Lemma 1.1. So according to Theorem 3.1, for any 0 < n < 1,
sup sup lim_[[(W(r)?(X + Ex))* W(r)?|
X+Ex€Cy™™ ||Ex||<n WEP2 T7F0
L+EpeCpt*™

) 1
> lim sup lim [[(W(r):X)*W(r)?||> lim ——— = +o0.
2 lim  eup Jlim [[(W(r)2 X) "W ()2 || Jm P

So when the condition of the theorem does not hold, then lir(r)1+(W(7')%X YW ()2

is not stable over P,. Sufficiency. Suppose that the condition in (4.15a) holds. Let
a be a constant satisfying 0 < a < 1 and let n = a - p(P2). Let L=L+E. K=
K+Ek, X = L+Ex be any perturbed matrices satisfying conditions in (4.13) with
| Ex|| < 7. Then for any U € Up and N € J(UT K P), rank(U%) = rank(UL K P) =
r — p and so rank(ULKP) = r — p. We then have from the perturbation of the
singular values [7], [16],

L L EL
o ((U£)+U£f<) 2o ((UWU,EK) — ((U£)+U7V‘EK) I
(417) > p(P2) — I1Exl > (1 — a)p(Py) > 0,

o, ((Ug,‘)fUﬁf{> <or ((Uﬁ)fU£K> + || Ex|l-

Notice that (4.17) holds for any U € P, and any N € J(UT K P). We conclude by
applying Theorem 3.1 that

1 1 1
——F 7 < su lim ||((W(r)zX)TW(r)?
o(P2) + |Ex|| _Wel;z T_'+oo“( (T2 X)"W(r)?|

1 1

< < ,
= p(P2) — IEx| = (1 —a)p(P2)
proving (4.16). Because the above estimate holds for any L, K, X satisying (4.13)
and |[Ex|| £ a- p(P2), li%1+(W(T)%X)+W(7')% is stable over Py. The equivalence
of (4.15a) and (4.15b) is supported by Lemma 1.1. O

In the following we specify two special cases.
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Corollary 4.3. If in Theorem 4.2,

(4.18) Py = {W = diag(di, -+ ,dm,): 0 <W € P(KP)},

then TETM(W(T)%X)+W(T)% ts stable over Pa, if and only if for any vector of
T —p indezes J = {i1, - ,ir_p} with1 < iy < -+ <ip_p < Mg,

(4.19a) rank(K;P) =r —p,

which is equivalent to

(4.19b) rank (Ié) =r.

Proof. In this case U = {I,»,}. So for any vector of indexes J = {i1,--- ,i,_,} with

1<iy -+ <ip—p < my, UT is of full row rank, and UTKP = K;P. Then by ap-
plying Theorem 4.2 we immediately reach the assertion in (4.19a). The equivalence

of (4.19a) and (4.19b) is supported by Lemma 1.1. O
Corollary 4.4. If in Theorem 4.2,
m2
(420) Py = {W € P(KP) oWy > Z |w,~j|},
J=1, j#i
then lil}_l (W(r)2X)TW ()7 is stable over Ps, if and only if the following condi-
tion holds:

Let eI and k; respectively be the i-th row of I,,, and K fori =1,--- ,my. Let
UT and UT K have the forms

6;11‘ kil
T
e; k.
4.21 UT = la , UTK= 1 ,
2 ! e, tef, J ki, £ ki,
T T
ejr—p—q * lr—p—q kjf—P—q * klr—p—q

. which q is any integer satisfying ¢ < v —p, 1 <4 < --- < i3 < mg and
1<ji<ly<mg fort=1,---,r—p—gq. Then

(4.22a) rank(UT) =r—p implies rank(UTKP)=r —p,

which is equivalent to
(4.22b) rank(UT) =r—p implies rank (UQ{JK) =r.
J

Proof. Under the condition of the corollary, any W € P, has the signature de-
composition W = UDUT [4], where U € R™*! (I = m2(m2H1)) a5 the form in
(3.33) and D has the form in (3.32). Let any vector of indexes J be of the form
J = {i1, " yir—p} With 1 <4; < --- < 4,_p <. Then Ug‘ and U}FK respectively
have the forms in (4.21). So by applying Theorem 4.2 we obtain the equivalent
conditions in (4.22a) and (4.22b). O
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Remark. As mentioned at the beginning of this section, for a given matrix X, rank
preserving of perturbed matrices X = X + 6X guarantees boundedness of || X+ ||
for all small perturbations §X satisfying [[6X]| - || XT| < n < 1 for any constant
0<n<l

From the discussion of this section, we see that when analyzing stability of
weighted pseudoinverses of X, rank preserving of perturbed matrices X is not
adequate to guarantee the stability of weighted pseudoinverses of X over a set P or
Py. We need some extra structural conditions on the matrix X. So when analyzing
stability properties of interior methods, one should take special care.

5. CONCLUDING REMARKS

In this paper we have discussed equivalent formulae and the stability properties
of weighted pseudoinverses (W (7)2X)*W(r)% over a set P C P(X) when the
supremum is finite. We have also considered several specific cases when the sets of
weighting matrices are semi-postive diagonal, real symmetric diagonally dominant
positive semidefinite matrices, and weighting matrices arising from solving the LSE
problem. The results generalize those in [15], [12], [21], [4].

We have also studied algebraic properties of the weighted pseudoinverses arising
from solving the LSE problem, which can be used to further study the LSE problem.
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