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A SUBSPACE LIMITED MEMORY QUASI-NEWTON 
ALGORITHM FOR LARGE-SCALE NONLINEAR BOUND 

CONSTRAINED OPTIMIZATION 

Q. NI AND Y. YUAN 

ABSTRACT. In this paper we propose a subspace limited memory quasi-Newton 
method for solving large-scale optimization with simple bounds on the vari- 
ables. The limited memory quasi-Newton method is used to update the vari- 
ables with indices outside of the active set, while the projected gradient method 
is used to update the active variables. The search direction consists of three 
parts: a subspace quasi-Newton direction, and two subspace gradient and mod- 
ified gradient directions. Our algorithm can be applied to large-scale problems 
as there is no need to solve any subproblems. The global convergence of the 
method is proved and some numerical results are also given. 

1. INTRODUCTION 

The nonlinear programming problem with simple bounds on variables to be 
considered is 

(1.1) minimize f (X) 

(1.2) subject to I < x < u, 

where x E Rn. The objective function f (x) is assumed to be twice continuously 
differentiable, 1 and u are given bound vectors in Rn, and n is the number of 
variables, which is assumed to be large. 

Many algorithms have been proposed for solving small to medium-sized problems 
of the form (1.1)-(1.2) (for example see [4] and [5]). There are also some algorithms 
which are available for large-scale problems, such as the Lancelot algorithm of 
Conn, Gould and Toint [6]. Recently, a truncated bound sequential quadratic 
programming with limited memory [13] and another limited memory algorithm 
[10] were proposed for solving large-scale problems. An advantage of using limited 
memory update techniques is that the storage and the computational costs can 
be reduced. However, these algorithms still need to solve subproblems at every 
iteration. 

In this paper, we propose an algorithm for solving (1.1)-(1.2) that does not need 
to solve subproblems. The search direction consists of three parts. The first one is 
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a quasi-Newton direction in the subspace spanned by inactive variables. The other 
two are subspace gradient and subspace modified gradient directions in the space 
spanned by active variables. The projected search, the limited memory techniques 
and the absence of costly subproblems, make the algorithm suitable for large-scale 
problems. 

This paper is organized as follows. In Section 2 we discuss the construction of 
the algorithm. The global convergence of the algorithm is proved in Section 3 and 
numerical tests are given in Section 4. 

2. ALGORITHM 

We first discuss the determination of search directions. 

2.1. Determination of search directions. In order to make our algorithm suit- 
able for large-scale bound constrained problems, we do not solve subproblems to 
obtain line search directions. The algorithm uses limited memory quasi-Newton 
methods to update the inactive variables, and a projected gradient method to up- 
date the active variables. The inactive and active variables can be defined in terms 
of the active set; the active set A(x) and its complementary set B(x) are defined 
by 

A(x) = {i: li < Xi < li + Cb or ui- Eb < Xi < i?}, 

(2.1) B(x) = {1, ... , m}/A(x) = {i: li + Cb < Xi < Ui-Cb}. 

The variables with indices in A(x) are called active variables, while the variables 
with indices in B(x) are called inactive variables. 

The tolerance Eb should be sufficiently small so that 

(2.2) 0 < fb < min-(ui -1i). i 3 
It follows that 6b satisfies 

(2.3) li + Eb < Ui-Eb for i = 1,... ,n, 

and B(x) is well-defined. 
A subspace quasi-Newton direction is chosen as the search direction for the 

inactive variables. Let p(k) be the matrix whose columns are {eiI i E B(xk)}, 
where ei is the i-th column of the identity matrix in XRnfn. Let Hk E RmkXmk 

be an approximation of the reduced inverse Hessian matrix, mk being the number 
of elements in B(Xk). The search direction for the inactive variables is chosen as 

p(k) Hk p(k)T Vf(Xk) 

In order to obtain the search direction for the active variables, we partition the 
active set A(x) into three parts, 

(2.4) 
Al(x) = {i: xi = 1i or xi = ui, and (1i + ui - 2xi)gi(x) > 0}, 
A2(x) = {i: li < Xi < li + fb or Ui-Eb < Xi < Ui, (li + iu-2xi)i() < g()}, 

A3(x) = {i: li < Xi < lii + b or Ui-Eb < Xi < Ui, (li + iu-2xi)gi(x) > 0}, 

where (g1(x),... ,gn(X))7' = g(x) = Vf(x). Al(x) is the index set of variables 
where the corresponding steepest descent directions head towards the outside of 
the feasible region. Therefore it is reasonable that we fix the variables with indices 
in A1(xk) in the k-th iteration. A2(x) is the index set of the variables where 
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the steepest descent directions move into the interior of the feasible region, and 
therefore we can use the steepest direction as a search direction in the corresponding 
subspace. A3 (x) is the set of the active variables where the steepest directions move 
towards the boundary. Thus the steepest descent directions in this subspace should 
be truncated to ensure feasibility. 

Define p(k) as the matrix whose columns are {ei Ii E Aj(Xk)}, for j = 1, 2, 3, the 
search direction at the k-th iteration is defined by 

(2.5) dk = -(P (k)HkP(k)T + p(k) p(k)T + P(k) p(k)TAk) 

Here 9k = g(Xk) = Vf(xk), and Ak = diag(Alk),... , A$!)) which is given by 

(2.6) 
0 ? if if A3(Xk), 

>(k) _ J (Xt -l9k), if li < Xi < li + Eb and x(k)-g(k)<lI, 
i (k) (k) X~~~~~~~~~~k) (~k) Ui a(x( ) -ui)/ ) if Ui-Eb < Xi < Ui, and x( -9% ?ui, 

t 1, otherwise. 

The definition of search direction (2.5) and that of Ak in (2.6) ensures that 

(2.7) < x(k) + d k) < ui, 

holds for all i E A3(xk). dk is a valid search direction because it is always a descent 
direction unless it is zero. 

Lemma 2.1. If Hk is positive definite, then dk defined by (2.5) satisfies 

(2.8) d gk ? 0 

and the equality holds only if dk = 0. 

Proof. Define 

(2.9) Hk = P(k)HkP(k) + p(k) p(k)l + P3 P(k)T Ak + p(k) p(k)'l 

It is easy to see that Hk is positive definite. Because p(k)T dk = 0, (2.5) and (2.9) 
give 

(2.10) dTgk =-dTH,71dk <0 

The above relation and the positive definiteness of Hk indicate that (2.8) is true 
and that dkgk - 0 only if dk =0 ? 

We now describe the projected search. 

2.2. Projected search. The projected search has been used by several authors 
for solving quadratic and nonlinear programming problems with simple bounds on 
the variables (see e.g. [9] and [10]). The projected search requires that a steplength, 

ak, be chosen such that 

(2.11) Ok(a) ?< Okk(0) + [tk(0)ca 

is satisfied for some constant ,u E (0,1/2). Here Ok is the piecewise twice continu- 
ously differentiable function 

(2.12) bk (a) = f (PQ [X k + adk]), 

where dk is the search direction described in the previous section, 

(2.13) Q = {x E R : I < x < u}, 
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and PQ is the projection into Q defined by 

(xi if i < xi < ui, 

(2.14) (PQX)i = i if xi < ii, 

ui if xi > ui. 

An initial trial value of cak,O is chosen as 1. For j = 1, 2,... let ak,j be the 
maximum of O.lak,j-1 and a* j-l' where ca* -_1 is the minimizer of the quadratic 
function that interpolates ok (O), b' (0) and ok (kj - 1) - Set ak = ak, jk, where Jk iS 

the first index j such that akJ satisfies (2.11). 

Before the discussion on the termination of the projected search, we prove a 
lemma, which is similar to that in [10]. 

Lemma 2.2. Let dk be the search direction from (2.5) and assume that dk #& 0, 

then 

(2.15) min{l, |u - I1oo/11dk loo} > Ok > min{l, Eb!ldk I}o 

where Ak = supO< <1{Y: 1 < Xk + Ydk <U }. 

Proof. By the definition of 3k, Xk and Xk + 3kdk are feasible points of (1.1)-(1.2), 

which gives 

(2.16) 13kdklloo < JJu-i loo 

Thus the first part of (2.15) is true. 

Now we show the second part of (2.15). It is sufficient to prove that 

(2.17) x k) + ?d k) E [li ui] 

for all i = 1,... ,n, where / = min{1, eb/ dk oo}. If i E B(Xk), (2.17) follows from 

(2.1) and Icd (k)l < eb. If i E Al(xk,), (2.17) is trivial as dck) = 0. If i E A3(xk), it 

follows from definition (2.6) that 

(2.18) Xik) + d i E [li, ui] 

which implies (2.17). Finally we consider the case when i E A2(xk). We have 

dik) =-gi(k) $ 0. If di > 0, then xik) E [1i, 1i + eb] which shows that 

(2.19) < x () < x (k) + 3d (k) < (k) + eb ? ii + 2eb <ui. 

Similarly if di < 0, we have 

(2.20) 1i < ui-2eb < X (k) -Eb < X (k) + pd (k) < X (k) < Ui. 

Therefore we have shown that (2.17) holds for all i = 1, , n. O 

It follows from Lemma 2.2 that 

(2.21) PQ[Xk + cdk] = Xk + adk, if 0 < a < Ok. 

Thus 

(2.22) Ok(Oa) = f (Xk + adk) for 0 < a < Ok 

is a twice continuously differentiable function with respect to a. Hence the termi- 

nation of the projected search in a finite number of steps is guaranteed if q4 (0) < 0. 

Lemma 2.1 implies that 0b(0) = -d"9k < 0 provided that dk $ 0. 
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2.3. Subspace limited memory quasi-Newton algorithm. Now, we give our 
algorithm for solving problem (1.1)-(1.2), which is called the subspace limited mem- 
ory quasi-Newton (SLMQN) algorithm. 

Algorithm 2.3. (SLMQN Algorithm) 

Step 0 Choose a positive number ,u E (0, 1/2), Xo E Rn and Ho = I, 
where x0 satisfies 1 < xo < u. 
Compute f (xo), Vf (xo) and set k = 0. 

Step 1 Determine the search direction. 
Determine B(Xk), Al(Xk), A2(Xk) and A3(xk) according to (2.1) 
and (2.4), and compute dk from (2.5). 

Step 2 Find a steplength cak using the projected search described in 
Section 2.2. 
Set 

(2.23) Xk+1 = PQ[Xk + cxkdk]. 

If the termination condition is satisfied, then stop. 
Step 3 Determine Hk+1 by the limited memory BFGS inverse i-update 

[10]. In order to retain sTyk > 0, replace Sk with s' [12], defined 
by 

k= 0Sk+ (1-O)HkYk, 

0 I if a > 0.2b) 
= 0.8b/(b - a) otherwise, 

where a = STyk, b = yTHkyk, Sk = Xk+1 -k, Yk = Vf(Xk+l)- 

Vf (Xk). 

k = k + 1, go to Step 1. 

Remark. In Step 3, Hk is the reduced matrix 

(2.24) Hk= pR(k)TfTP(k) 

where Hk is an approximation of the full space inverse Hessian matrix. The limited 
memory BFGS inverse m-update (see [11] and [10]) is as follows 

Hk+l = QkQtHoQt .Qk 

+ QT.... QT+lptstst Qt+l * Qk 

+ QkPk-1Sk-S-lQk 

(2.25) + PkSkSk 

where t = max{0, k - m + 1}, m is a given positive integer, Ho is a given positive 
definite matrix, and 

T~~~~~ (2.26) Pi =ST ,Qi =IpiyiszT 

Therefore, in Step 3 of SLMQN, we can update Hk+1 by (2.24)-(2.26). Another 
way of updating Hk is to use only reduced gradient and projected steps. Namely 
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we can let 

Hk+1 = Q(k+l)T .Q(k+l)Tp(k+l)TH p(k+l)Q(k+l) ... Q(k+l) 

+ Q(k+l)T ... Q(k+l)TptS(k+l)5(k+l)TQ(k+l) ... Q(k+l) 

+ Q(k+l)T 1(k+1l) 5(k+l)TQ(k+l) 

(2.27) + P(k+) (k+1) 

where 

(2.28) 5~~(k+l) - p(k+l) s~ (+)-p(k+l). (2.28) Si = PO SiV pi =()k+l)T 

(2.29) Q(k+) = - 
(k+) (k+1)T 

Updating formula (2.27) uses only vectors in Rmk+l 

3. CONVERGENCE ANALYSIS 

It is well known (for example, see [7]) that x E Q is a Kuhn-Tucker point of 
problem (1.1)-(1.2) if there exist Ai > 0, ,ui < 0 (i = 1, , n) such that 

n n 

g(x) = EAiei + Epiei, 
i=l i=1 

A[xi - li] = 0, 

piui - xi] = 0. 

The above Kuhn-Tucker conditions are equivalent to 

gi(x)(li +ui-2xi) > 0, if xi = li or xi = ui, 

(3.1) gi (X) = 0, otherwise. 

The following lemma shows that the search direction does not vanish if the iteration 
point is not a Kuhn-Tucker point. 

Lemma 3.1. Let Xk, dk be given iterates of the SLMQN algorithm. Then Xk is a 
Kuhn-Tucker point of (1.1)-(1.2) if and only if dk = 0. 

Proof. First we assume that Xk is a Kuhn-Tucker point of (1.1)-(1.2). From (2.4) 
and (3.1), it follows A2(xk) = 0 and 9i(Xk) = 0 for i E B(xk) U A3(xk). Hence, we 
obtain dk = 0. 

Now, suppose that dk = 0. According to (2.5), we have 

(3.2) p?k) HkPokg k - 0 p(k)p(k)T -= 0 p(k)p(k) A)' O. 

Because Hk is positive definite and A(k) + 0 for i E A3(xk), it follows that 

p(k A- = 0, j = 0, 2, 3. 

Therefore g(k) -0 if i =& A,(xk), which implies that (3.1) holds for x = Xk. D 

It follows from Lemmas 2.1 and 3.1 that dk is a descent direction if Xk is not a 
Kuhn-Tucker point. Now we prove the global convergence theorem for the SLMQN 
algorithm. 

Theorem 3.2. Let Xk, dk and Hk be computed by the SLMQN algorithm for solving 
the problem (1.1)-(1.2) and assume that 
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(i) f (x) is twice continuously differentiable in Q; 
(ii) there are two positive constants 7i, Y2 such that 

( yfp(k)Tgk f2 < gP (k)Hk P(9k)' 

(3.4) ;P(k)T H (k)T; ? 
< 

2 

for all k. 

Then every accumulation point of {Xk} is a Kuhn-Tucker point of the problem 

(1.1)-(1.2). 

Proof. First we establish an upper bound for dg9k: 

dkgk - -9lp(k)Hkp(k)T 9k- ;RP k)Tgk 112- _lP(k)TA /2g 112 

(3.5) ? (a | | + I 9 + E T(k() ) 

iCA3(Xk) 

where T(k) =min{igk)i, ik) -li, Iui-4k)I}. We also have 

(3.6) IIdkI112 - IP(k)HRP(k)T 112 + IlP(k)Tg 112 + lip(k)TA 112 

Because Aik) E [0,1], and because Hk satisfies (3.4), it follows from (3.5) and (3.6) 
that 

(3.7) I|dkII2 < -max{1,2}gk dk. 

Further, from (3.6) and (3.4) yield 

(3.8) IIdk112 < -Y2ll9kTll2 + IIgk L12 < (y22 + 1>ii 

where ql = maxEQ Ilg(x)II2. Thus, from (2.15) and (3.8), there exists a constant ~~~~~~~~~~~ 
E e (0, 1) such that 

(3.9) Ak > 3 for all k. 

If cak < 0.1,B, by the definition of cak there exists j > 0 such that ak,j < lOcxk and 
Cak,j is an unacceptable steplength, which implies that 

f(Xk) + [ackjgTdk ?< f(Xk + akdk) 

(3.10) ? f(xk) + akkjgkdk + -772Cxke ldkfl, 

where 2 = maxxcQ IV2f(x)l12. The above inequality and (3.7) imply that 

(3.11) >21/ ~k- > (-b 
?211 dkfl2 rM2max{1<'y2}' 

Hence the above inequality and cak ? O.lcak,j yield 

(3.12) cxk > min[ - I 0.13] > 0 
5q2 max II, Y2 I 

for all k. Because Q is a bounded set, 
00 

00 > Z(f (Xk)-f (Xk+l?)) 

k=l 
00 

(3.13) > T / dWk9kdk- 

k=1 
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(3.12) and (3.13) show that 

00 

(3.14) "' dk < 00 
k=1 

which implies 

(3.15) lim gk dk = 0. 
k-*oo 

It follows from (3.15) and (3.5) that 

(3.16) lim P k)9k = 0, 
k -oo 

(3.17) lim |p k)gal = 0, 
k--oo 

2A 0 

(3.18) lim Z (k) Ig(k) = 0. 
iEA3 (Xk) 

Let x* be any accumulation point of {xi}, there exists a subsequence {Xkj } (i = 

1, 2, . . ) such that 

(3.19) lim Xkj = X*. 

Define A* = :* = { =i or X*= ui}. If x* is not a Kuhn-Tucker point, there 
exists j E A* such that 

(3.20) gj (x*) (lj + uj - 2x*) < 0 

or there exists j ? A* such that 

(3.21) gj(x*) $ 0. 

If (3.20) holds for some j E A*, then 

(3.22) j E A2(xki) 

for all sufficiently large i. (3.22) and (3.17) show that 

(3.23) gj(X*) = 0, 

which contradicts (3.20). If (3.21) holds for some j 0 A*, we have 

(3.24) gj(x*)(lj + uj - 2x*) 0. 

(3.24) and (3.16)-(3.18) imply that for all sufficiently large i, 

(3.25) j # B(xki) U A2(Xki) U A3 (Xki,) 

Therefore j e A1(Xki) for all large i, which would imply XSki) =i or x.ki) - U for 
all sufficiently large ko. This contradicts ki k-- x* and j ? A*. O 
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Conditions (3.3) and (3.4) are satisfied if the matrix Hk is adjusted by limited 
memory BFGS inverse m-update (2.24)-(2.26) or (2.27)-(2.29). 

4. NUMERICAL TESTS 

In this section some numerical results are reported. We have chosen 14 sets of 
test problems from [8] to compare our algorithm with the well-known L-BFGS- 
B algorithm in [13]. The termination condition is the projected gradient of the 
objective function below 10-5, namely 

(4.1) IIPQ(Xk - Vf(xk)) - Xk II< ? 5X 

where PQ is defined by (2.14). Computations are carried out on an SGI Indigo 
R4000 XS workstation. All codes are written in FORTRAN with double precision. 

Numerical results are listed on Tables 1-4. In the tables, "Primal", "Dual" and 
"CG" stands for the L-BFGS-B Method, using primal, dual and CG methods for 
subspace minimization, respectively. The number of iterations (IT), the number of 
function evaluations (NF) and the CPU time in seconds (TIME) are given in the 
tables. The number of gradient evaluations is the same as the number of iterations 
for the SLMQN method and it equals the number of function evaluations for the 
L-BFGS-B method. Na is the number of active variables at the solution. In all 
runs, we choose ,u = 0.1 and Eb = 10-8. 

The test results on EDENSCH and PENALTY1 are shown in Tables 1 and 2. 
The number of updates in the limited memory matrix, m, is chosen as 2 for all 
runs. The difference between SLMQN and L-BFGS-B is not great. CG takes a few 
more CPU seconds than other methods. 

The test results on TORSION and JOURNAL are shown in Table 3, where m 
is chosen as 2. SLMQN is a little better than CG and slightly worse than Primal 
and Dual. 

RAYBENDL problem is difficult. If m is chosen below 4, all methods terminate 
while the gradient stopping test is not met. Table 4 shows the results of all methods 
with m = 4. SLMQN takes a little more iterations than Primal and Dual, but less 
CPU seconds than them and CG. 

TABLE 1. Test results on EDENSCH 

| Na | SLMQN | Primal Dual CG 
1 0 21/28/1.20 22/32/1.41 22/32/1.05 24/34/2.92 
2 0 15/19/0.84 14/18/0.88 14/18/0.67 14/18/1.07 
3 667 14/21/0.71 12/16/0.63 12/16/0.65 12/16/0.67 
4 999 13/20/0.66 11/14/0.75 11/14/0.87 10/14/0.50 
5 1000 10/15/0.47 8/12/0.39 8/12/0.45 10/51/0.74 

additional bounds: IT/NF/CPU sec. 
1 [_102?, 1020] V i 

2 [0,1.5]Voddi 
3 [-1, 0.5] V i = 3k + 1 number of variables = 2000 
4 [0,0.99] V odd i 
5 [0,O.5]Voddi 
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TABLE 2. Test results on PENALTY1 

Na SLMQN Primal Dual CG 
1 0 29/64/0.82 94/139/3.14 90/134/2.29 90/138/3.46 
2 0 83/143/2.37 76/109/2.49 76/109/2.01 76/109/2.94 
3 334 10/30//0.32 29/44/0.85 29/44/0.82 29/44/0.80 
4 500 20/52/0.58 27/42/0.78 27/42/0.79 27/42/0.71 

additional bounds: IT/NF/CPU sec. 
1 [_1020, 1020] V i 

2 [0,1]Voddi 
3 [0.1,1] V i = 3k + 1 number of variables = 1000 
4 [0.1,1]Voddi 

TABLE 3. Test results on TORSION and JOURNAL 

Na SLMQN Primal Dual CG 
TORSION 320 77/82/2.97 64/70/2.26 64/70/2.28 145/150/5.52 
JOURNAL 330 154/185/6.28 148/155/6.06 145/150/5.44 165/176/7.22 

additional bounds: IT/NF/CPU sec. 
[_1020,1020] V i number of variables = 1024 

TABLE 4. Test results on RAYBENDL 

Na SLMQN Primal Dual CG 
1 4 1144/1214/2.85 1058/1110/4.01 1103/1184/2.72 1138/1194/10.62 
2 6 1202/1295/3.12 1098/1151/4.09 1115/1153/3.58 1279/1342/11.29 

additional bounds: IT/NF/CPU sec. 
1 [_1020,1020] V i number of variables = 44 
2 [2,95] V i 4 variables are fixed (i.e. ui = 1i) 

In order to investigate the behavior of the SLMQN algorithm for very large 
problems, we choose 10 test problems from [5], where the number of variables is 
enlarged to n = 10000. The termination condition is that the infinity norm of the 
projected gradient is reduced below 10-4, and m is chosen as 2. Numerical results 
are shown in Table 5. For TP6, TP7, TP10, TP11, TP20 and TP21, CG is better 
than the other three methods. There is little difference among SLMQN, Primal 
and Dual. 

Other values of m (2 < m < 10) have also been tried. But, they did not signifi- 
cantly alter the numerical results, but the CPU increased with m. The numerical 
results indicate that SLMQN is a promising algorithm and that SLMQN is not 
worse than L-BFGS-B. We have also observed that the sets A2(xk) and A3(xk) 
(see (2.4)) are empty for most of the iterations. Hence the search direction is of- 
ten a subspace quasi-Newton step. Therefore the slow convergence of the projected 
gradient may not be a serious problem, though theoretically the use of the projected 
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TABLE 5. Test results on 10 problems (N = 10000) 

Na SLMQN Primal Dual CG 
TP1 4998 43/67/12.20 35/94/9.01 32/73/10.51 67/227/25.03 
TP4 2500 30/43/8.29 27/38/7.14 27/38/7.13 25/32/8.00 
TP5 5000 29/60/8.55 41/51/10.76 41/51/12.47 40/51/13.03 
TP6 5823 83/123/24.22 81/183/22.98 79/123/25.82 65/85/21.34 
TP7 5000 23/34/6.23 13/90/4.35 11/50/3.84 11/13/2.91 
TP1O 5000 17/27/9.34 16/20/8.97 16/20/9.45 15/19/8.89 
TP11 5000 12/21/3.58 13/30/4.56 12/23/4.61 9/13/2.95 
TP17 5000 71/91/21.98 41/49/13.93 40/48/11.71 43/57/19.73 
TP20 5000 12/68/4.40 8/12/2.01 7/11/2.08 7/11/1.66 
TP21 5000 6/7/3.66 5/7/3.48 3/5/2.35 3/5/2.26 

gradient step cannot ensure superlinear convergence. There is a possibility of im- 
proving the SLMQN both theoretically and practically if we can find techniques to 
avoid slow convergence of the projected gradient steps. We could also consider the 
use of different computation formulas for the limited memory matrix (see [2]) used 
in SLMQN. 
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