
MATHEMATICS OF COMPUTATION
Volume 66. Number 220, October 1997, Pages 1509-1520
S 0025-5718(97)00866-1

A SUBSPACE LIMITED MEMORY QUASI-NEWTON
ALGORITHM FOR LARGE-SCALE NONLINEAR BOUND

CONSTRAINED OPTIMIZATION

Q. NI AND Y. YUAN

ABSTRACT. In this paper we propose a subspace limited memory quasi-Newton
method for solving large-scale optimization with simple bounds on the vari-
ables. The limited memory quasi-Newton method is used to update the vari-
ables with indices outside of the active set, while the projected gradient method
is used to update the active variables. The search direction consists of three
parts: a subspace quasi-Newton direction, and two subspace gradient and mod-
ified gradient directions. Our algorithm can be applied to large-scale problems
as there is no need to solve any subproblems. The global convergence of the
method is proved and some numerical results are also given.

1. INTRODUCTION

The nonlinear programming problem with simple bounds on variables to be
considered is

(1.1) minimize f (X)

(1.2) subject to I < x < u,

where x E Rn. The objective function f (x) is assumed to be twice continuously
differentiable, 1 and u are given bound vectors in Rn, and n is the number of
variables, which is assumed to be large.

Many algorithms have been proposed for solving small to medium-sized problems
of the form (1.1)-(1.2) (for example see [4] and [5]). There are also some algorithms
which are available for large-scale problems, such as the Lancelot algorithm of
Conn, Gould and Toint [6]. Recently, a truncated bound sequential quadratic
programming with limited memory [13] and another limited memory algorithm
[10] were proposed for solving large-scale problems. An advantage of using limited
memory update techniques is that the storage and the computational costs can
be reduced. However, these algorithms still need to solve subproblems at every
iteration.

In this paper, we propose an algorithm for solving (1.1)-(1.2) that does not need
to solve subproblems. The search direction consists of three parts. The first one is

Received by the editor December 2, 1994 and, in revised form, May 8, 1995 and January 26,
1996.

1991 Mathematics Subject Classification. Primary 65K05, 90C06, 90C30.
Key words and phrases. Subspace quasi-Newton method, limited memory, projected search,

large-scale problem, bound constrained optimization.
The authors were partially supported by the Stat key project "Scientific and Engineering

Computing" and Chinese NNSF grant 19525101.

@1997 American Mathematical Society

1509

1510 Q. NI AND Y. YUAN

a quasi-Newton direction in the subspace spanned by inactive variables. The other
two are subspace gradient and subspace modified gradient directions in the space
spanned by active variables. The projected search, the limited memory techniques
and the absence of costly subproblems, make the algorithm suitable for large-scale
problems.

This paper is organized as follows. In Section 2 we discuss the construction of
the algorithm. The global convergence of the algorithm is proved in Section 3 and
numerical tests are given in Section 4.

2. ALGORITHM

We first discuss the determination of search directions.

2.1. Determination of search directions. In order to make our algorithm suit-
able for large-scale bound constrained problems, we do not solve subproblems to
obtain line search directions. The algorithm uses limited memory quasi-Newton
methods to update the inactive variables, and a projected gradient method to up-
date the active variables. The inactive and active variables can be defined in terms
of the active set; the active set A(x) and its complementary set B(x) are defined
by

A(x) = {i: li < Xi < li + Cb or ui- Eb < Xi < i?},

(2.1) B(x) = {1, ... , m}/A(x) = {i: li + Cb < Xi < Ui-Cb}.

The variables with indices in A(x) are called active variables, while the variables
with indices in B(x) are called inactive variables.

The tolerance Eb should be sufficiently small so that

(2.2) 0 < fb < min-(ui -1i). i 3
It follows that 6b satisfies

(2.3) li + Eb < Ui-Eb for i = 1,... ,n,

and B(x) is well-defined.
A subspace quasi-Newton direction is chosen as the search direction for the

inactive variables. Let p(k) be the matrix whose columns are {eiI i E B(xk)},
where ei is the i-th column of the identity matrix in XRnfn. Let Hk E RmkXmk

be an approximation of the reduced inverse Hessian matrix, mk being the number
of elements in B(Xk). The search direction for the inactive variables is chosen as

p(k) Hk p(k)T Vf(Xk)

In order to obtain the search direction for the active variables, we partition the
active set A(x) into three parts,

(2.4)
Al(x) = {i: xi = 1i or xi = ui, and (1i + ui - 2xi)gi(x) > 0},
A2(x) = {i: li < Xi < li + fb or Ui-Eb < Xi < Ui, (li + iu-2xi)i() < g()},

A3(x) = {i: li < Xi < lii + b or Ui-Eb < Xi < Ui, (li + iu-2xi)gi(x) > 0},

where (g1(x),... ,gn(X))7' = g(x) = Vf(x). Al(x) is the index set of variables
where the corresponding steepest descent directions head towards the outside of
the feasible region. Therefore it is reasonable that we fix the variables with indices
in A1(xk) in the k-th iteration. A2(x) is the index set of the variables where

A SUBSPACE LIMITED MEMORY QUASI-NEWTON ALGORITHM 1511

the steepest descent directions move into the interior of the feasible region, and
therefore we can use the steepest direction as a search direction in the corresponding
subspace. A3 (x) is the set of the active variables where the steepest directions move
towards the boundary. Thus the steepest descent directions in this subspace should
be truncated to ensure feasibility.

Define p(k) as the matrix whose columns are {ei Ii E Aj(Xk)}, for j = 1, 2, 3, the
search direction at the k-th iteration is defined by

(2.5) dk = -(P (k)HkP(k)T + p(k) p(k)T + P(k) p(k)TAk)

Here 9k = g(Xk) = Vf(xk), and Ak = diag(Alk),... , A$!)) which is given by

(2.6)
0 ? if if A3(Xk),

>(k) _ J (Xt -l9k), if li < Xi < li + Eb and x(k)-g(k)<lI,
i (k) (k) X~~~~~~~~~~k) (~k) Ui a(x() -ui)/) if Ui-Eb < Xi < Ui, and x(-9% ?ui,

t 1, otherwise.

The definition of search direction (2.5) and that of Ak in (2.6) ensures that

(2.7) < x(k) + d k) < ui,

holds for all i E A3(xk). dk is a valid search direction because it is always a descent
direction unless it is zero.

Lemma 2.1. If Hk is positive definite, then dk defined by (2.5) satisfies

(2.8) d gk ? 0

and the equality holds only if dk = 0.

Proof. Define

(2.9) Hk = P(k)HkP(k) + p(k) p(k)l + P3 P(k)T Ak + p(k) p(k)'l

It is easy to see that Hk is positive definite. Because p(k)T dk = 0, (2.5) and (2.9)
give

(2.10) dTgk =-dTH,71dk <0

The above relation and the positive definiteness of Hk indicate that (2.8) is true
and that dkgk - 0 only if dk =0 ?

We now describe the projected search.

2.2. Projected search. The projected search has been used by several authors
for solving quadratic and nonlinear programming problems with simple bounds on
the variables (see e.g. [9] and [10]). The projected search requires that a steplength,

ak, be chosen such that

(2.11) Ok(a) ?< Okk(0) + [tk(0)ca

is satisfied for some constant ,u E (0,1/2). Here Ok is the piecewise twice continu-
ously differentiable function

(2.12) bk (a) = f (PQ [X k + adk]),

where dk is the search direction described in the previous section,

(2.13) Q = {x E R : I < x < u},

1512 Q. NI AND Y. YUAN

and PQ is the projection into Q defined by

(xi if i < xi < ui,

(2.14) (PQX)i = i if xi < ii,

ui if xi > ui.

An initial trial value of cak,O is chosen as 1. For j = 1, 2,... let ak,j be the
maximum of O.lak,j-1 and a* j-l' where ca* -_1 is the minimizer of the quadratic
function that interpolates ok (O), b' (0) and ok (kj - 1) - Set ak = ak, jk, where Jk iS

the first index j such that akJ satisfies (2.11).

Before the discussion on the termination of the projected search, we prove a
lemma, which is similar to that in [10].

Lemma 2.2. Let dk be the search direction from (2.5) and assume that dk #& 0,

then

(2.15) min{l, |u - I1oo/11dk loo} > Ok > min{l, Eb!ldk I}o

where Ak = supO< <1{Y: 1 < Xk + Ydk <U }.

Proof. By the definition of 3k, Xk and Xk + 3kdk are feasible points of (1.1)-(1.2),

which gives

(2.16) 13kdklloo < JJu-i loo

Thus the first part of (2.15) is true.

Now we show the second part of (2.15). It is sufficient to prove that

(2.17) x k) + ?d k) E [li ui]

for all i = 1,... ,n, where / = min{1, eb/ dk oo}. If i E B(Xk), (2.17) follows from

(2.1) and Icd (k)l < eb. If i E Al(xk,), (2.17) is trivial as dck) = 0. If i E A3(xk), it

follows from definition (2.6) that

(2.18) Xik) + d i E [li, ui]

which implies (2.17). Finally we consider the case when i E A2(xk). We have

dik) =-gi(k) $ 0. If di > 0, then xik) E [1i, 1i + eb] which shows that

(2.19) < x () < x (k) + 3d (k) < (k) + eb ? ii + 2eb <ui.

Similarly if di < 0, we have

(2.20) 1i < ui-2eb < X (k) -Eb < X (k) + pd (k) < X (k) < Ui.

Therefore we have shown that (2.17) holds for all i = 1, , n. O

It follows from Lemma 2.2 that

(2.21) PQ[Xk + cdk] = Xk + adk, if 0 < a < Ok.

Thus

(2.22) Ok(Oa) = f (Xk + adk) for 0 < a < Ok

is a twice continuously differentiable function with respect to a. Hence the termi-

nation of the projected search in a finite number of steps is guaranteed if q4 (0) < 0.

Lemma 2.1 implies that 0b(0) = -d"9k < 0 provided that dk $ 0.

A SUBSPACE LIMITED MEMORY QUASI-NEWTON ALGORITHM 1513

2.3. Subspace limited memory quasi-Newton algorithm. Now, we give our
algorithm for solving problem (1.1)-(1.2), which is called the subspace limited mem-
ory quasi-Newton (SLMQN) algorithm.

Algorithm 2.3. (SLMQN Algorithm)

Step 0 Choose a positive number ,u E (0, 1/2), Xo E Rn and Ho = I,
where x0 satisfies 1 < xo < u.
Compute f (xo), Vf (xo) and set k = 0.

Step 1 Determine the search direction.
Determine B(Xk), Al(Xk), A2(Xk) and A3(xk) according to (2.1)
and (2.4), and compute dk from (2.5).

Step 2 Find a steplength cak using the projected search described in
Section 2.2.
Set

(2.23) Xk+1 = PQ[Xk + cxkdk].

If the termination condition is satisfied, then stop.
Step 3 Determine Hk+1 by the limited memory BFGS inverse i-update

[10]. In order to retain sTyk > 0, replace Sk with s' [12], defined
by

k= 0Sk+ (1-O)HkYk,

0 I if a > 0.2b)
= 0.8b/(b - a) otherwise,

where a = STyk, b = yTHkyk, Sk = Xk+1 -k, Yk = Vf(Xk+l)-

Vf (Xk).

k = k + 1, go to Step 1.

Remark. In Step 3, Hk is the reduced matrix

(2.24) Hk= pR(k)TfTP(k)

where Hk is an approximation of the full space inverse Hessian matrix. The limited
memory BFGS inverse m-update (see [11] and [10]) is as follows

Hk+l = QkQtHoQt .Qk

+ QT.... QT+lptstst Qt+l * Qk

+ QkPk-1Sk-S-lQk

(2.25) + PkSkSk

where t = max{0, k - m + 1}, m is a given positive integer, Ho is a given positive
definite matrix, and

T~~~~~ (2.26) Pi =ST ,Qi =IpiyiszT

Therefore, in Step 3 of SLMQN, we can update Hk+1 by (2.24)-(2.26). Another
way of updating Hk is to use only reduced gradient and projected steps. Namely

1514 Q. NI AND Y. YUAN

we can let

Hk+1 = Q(k+l)T .Q(k+l)Tp(k+l)TH p(k+l)Q(k+l) ... Q(k+l)

+ Q(k+l)T ... Q(k+l)TptS(k+l)5(k+l)TQ(k+l) ... Q(k+l)

+ Q(k+l)T 1(k+1l) 5(k+l)TQ(k+l)

(2.27) + P(k+) (k+1)

where

(2.28) 5~~(k+l) - p(k+l) s~ (+)-p(k+l). (2.28) Si = PO SiV pi =()k+l)T

(2.29) Q(k+) = -
(k+) (k+1)T

Updating formula (2.27) uses only vectors in Rmk+l

3. CONVERGENCE ANALYSIS

It is well known (for example, see [7]) that x E Q is a Kuhn-Tucker point of
problem (1.1)-(1.2) if there exist Ai > 0, ,ui < 0 (i = 1, , n) such that

n n

g(x) = EAiei + Epiei,
i=l i=1

A[xi - li] = 0,

piui - xi] = 0.

The above Kuhn-Tucker conditions are equivalent to

gi(x)(li +ui-2xi) > 0, if xi = li or xi = ui,

(3.1) gi (X) = 0, otherwise.

The following lemma shows that the search direction does not vanish if the iteration
point is not a Kuhn-Tucker point.

Lemma 3.1. Let Xk, dk be given iterates of the SLMQN algorithm. Then Xk is a
Kuhn-Tucker point of (1.1)-(1.2) if and only if dk = 0.

Proof. First we assume that Xk is a Kuhn-Tucker point of (1.1)-(1.2). From (2.4)
and (3.1), it follows A2(xk) = 0 and 9i(Xk) = 0 for i E B(xk) U A3(xk). Hence, we
obtain dk = 0.

Now, suppose that dk = 0. According to (2.5), we have

(3.2) p?k) HkPokg k - 0 p(k)p(k)T -= 0 p(k)p(k) A)' O.

Because Hk is positive definite and A(k) + 0 for i E A3(xk), it follows that

p(k A- = 0, j = 0, 2, 3.

Therefore g(k) -0 if i =& A,(xk), which implies that (3.1) holds for x = Xk. D

It follows from Lemmas 2.1 and 3.1 that dk is a descent direction if Xk is not a
Kuhn-Tucker point. Now we prove the global convergence theorem for the SLMQN
algorithm.

Theorem 3.2. Let Xk, dk and Hk be computed by the SLMQN algorithm for solving
the problem (1.1)-(1.2) and assume that

A SUBSPACE LIMITED MEMORY QUASI-NEWTON ALGORITHM 1515

(i) f (x) is twice continuously differentiable in Q;
(ii) there are two positive constants 7i, Y2 such that

(yfp(k)Tgk f2 < gP (k)Hk P(9k)'

(3.4) ;P(k)T H (k)T; ?
<

2

for all k.

Then every accumulation point of {Xk} is a Kuhn-Tucker point of the problem

(1.1)-(1.2).

Proof. First we establish an upper bound for dg9k:

dkgk - -9lp(k)Hkp(k)T 9k- ;RP k)Tgk 112- _lP(k)TA /2g 112

(3.5) ? (a | | + I 9 + E T(k())

iCA3(Xk)

where T(k) =min{igk)i, ik) -li, Iui-4k)I}. We also have

(3.6) IIdkI112 - IP(k)HRP(k)T 112 + IlP(k)Tg 112 + lip(k)TA 112

Because Aik) E [0,1], and because Hk satisfies (3.4), it follows from (3.5) and (3.6)
that

(3.7) I|dkII2 < -max{1,2}gk dk.

Further, from (3.6) and (3.4) yield

(3.8) IIdk112 < -Y2ll9kTll2 + IIgk L12 < (y22 + 1>ii

where ql = maxEQ Ilg(x)II2. Thus, from (2.15) and (3.8), there exists a constant ~~~~~~~~~~~
E e (0, 1) such that

(3.9) Ak > 3 for all k.

If cak < 0.1,B, by the definition of cak there exists j > 0 such that ak,j < lOcxk and
Cak,j is an unacceptable steplength, which implies that

f(Xk) + [ackjgTdk ?< f(Xk + akdk)

(3.10) ? f(xk) + akkjgkdk + -772Cxke ldkfl,

where 2 = maxxcQ IV2f(x)l12. The above inequality and (3.7) imply that

(3.11) >21/ ~k- > (-b
?211 dkfl2 rM2max{1<'y2}'

Hence the above inequality and cak ? O.lcak,j yield

(3.12) cxk > min[- I 0.13] > 0
5q2 max II, Y2 I

for all k. Because Q is a bounded set,
00

00 > Z(f (Xk)-f (Xk+l?))

k=l
00

(3.13) > T / dWk9kdk-

k=1

1516 Q. NI AND Y. YUAN

(3.12) and (3.13) show that

00

(3.14) "' dk < 00
k=1

which implies

(3.15) lim gk dk = 0.
k-*oo

It follows from (3.15) and (3.5) that

(3.16) lim P k)9k = 0,
k -oo

(3.17) lim |p k)gal = 0,
k--oo

2A 0

(3.18) lim Z (k) Ig(k) = 0.
iEA3 (Xk)

Let x* be any accumulation point of {xi}, there exists a subsequence {Xkj } (i =

1, 2, . .) such that

(3.19) lim Xkj = X*.

Define A* = :* = { =i or X*= ui}. If x* is not a Kuhn-Tucker point, there
exists j E A* such that

(3.20) gj (x*) (lj + uj - 2x*) < 0

or there exists j ? A* such that

(3.21) gj(x*) $ 0.

If (3.20) holds for some j E A*, then

(3.22) j E A2(xki)

for all sufficiently large i. (3.22) and (3.17) show that

(3.23) gj(X*) = 0,

which contradicts (3.20). If (3.21) holds for some j 0 A*, we have

(3.24) gj(x*)(lj + uj - 2x*) 0.

(3.24) and (3.16)-(3.18) imply that for all sufficiently large i,

(3.25) j # B(xki) U A2(Xki) U A3 (Xki,)

Therefore j e A1(Xki) for all large i, which would imply XSki) =i or x.ki) - U for
all sufficiently large ko. This contradicts ki k-- x* and j ? A*. O

A SUBSPACE LIMITED MEMORY QUASI-NEWTON ALGORITHM 1517

Conditions (3.3) and (3.4) are satisfied if the matrix Hk is adjusted by limited
memory BFGS inverse m-update (2.24)-(2.26) or (2.27)-(2.29).

4. NUMERICAL TESTS

In this section some numerical results are reported. We have chosen 14 sets of
test problems from [8] to compare our algorithm with the well-known L-BFGS-
B algorithm in [13]. The termination condition is the projected gradient of the
objective function below 10-5, namely

(4.1) IIPQ(Xk - Vf(xk)) - Xk II< ? 5X

where PQ is defined by (2.14). Computations are carried out on an SGI Indigo
R4000 XS workstation. All codes are written in FORTRAN with double precision.

Numerical results are listed on Tables 1-4. In the tables, "Primal", "Dual" and
"CG" stands for the L-BFGS-B Method, using primal, dual and CG methods for
subspace minimization, respectively. The number of iterations (IT), the number of
function evaluations (NF) and the CPU time in seconds (TIME) are given in the
tables. The number of gradient evaluations is the same as the number of iterations
for the SLMQN method and it equals the number of function evaluations for the
L-BFGS-B method. Na is the number of active variables at the solution. In all
runs, we choose ,u = 0.1 and Eb = 10-8.

The test results on EDENSCH and PENALTY1 are shown in Tables 1 and 2.
The number of updates in the limited memory matrix, m, is chosen as 2 for all
runs. The difference between SLMQN and L-BFGS-B is not great. CG takes a few
more CPU seconds than other methods.

The test results on TORSION and JOURNAL are shown in Table 3, where m
is chosen as 2. SLMQN is a little better than CG and slightly worse than Primal
and Dual.

RAYBENDL problem is difficult. If m is chosen below 4, all methods terminate
while the gradient stopping test is not met. Table 4 shows the results of all methods
with m = 4. SLMQN takes a little more iterations than Primal and Dual, but less
CPU seconds than them and CG.

TABLE 1. Test results on EDENSCH

| Na | SLMQN | Primal Dual CG
1 0 21/28/1.20 22/32/1.41 22/32/1.05 24/34/2.92
2 0 15/19/0.84 14/18/0.88 14/18/0.67 14/18/1.07
3 667 14/21/0.71 12/16/0.63 12/16/0.65 12/16/0.67
4 999 13/20/0.66 11/14/0.75 11/14/0.87 10/14/0.50
5 1000 10/15/0.47 8/12/0.39 8/12/0.45 10/51/0.74

additional bounds: IT/NF/CPU sec.
1 [_102?, 1020] V i

2 [0,1.5]Voddi
3 [-1, 0.5] V i = 3k + 1 number of variables = 2000
4 [0,0.99] V odd i
5 [0,O.5]Voddi

1518 Q. NI AND Y. YUAN

TABLE 2. Test results on PENALTY1

Na SLMQN Primal Dual CG
1 0 29/64/0.82 94/139/3.14 90/134/2.29 90/138/3.46
2 0 83/143/2.37 76/109/2.49 76/109/2.01 76/109/2.94
3 334 10/30//0.32 29/44/0.85 29/44/0.82 29/44/0.80
4 500 20/52/0.58 27/42/0.78 27/42/0.79 27/42/0.71

additional bounds: IT/NF/CPU sec.
1 [_1020, 1020] V i

2 [0,1]Voddi
3 [0.1,1] V i = 3k + 1 number of variables = 1000
4 [0.1,1]Voddi

TABLE 3. Test results on TORSION and JOURNAL

Na SLMQN Primal Dual CG
TORSION 320 77/82/2.97 64/70/2.26 64/70/2.28 145/150/5.52
JOURNAL 330 154/185/6.28 148/155/6.06 145/150/5.44 165/176/7.22

additional bounds: IT/NF/CPU sec.
[_1020,1020] V i number of variables = 1024

TABLE 4. Test results on RAYBENDL

Na SLMQN Primal Dual CG
1 4 1144/1214/2.85 1058/1110/4.01 1103/1184/2.72 1138/1194/10.62
2 6 1202/1295/3.12 1098/1151/4.09 1115/1153/3.58 1279/1342/11.29

additional bounds: IT/NF/CPU sec.
1 [_1020,1020] V i number of variables = 44
2 [2,95] V i 4 variables are fixed (i.e. ui = 1i)

In order to investigate the behavior of the SLMQN algorithm for very large
problems, we choose 10 test problems from [5], where the number of variables is
enlarged to n = 10000. The termination condition is that the infinity norm of the
projected gradient is reduced below 10-4, and m is chosen as 2. Numerical results
are shown in Table 5. For TP6, TP7, TP10, TP11, TP20 and TP21, CG is better
than the other three methods. There is little difference among SLMQN, Primal
and Dual.

Other values of m (2 < m < 10) have also been tried. But, they did not signifi-
cantly alter the numerical results, but the CPU increased with m. The numerical
results indicate that SLMQN is a promising algorithm and that SLMQN is not
worse than L-BFGS-B. We have also observed that the sets A2(xk) and A3(xk)
(see (2.4)) are empty for most of the iterations. Hence the search direction is of-
ten a subspace quasi-Newton step. Therefore the slow convergence of the projected
gradient may not be a serious problem, though theoretically the use of the projected

A SUBSPACE LIMITED MEMORY QUASI-NEWTON ALGORITHM 1519

TABLE 5. Test results on 10 problems (N = 10000)

Na SLMQN Primal Dual CG
TP1 4998 43/67/12.20 35/94/9.01 32/73/10.51 67/227/25.03
TP4 2500 30/43/8.29 27/38/7.14 27/38/7.13 25/32/8.00
TP5 5000 29/60/8.55 41/51/10.76 41/51/12.47 40/51/13.03
TP6 5823 83/123/24.22 81/183/22.98 79/123/25.82 65/85/21.34
TP7 5000 23/34/6.23 13/90/4.35 11/50/3.84 11/13/2.91
TP1O 5000 17/27/9.34 16/20/8.97 16/20/9.45 15/19/8.89
TP11 5000 12/21/3.58 13/30/4.56 12/23/4.61 9/13/2.95
TP17 5000 71/91/21.98 41/49/13.93 40/48/11.71 43/57/19.73
TP20 5000 12/68/4.40 8/12/2.01 7/11/2.08 7/11/1.66
TP21 5000 6/7/3.66 5/7/3.48 3/5/2.35 3/5/2.26

gradient step cannot ensure superlinear convergence. There is a possibility of im-
proving the SLMQN both theoretically and practically if we can find techniques to
avoid slow convergence of the projected gradient steps. We could also consider the
use of different computation formulas for the limited memory matrix (see [2]) used
in SLMQN.

ACKNOWLEDGMENT

The authors would like to thank Professor J. Nocedal for providing us the L-
BFGS-B programs and anonymous referees for their helpful comments on a previous
version of this paper.

REFERENCES

[1] R.H. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited memory algorithm for bound constrained
optimization, Report NAM-8, EECS Department, Northwestern University, 1994.

[2] R.H. Byrd, J. Nocedal and B. Schnabel, Representation of quasi-Newton matrices and their
use in limited memory methods, Math. Prog., Vol. 63, (1994), 129-156. MR 95a:90116

[3] I. Bongartz, A.R. Conn, N. Gould, and Ph.L. Toint, CUTE: constrained and unconstrained
testing environment, Research Report, IBM T.J. Watson Research Center, Yorktown, USA.

[4] A.R. Conn, N.I.M. Gould and Ph.L. Toint, Global convergence of a class of trust region
algorithm for optimization with simple bounds, SIAM J. Numer. Anal. 25 (1988), 433-460.
MR 89h:90192

[5] A.R. Conn, N.I.M. Gould and Ph.L. Toint, Testing a class of methods for solving minimiza-
tion problems with simple bounds on the variables, Math. Comp. 50 (1988), 399-430. MR
89e:65061

[6] A.R. Conn, N.I.M. Gould and Ph.L. Toint, LANCELOT: a Fortran package for large-scale
nonlinear optimization (Release A), Number 17 in Springer Series in Computational Mathe-
matics, Springer Verlag, Heidelberg, New York, 1992. CMP 93:12

[7] R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, Chichester, 1987. MR
89j:65050

[8] P. Lu, Bound constrained nonlinear optimization and limited memory methods, Ph.D. Thesis,
Dept. of Electrical Engineering and Computer Science, Northwestern University, Evanston,
Illinois, 1992.

[9] J.J. More and G. Toraldo, On the solution of large quadratic programming problems with
bound constraints, SIAM J. Optimization 1 (1991), 93-113. MR 91k:90137

[10] Q. Ni, General large-scale nonlinear programming using sequential quadratic programming
methods, Bayreuther Mathematische Schriften, 45 (1993), 133-236. MR 94h:90052

1520 Q. NI AND Y. YUAN

[11] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math.Comp. 35 (1980),
773-782. MR 81g:65077

[12] M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, Lecture
Notes in Mathematics 630. (1978), 144-157. MR 58:3448

[13] C. Zhu, R.H. Byrd, P. Lu, and J. Nocedal, L-BFGS-B Fortran subroutines for large-scale
bound constrained optimization, Report NAM-11, EECS Department, Northwestern Univer-
sity, 1994.

LSEC, INSTITUTE OF COMPUTATIONAL MATHEMATICS AND SCIENTIFIC/ENGINEERING COMPUT-

ING, CHINESE ACADEMY OF SCIENCES, P.O.Box 2719, BEIJING 100080, CHINA

E-mail address: niqQ1sec.cc.ac.cn

LSEC, INSTITUTE OF COMPUTATIONAL MATHEMATICS AND SCIENTIFIC/ENGINEERING COMPUT-

ING, CHINESE ACADEMY OF SCIENCES, P.O.Box 2719, BEIJING 100080, CHINA

E-mail address: yyx01sec.cc.ac.cn

