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ON SOME COMPUTATIONAL PROBLEMS 
IN FINITE ABELIAN GROUPS 

JOHANNES BUCHMANN, MICHAEL J. JACOBSON, JR., AND EDLYN TESKE 

ABSTRACT. We present new algorithms for computing orders of elements, dis- 
crete logarithms, and structures of finite abelian groups. We estimate the 
computational complexity and storage requirements, and we explicitly deter- 
mine the 0-constants and Q-constants. We implemented the algorithms for 
class groups of imaginary quadratic orders and present a selection of our ex- 
perimental results. 

Our algorithms are based on a modification of Shanks' baby-step giant- 
step strategy, and have the advantage that their computational complexity 
and storage requirements are relative to the actual order, discrete logarithm, 
or size of the group, rather than relative to an upper bound on the group order. 

1. INTRODUCTION 

Let G be a finite abelian group, written multiplicatively, in which we assume 
that the following are possible: 

* for a, b E G we can compute c = a* b 
* for a E G we can compute a-l 
* for a, b E G we can test whether a = b 

We call these the group operations. Note that from every group element a we can 
determine the neutral element 1 = a * a-'. As an example, we will consider class 
groups of imaginary quadratic fields. Another example is the group of points on an 
elliptic curve over a finite field. 

For any subset S of G, denote by (S) the subgroup of G generated by S. If 
(S) = G, then S is called a generating set of G. If S = {g}, then write (g) instead 
of (S). 

Three common computational problems in such groups are: 

* Given g E G compute 1(g)1, the order of g in G, i.e., the least positive integer 
x such that g9 = 1. 

* Given 9, d E G decide whether d belongs to the cyclic subgroup (g) of G 
generated by g. If d E (g), find logg d, the discrete logarithm of d to the base 
g, i.e., the least non-negative integer x such that g9 = d. 

* Given a generating set of G compute the structure of G. By computing the 
structure of G we mean computing positive integers ml,.. ., mk with ml > 1, 
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mi lmi+ , 1 < i < k, and an isomorphism 0: G -* */M1ZX .* X Z/mMkZ. This 
isomorphism is given in terms of the images of the generators. The integers 
mi are the uniquely determined invariants of G. 

In this paper we present improved versions of Shanks' algorithms for solving these 
problems. As in Shanks' original method [10] (see also [4], [8]), operations in G 
and table look-ups are used in our algorithms. The table entries are pairs (Sz, z), 
where S is a set of group elements, z belongs to the set Zs of all maps S - 2, and 
SZ = J7gJs gz(9). When we estimate the complexity of our algorithms, we count 
the number of group operations, the number of table look-ups, and we determine 
bounds on the table sizes, i.e., the number of group elements which have to be 
stored. We ignore the time and space for doing index calculations. If hashing on 
the group elements is possible, the tables of group elements are hash tables and the 
time for one table look-up is comparable to the time required for a group operation. 

Here are our main results. 

Theorem 1.1. There is an algorithm for computing the order x of an element 
g E G which executes one inversion and at most 

multiplications in G. It uses a table of at most 

pairs (g, r) c G x {1,... , 2 0/21 }. The total number of table look-ups is bounded 
by 

2Fx/1 . 
Theorem 1.2. There is an algorithm that decides for g, d GC, d $ 1, whether 
d c (g) and if so computes logg d. Let 

X 1(g)1 if d f (g), 
logg d if d E (g). 

The algorithm executes at most 

6 paVl + [log Va 

multiplications in G. It uses a table of at most 

2FV11 

pairs (g, r) E G x {1,... ,2 [\/V]}. The total number of table look-ups is bounded 
by 

4 [V1. 

Our algorithm for computing the structure of G may behave differently if the 
generators are input in different orders. Therefore, the algorithm receives as input 
a generating sequence, i.e., a finite sequence S = (gl,... , g ) of group elements such 
that {g, ... ., I} is a generating set of G. Set 

(1) Gj = (g,... ,gj), 0j 1, 

and 

(2) I(S) = I{ E {1, ... ,l}: Gjpi Gjj}. 
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In other words, if we generate G by using 91, 92,93, -., I(S) is the number of 
generators which enlarge the group. Note that i(S) is at least as large as the 
number of invariants of G. We will prove the following result. 

Theorem 1.3. There is an algorithm that computes the structure of G from a 
generating sequence S of G which executes ISI inversions and at most 

2 2 (ISI + 5) G + 41(S) <G + log IGI 

multiplications in G, with i(S) from (2). It uses two tables of at most 

2 V/ Cl and 2(s)+1 Vj 

pairs (g, q) C G x {O, .. ., 2 IG}1Si. The total number of table look-ups is bounded 
by 

2 2 (ISI + I(S) + 2) AGI. 

The upper bound for the complexity of the group structure algorithm is expo- 
nential in the number l(S) of generators that are really used to determine the group 
structure. If that number is fixed, the complexity of the algorithm is O(ISI GD). 
On the other hand, our analysis shows that if 

G= (Z/2Z)= 

for some positive integer 1, the complexity of our algorithm is Q(IGI), where the 
symbol Q(f (n)) stands for the set of all functions g such that there exists a constant 
M with Ig(n)I > MIf(n)l for all large n. This lower bound also holds for Shanks' 
original algorithm and its variations. Hence, for finite abelian groups with a large 
number of small invariants our algorithm is not appropriate. 

The basic idea of this paper is to use baby-step giant-step algorithms with some 
initial step-width v C 2N and to double that step-width as long as the result of the 
computation has not been found. A similar idea has been used in [2] but the results 
obtained there are weaker than ours. For v = 2 we obtain the above theorems. If 
v is chosen such that L = v2 is an upper bound on the group order, we obtain 
Shanks' original algorithms. Our analysis shows that for v = V the number of 
multiplications and the table size in the order and discrete logarithm algorithms is 
Q(v7K). Also, for that choice of v the number of multiplications and the table size in 
the group structure algorithm is Q(21(s)/2jS1 ILl). Thus, if the upper bound L is 
much larger than the actual order, discrete logarithm or group order, the algorithm 
wastes a lot of time and space. 

We implemented our algorithms for class groups of imaginary quadratic orders 
using the computer algebra system LiDIA [7]. We present experimental results 
which yield good choices for the initial step-width v for these groups. 

The paper is organized as follows. In Section 2 we describe and analyze the order 
algorithm. That section also contains the basic idea of the paper. In Section 3 we 
discuss the algorithm for computing discrete logarithms, and Section 4 is devoted 
to the group structure algorithm. 
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2. COMPUTING THE ORDER OF AN ELEMENT 

Given an element g C G we wish to compute x = I (g) 1. Our improved algorithm, 
a modification of Shanks' baby-step giant-step method, is based on the following 
statement: 

Lemma 2.1. Let v be an even positive integer. For every positive integer x there 
are uniquely determined integers k, q and r with k > 0, L4k-1jv2 < 2 kvq < 4kV2 

and 1 < r < 2kV such that x = y + r, y = 2kvq. 

Proof. Let x C N. We first show the existence of such k, q and r. We choose k 
such that L4k-ljv2 < x < 4kv2, and write x = 2kvq + r with 1 < r < 2kV. Then 
L4kliv2 - 2kv < 2kvq < 4kv2 - 1, which implies that 2kvq < 4kv2. Moreover, if 
k = 0, we have -v < vq, so 0 < vq. If k > 1, we have 4k-v2 - 2kv < 2kvq; hence 
2k-1(v/2) - 1 < q. Since v/2 is integral, this implies that 2k-1(v/2) < q, so that 
4kl1V2 < 2 kvq. 

To show the uniqueness of this representation, let x = 2kvq + r with k, q and 
r as stated above. Then L4k-1iv2 < 2kvq < 4kv2, which implies q < 2kV - 1, so 

that x = 2kvq + r < 2kV(2kV - 1) + 2kV = 4kV2. Moreover, we have L4k-1iv2 < 
2kvq + r = x. These inequalities determine k uniquely. The uniqueness of q and r 
is due to the uniqueness statement for division with remainder. El 

We explain the method for computing x = 1(g) 1. We select an even positive 
integer v which is used as the initial step-width in the algorithm. Then there is a 
unique non-negative integer k such that x belongs to the interval 

Ik = {[4 kJV2 + 1,... 4kV2} 

We search those intervals for k = 0,1,2,... until x is found. By Lemma 2.1, each 
number in Ik can be written as y+r with y = 2kvq and r, q as stated in Lemma 2.1. 
Also, each integer that can be written in this way belongs to the interval Ik. To 
check whether x is in Ik we test whether gy+r = 1 with y = 2kvq and r and q as 
stated in Lemma 2.1. This means that we test whether 

gY = g-r 1 < r < 2kV y =2kvq, L4k-1jV2 < y < 4 kv2. 

For this purpose, we compute the set 

Rk = {(g-r,r) 1< r < 2kv}, 

and for all values of q such that L4k-1Jv2 < y < 4kv2 we check whether there exists 
(gy,r) c Rk for some r. If so, 1(9)1 = y + r. Otherwise, we increase k by 1. If 
x < v, the set Ro contains at least one pair (1, r), and 1(9)I = r for the smallest 
such r. Therefore, before adding a pair (g-r,r), 1 < r < v, to Ro in the course 
of the computation of R0, we always check whether g-r = 1, and we break if the 
answer is "yes", since then 1(g)1 is already found. 

The efficiency of the algorithm can be improved if we know a lower bound B of 
l(g)l. Writing C = B - 1, we then work with the set Rk = {(g-(r+C),r) :1 < r < 
2kv}, and if we find (gy,r) C Rk, I(9) =Y + r + C. If no lower bound for I(9)I is 

known, we set C = 0. 
We now present the algorithm. 
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Algorithm 2.2. 

This algorithm computes the order of the group element g in C. 

INPUT: g c C, lower bound C ? 1 for (g), initial step-width v (v C: 2N) 
OUTPUT: X =g 

(1) x=O 
(2) sl; y = v; u= v 
(3) h g-1 
(4) a hC; b gv; c=b /* a = g-r; 
(5) R 0 b = gy; c = gu * 
(6) while (x == 0) do 
(7) for (r = s, s? 1.. ,u) do /*new baby steps * 
(8) a =a h 
(9) if ( s==1I) then /* check iflI< x <v/ 

(10) if (a ==1I) then 
(1 1) x = r?C 
(12) return (x 
(13) break while 
(14) else 
(15) R = R U{(a,r)} 
(16) fi 
(17) else 
(18) R =R U{(~ 
(19) fi 
(20) od 
(21) while (x == 0 and y < u2) do /* giant steps * 
(22) if (there is a number r such that 

(b, r) ER ) then 
(23) x = y+r?+C 
(24) return (x 
(25) else 
(26) Y Y + i 
(27) b b* c 
(28) fi 
(29) od 
(30) s =u? +1; u =2u, /* double 
(31) C = C2 step-width * 
(32) od 

Theorem 2.3. Let C = 0. Let x = (g)j. For every choice of v, Algorithm 2.2 
executes one inversion and at most 2cL~og vj ? 1 multiplications in C and requires 
space for three group elements. On further group multiplications, space required, 
and table look-ups, we have the following estimates. 
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1. If x < v, Algorithm 2.2 executes x additional multiplications in G. It uses 
a table of x - 1 pairs (g, r) E G x {1,... , x - 1} and it performs x equality 
checks. 

2. If v'x < v < x, the number M of additional multiplications in G satisfies 

v < M < vl1 + v - 2. 

The algorithm uses a table of v pairs (g, r) E G x { 1, ... , v}, and it performs 
v equality checks. The total number TL of table look-ups satisfies 

1 < TL < [VY] - 1. 

3. If /Ki > v, the number M of additional multiplications in G satisfies 

5 [V'_i + [log \] -1 < M < 4 FIVY1 - ? [iog v 5] 

It performs v equality checks. It uses a table of at least [A/21 and at most 
2 [lx/Q-2 pairs (g, r) C G x {1, .. ,2 [li]}. The total number TL of table 
look-ups satisfies 

KQ1 <TL<2 [l- V -2. 
4 ~~~~~~2 

Proof. For the initialization, Algorithm 2.2 requires one inversion and at most 
2[logvj + 1 multiplications to compute g-' and b = c = gv It must store g-', b 
and c. 

If x < v, we find x = (g) during the first iteration of the outer while loop, 
in the course of the computation of the set R (= Ro). This requires x group 
multiplications and x equality checks, and the set R contains x - 1 pairs (gr, r). 

If +/E < v < x, we also find x = (g) I during the first iteration of the outer while 
loop. The set R contains v pairs (g-r r), which also means that the algorithm must 
perform v multiplications in G to compute R. It performs v equality checks to test 
whether g-r = 1. In the iterations of the inner while loop, the algorithm checks 
whether (gqvI r) e R while v < qv < x-r (r E {1, ... , v}), i.e., 1 < q < (x-1)/v, 
so we have 1 < q < x/55. It computes gqv while 2v < qv < x - r, thus 2 < q < ./J5. 
This requires between 1 and [y? 1 - 1 table look-ups, and at most [V/x 1 - 2 group 
multiplications. Hence, the total number of multiplications in the outer while loop 
is between v and v + FVx/1 - 2, if /x < v < x. 

If v < /E, the algorithm performs k additional iterations of the outer while loop, 
where 

(3) 4 k 1v2 < X < 4kv2 

i.e., k - 1 < log a < k, hence k = [log v After the last iteration, the set 

R contains 2kv pairs (g-r,r). Thus, to compute R the algorithm performs 2kv 
multiplications in G, and it must store a table of 2kv pairs. From (3) we see that 
2k v < V+/ < 2 kv, so 

(4) [V] < 2 kv < 2 A -2. 

In the first inner while loop, the algorithm computes gqv for 2 < q < v, which 
requires v - 1 multiplications. In all of the following inner while loops except the 
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last, it computes gq2tv while 

4-lV2 < q22v < 42, 

i.e., 

2i 1 < q < 2v, 
2 

where 1 < i < k - 1. This requires 

22v -2'-1V =3 2 -V 
2 2 

multiplications in each loop, which can be summed to 
k-1 

3.2i-1 =3. (k-1 _ 1)- 

i=1 

multiplications. In the last loop, the algorithm computes gq2 kV while 

4 kv2 < q2 v < xr r E {1, .. ., 2kV}, 

so 2k-1 v < q < . Since +,/ < 2kv, we have -1 <x- < v/E, and this requires 
at most 

[VX1 -1I- 2k-1 
V 

multiplications. Thus, the total number of multiplications in the inner while loops 
is at least 

v vl?-(1 l)3?k1 _ 1)V -1 2k-1 v v 

2 2 2 

(4) 3 X_ I >I V(4) 

The total number of table look-ups is bounded below by Fv'/ 1 /4 and above by 
2 Fv'21 - -2, which is the maximum number of iterations of the inner while loops. 
Finally, note that in k outer while loops the algorithm performs one multiplication 
to compute c2. Together with (4) we get that Algorithm 2.2 performs at least 

and at most 

V4 

?lgvl+4[V < 2 - 2 -- 5 

2~~~~ 

additional multiplications in C to find b(g)1,dif v < [ 4 d 

Remark 2.4. To adapt Theorem 2.3 to the case C > 1, we just have to replace each 
x by x -C and add to the total number of group multiplications the multiplications 
required to compute a = (gu)t , i.e., at most 2 [logt C + 1 multiplications. 
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In practice, the most efficient way to handle the set R is by means of a hash 
table. This is possible as long as the group elements are represented as sequences 
of integers. Then, each look-up in the table R requires just one computation of a 
hash value and usually one equality test for group elements. 

As we see from Theorem 2.3, the efficiency of Algorithm 2.2 depends largely on 
the appropriate choice of the initial step-width v. As noted by Shanks [10], the op- 
timal choice of v is v = (g) . This results in about 2 X(g) group multiplications 
in our algorithm. If v is chosen too large (in comparison with t(g)), we waste 
space and time because the set R is too big. If v is chosen too small, we waste time 
because of superfluous iterations of the outer while loop. 

In order to test our algorithm, we implemented it using the LiDIA system [7] to 
compute orders of elements in ideal class groups of imaginary quadratic orders. For 
three discriminants of sizes ten, fifteen, and twenty decimal digits, we computed 
the orders of the ideal classes of four prime ideals that we knew from previous 
computations had different orders. In Tables 1, 2, and 3 we show the actual numbers 
of group multiplications and table look-ups, denoted by GM and TL respectively, 
that were required to compute the order of each prime ideal class, together with 
the lower and upper bounds predicted by Theorem 2.3. A denotes the discriminant 
of the quadratic order and Ip denotes the ideal class of which the prime ideal lying 
over the prime p is the reduced representative. We compute the order of each prime 
ideal class three times, using a different value of v each time. The simplest version 
of our algorithm uses v = 2, v = 'A1/4 is equivalent to Shanks' original algorithm 
[10], and v = 'A1/4/2 is half-way between the other two and has been shown to 
yield the best overall run times in our tests. Table 4 gives the run times for these 
computations on a SPARCstation 20. 

TABLE 1. Order algorithm -group multiplications and table 
look-ups (v = 2) 

lLower Computed Upper__ 
A _ ._(IP) GMG TL GM LTL GM TL 

-4(101o + 1) 5 4033 85 16 164 94 258 125 
3 16132 166 32 324 189 515 253 

13 24198 202 39 485 221 628 309 
7 48396 282 55 580 316 884 437 

-4(1015 + 1) 7 2 0 0 4 0 5 0 
29 42908 267 52 558 294 836 413 
17 128724 456 89 1027 506 1441 715 
3 257448 643 127 _1278 _757 2037 1013 

-4(1020 + 1) 13 232024638 19054 3808 38750 22352 60942 30463 
5 464049276 26941 5385 63327 30544 86179 43081 

37 928098552 38095 7616 77489 44706 121871 60927 
7 1856197104 53870 10771 126642 61090 172348 86165 

For A = -4(1010+ 1), our algorithm using v = 2 is faster than Shanks' algorithm 
(i.e. v = A1/4) for I5, the class with the smallest order. It is slower for 13 and 
113, even though it executes fewer total group operations, because it performs four 
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TABLE 2. Order algorithm group multiplications and table 
lnnV_(iniz (q - A1/4 /9A) 

Lower Computed Upper 
A \ Lil (Ip) GM TL GM TL GM TL 

-4(1010 + 1) 5 4033 224 1 251 18 297 63 
3 16132 224 1 305 72 361 127 

13 24198 224 1 341 108 389 155 
7 48396 224 1 449 216 453 219 

-4(1015 + 1) 7 2 0 0 19 0 19 0 
29 42908 3976 1 4002 10 4199 207 
17 128724 3976 1 4024 32 4350 358 
3 257448 3976 1 4056 64 4499 507 

-4(1020 + 1) 13 232024638 70711 1 74014 3281 85965 15232 
5 464049276 70711 1 77295 6562 92274 21541 

37 928098552 70711 1 83858 13125 101197 30464 
7 1856197104 70711 1 96983 26250 113816 43083 

TABLE 3. Order algorithm group multiplications and table 
look-ups (v = - 1/4) 

I______Lower | Computed Upper 
A L | _p_| _(p) | GM TL GM TL GM TL 

-4(1010 + 1) 5 4033 448 1 1 467 9 523 63 
3 16132 448 1 494 36 587 127 

13 24198 448 1 512 54 615 155 
7 48396 448 1 566 108 679 219 

-4(1015 + 1) 7 2 0 0 21 0 21 0 
29 42908 7953 1 7977 5 8178 207 
17 128724 7953 1 7988 16 8329 358 
3 257448 7953 1 8004 32 8478 507 

-4(1020 + 1) 13 232024638 141422 1 143086 1640 156678 15232 
5 464049276 141422 1 144727 3281 162987 21541 

37 928098552 141422 1 148008 6562 171910 30464 
7 1856197104 141422 1 154571 13125 184529 43083 

times as many giant steps than Shanks' algorithm, which requires additional table 
look-ups. In the case of I7, the optimal value of v is v = 48396 220, and the 
initial step-width v = A1/4 447 that is used in Shanks' algorithm is sufficiently 
accurate that the extra giant steps taken by our algorithm cause it to execute more 
group operations in total. v = A1/4/2 223 is closer to the optimal value than 
V = A1/4, and this choice of v does result in the best overall performance for three 
of the four ideals. 

For A = -4(1015 + 1), our algorithm using v = 2 is the fastest for three of 
the four prime ideals. The orders of the ideals are sufficiently small that selecting 
V = A1/4 or A1/4/2 results in too many extra baby steps. For A = -4(1020 + 1), 
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TABLE 4. Order Algorithm run times 

[7_T_:AT_-XpX t(1p v - v= 2 Tv = v 
4(1010 + 1) 5 4033 0.19 sec 0.16 sec .27 sec 

3 16132 0.31 sec 0.22 sec 0.27 sec 
13 24198 0.44 sec 0.30 sec 0.37 sec 
7 48396 0.60 sec 0.44 sec 0.41 sec 

-4(1015 + 1) 7 2 0.13 sec 0.09 sec 0.10 sec 
29 42908 0.86 sec 2.83 sec 4.87 sec 
17 128724 1.20 sec 2.39 sec 4.60 sec 
3 257448 1.74 sec 1.95 sec 3.26 sec 

-4(102? + 1) 13 232024638 61.40 sec 51.80 sec 92.22 sec 
5 464049276 81.68 sec 52.72 sec 78.71 sec 

37 928098552 128.06 sec 78.76 sec 116.60 sec 
_ 7 1856197104 172.86 sec 102.08 sec 111.14 sec 

our algorithm using v = 2 is faster than Shanks' algorithm for one of the four ideals. 
In this case, A1/4 is closer to the optimal value of v than for A = -4(1015 + 1). 
Using v = A1/4/2, as in the case of A = -4(1010 + 1), actually results in the best 
overall performance. 

Our results suggest that Algorithm 2.2 has two main advantages over Shanks' 
original algorithm. The first and most obvious advantage is that it is faster when 
the order of the element is much smaller than the order of the group. In these cases, 
Shanks' algorithm executes too many baby steps, and although our algorithm using 
v = 2 will execute some unnecessary giant steps, it will still execute fewer group 
operations overall. The second advantage is when the upper bound on the order of 
the group is too large. Shanks' algorithm will execute too many baby steps in this 
case as well. Our algorithm allows one to select an initial step-width that is much 
smaller than the estimated order of the group, in the hope of attaining a better 
approximation of /(g) . Using Shanks' algorithm, an initial step-width that is too 
small results in far too many giant steps, but our algorithm will detect if the initial 
step-width is too small and enlarge it if necessary. 

3. COMPUTING DISCRETE LOGARITHMS 

Given g, d E G, we wish to decide whether d belongs to the group (g) generated 
by g. If the answer is "yes," we want to compute x = logg d. We use the following 
modification of Algorithm 2.2 to solve this problem. We compute the order of g 
in G as in Algorithm 2.2, i.e., we try to find integers y and r such that gy+r = 1. 
However, for each y, before checking whether gy+r = 1, we check whether gy+r = d. 
For this, we work with the same set R as in Algorithm 2.2. We first check whether 
(d-l * gy, r) E R, with R as in Algorithm 2.2. If this is the case, logg d = y + r. 
Otherwise, we check whether (gy, r) E R. As soon as we have found (g) 1, we know 
that there is no discrete logarithm of d for base g, since logg d < (g) 1. Just as in 
Algorithm 2.2, during the computation of Ro = {(g-r, r) 1 < r < v} we always 
check whether logg d or 1(g) is already found before we include a pair (g r, r). 
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Algorithm 3.1. 

This algorithm computes the discrete logarithm of d (d + 1) 
for base g. 

INPUT: d,g g G (d # 1), initial step-width v (v E 2N) 
OUTPUT: t = 1 and x = logg d if d E (g), 

t =0 and x = 1(9g) if d ? (g) 

__ _ _ _ ._ ._ 
.. .. . 

_ . 

(1) t=2;x=O 
(2) s= 1; y =v; u =v 
(3) h =g-1 
(4) a =1; b =gv; c =b /* a = g-rb =gy, 

(5) R =0 c = gu*/ 
(6) f= d-1 
(7) while (t == 2) do 
(8) for (r = s, s 1. ... u) do /* new baby steps *7 
(9) a=a*h 

(10) if (s == 1) then /* check if < x < v*/ 
(11) if(a==f) then 
(12) x = r; t =1 
(13) break while 
(14) else 
(15) if (a == 1) then 
(16) x = r; t = 0 
(17) break while 
(18) else 
(19) R = R U {(a, r)} 
(20) fi 
(21) fi 
(22) else 
(23) R= R U {(a, r)} 
(24) fi 
(25) od 
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(26) while (t == 2 and y < u2) do /* giant steps */ 
(27) if (there is a number r such /* checking for 
(28) that (f * b, r) E R) then discrete log. */ 
(29) x=y+r;t=1 
(30) else 
(31) if (there is a number r such /* checking for 
(32) that (b, r) E R) then the order of g */ 

(33) x = y+r; t =0 
(34) else 
(35) y=y+u 
(36) b=b*c 
(37) fi 
(38) fi 
(39) od 
(40) s=u+1;u=2u /*double 
(41) c = c2 step-width */ 
(42) od 
(43) return (t, x) 

I .. . . . . . _ . . ......... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~..... .... . _ . . . . . . _ . _. ... 

To discuss the complexity of Algorithm 3.1 we use the same arguments as in 
Theorem 2.3. We only have to observe that there are twice as many equality checks 
during the computation of Ro. Moreover, in each inner while loop, we have one 
additional multiplication to compute f * b and at most one additional table look- 
up to check whether (f * br) E R. With x = loggd if d E (g) and x = (9) 

if d ( (g), this causes at least 1 additional multiplication and at most [x\/- 1 - 1 
additional multiplications and table look-ups if /G < v < x. If /u > v, this causes 
at least [\/l] /4 - 1 and at most 2 [\/l] - 2 - 2 additional multiplications and 
table look-ups. Therefore, we have the following result: 

Theorem 3.2. Let d f 1. Let 

X I 1(g) Iif d (g), 
logg d if d E (g). 

For every choice of v, Algorithm 3.1 executes two inversions and at most 2 [log vj +1 

multiplications in G and requires space for five group elements. On further group 
multiplications, space required, and table look-ups, we have the following estimates. 

1. If x < v, Algorithm 3.1 executes x further multiplications in G. It uses a 
table of x - 1 pairs (g,r) E G x {1,... ,x - 1}, and it performs at most 2x 
equality checks. 

2. If v/ < v < x, the number M of further multiplications in G satisfies 

v + 1 < M < 2 [1lx + v-3. 
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The algorithm uses a table of v pairs (g, r) E Gx {1,... , v}, and it performs 
'v equality checks. The total number TL of table look-ups satisfies 

1 < TL < 2 [Fv'1 -2. 

3. If \x > v, the number M of further multiplications in G satisfies 

2V l? [ log V1 2<M<6 [V31 -V+ [logyl 

It performs at most 2v equality checks. It uses a table of at least [\/I] and 
at most 2 [\lxQ -2 pairs (g, r) E G x {1, .. ., 2 [Slx}. The total number TL 
of table look-ups satisfies 

Ia -1 < TL < 4 IV/X]- v - 4. 
2 

Algorithm 3.1 was implemented using the LiDIA system [7] to compute discrete 
logarithms in ideal class groups of imaginary quadratic orders. For the same three 
discriminants used in the previous section, we select the prime ideal class 4p with 
the largest order and use our algorithm to compute log, Ipx in the class group, for 
5 different values of x with varying sizes. Again, we perform the discrete logarithm 
computation three times using the same three values of v as before. Table 5 shows 
the number of group multiplications and table look-ups, denoted by GM and TL, 
required for each computation and Table 6 gives the run times for each computation. 

TABLE 5. DL algorithm - group multiplications and table look-ups 

1~ ~ ~ ~ ~~~~~_ I -I 
- 

-- - 1- - '-V--- _ TV AT4/2 _ |4 'S v =2 T2 / 
_- I P I_ X p x WIG M C TL GM TL GMJTL] 

-4(10o0 +?1) 7 9679 411 275 319 85 500 41 
19358 668 403 405 171 544 85 
29037 744 479 491 257 586 127 
38716 820 555 577 343 630 171 
48395 896 631 665 431 674 215 

_4(1015 + 1) 3 51491 920 655 4016 23 7984 11 
102980 1433 911 4042 49 7996 23 
154469 1633 1111 4068 75 8010 37 
205958 1835 1313 4094 101 8022 49 

_ 257447 2035 1513 4120 127 8036 63 
-4(102o + 1) 7 371239423 88207 55423 81233 10499 146696 5249 

742478843 110865 78081 91733 20999 151946 10499 
1113718263 165072 99519 102233 31499 157196 15749 
1484957683 176402 110849 112733 41999 162446 20999 
1 1856197103 187732 1122179 123233 52499 167696 26249 
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TABLE 6. DL algorithm - run times 

I -\ xP lo X =S V-=2 v=AZ17/2 V=-A14 
-4(1010 + 1 7 9679 0.34 sec 0.20 sec 0.24 sec 

19358 0.53 sec 0.28 sec 0.28 sec 
29037 0.58 sec 0.36 sec 0.32 sec 
38716 0.66 sec 0.45 sec 0.37 sec 

I ____ _____ 48395 0.56 sec 0.40 sec 0.34 sec 
-4(1015 + 1)! 3 51491 1.28 sec 1.55 sec 3.13 sec 

102980 1.80 sec 1.51 sec 3.09 sec 
154469 2.05 sec 1.67 sec 2.73 sec 
205958 2.20 sec 1.44 sec 2.63 sec 

L___ __ 257447 1.53 sec 1.40 sec 3.22 sec 

I4(1020 + 1) 7 371239423 130.04 sec 55.17 sec 80.03 sec 
742478843 179.09 sec 80.61 sec 90.70 sec 

1113718263 238.34 sec 101.31 sec 106.19 sec 
1484957683 264.40 sec i 127.83 sec 113.06 sec 

L___ 1856197103 188.05 sec 105.26 sec 106.34 sec 

In the DL Algorithm, the advantages of our method in comparison with Shanks' 
method become even clearer. This is due to the fact that for logg d all values 
between 0 and 1(g) are possible, and they are equally probable (this is, however, 
not the case in cryptographic circumstances). Assuming that 1(g) is not known 
a priori, Shanks' original algorithm still uses the upper bound of the group order, 
i.e., v = A1/4, which causes the algorithm to perform far too many baby steps. 

For A = -4(101o + 1) and the prime ideal lying over 7, in which case the bound 
V = A1/4 is quite accurate, Shanks' algorithm is faster than our algorithm using v = 
A 1/4/2 for about half of the computed logarithms in our experiments. For all DL's 
smaller than half of the order of I7, our algorithm using v = A1/4/2 works better. 
The comparatively bad results for our algorithm using v = 2 are due to the fact 
that in the DL Algorithm each giant step causes two group multiplications and two 
table look-ups, so that too many giant steps cause twice as much unnecessary work 
as in the Order Algorithm. Note that computing discrete logarithms of elements 
generated by 17 represents the best case for Shanks' algorithm and the worst case 
for our algorithm because 17 is the largest prime ideal. 

For A = -4(1015 + 1) and A = -4(1020 + 1), where the upper bounds of 
the group order are much larger than the orders of the largest prime ideals, our 
algorithm using v = A1/4/2 works better for almost all possible logarithms. 

Thus, our experiments lead to similar conclusions to those related to Algo- 
rithm 2.2, namely that our algorithm works better when logg d is small compared 
to (g) I and when the upper bound on the order of the group is too large. 

4. COMPUTING THE STRUCTURE OF A SUBGROUP 

Given a generating system, i.e., a finite sequence S = (gi,... , 91), of a finite 
abelian group G that is given as described in the introduction, we want to find the 
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structure of G. By this we mean finding positive integers ml,... ,mk with m1 > 1, 
mjImmi , 1 < j < k, and an isomorphism 

(5) q: G mi M x *-... x 2/mk2. 

This isomorphism will be given in terms of the images of the elements of the gen- 
erating system S. The integers mi are the invariants of G. 

We describe our method. For z = (z1,... , z) E 2' we write 

SZ = flgizi. 

A relation on S is a vector Z_ E 2t such that SZ = 1. The set L(S) of all rela- 
tions on S is a lattice in 2' of dimension 1, since it is the kernel of the surjective 
homomorphism 

Z1 >G. zS'6 

Our approach will be to compute a basis B = (bi,... ,b,) of L(S). That basis is 
identified with a matrix of column vectors bj = (bi. .., bi) t. Then the order of G 
is I det BI. Using standard techniques, e.g. [6], [4], we compute the Smith normal 
form N of B and a matrix U E Z1xl with det U 0 0 mod IGI such that there exists 
V E Et Xl with det V 0 0 mod IGI and N _ UBV mod IGI. This means that we 
do not need to find two unimodular transformations for the Smith normal form but 
only a left unimodular transformation mod G. Therefore, modular techniques for 
finding the Smith normal form can be applied. 

Let N be the diagonal matrix diag(1,... , 1,m, ... , mk) where ml > 1. Then 
m1,... ,mk are the invariants of G. To define the map (5) delete in U all but 
the last k rows. Let up,... ,u1 be the column vectors of that new matrix, up = 

(Ul;, . . ,Ukj). Set 

q(gj) =(ul; modml, ... ., Ukj modmk), < j< 1. 

Then q is the isomorphism we were looking for. 
We describe the computation of the basis B of the relation lattice L(S). The 

matrix B will be an upper triangular matrix with positive entries on the diagonal. 
Suppose that we have computed b1,... ,bj-1. We describe the computation of 

bj. The diagonal entry bjj is the smallest positive integer such that gj bjj belongs 
to the subgroup of G generated by {gl, ... , gj -1 }. The problem of finding bj 
is therefore similar to a discrete logarithm problem. Indeed, our solution is an 
extension of Algorithm 3.1. Instead of a single initial step-width v we now use 
a vector Va = (v1,... , vi) E 2N1 of step-widths. Since there is a basis B with 
0 < bij < bi2 for 1 < i < j < I we can write 

bij= qBi + ri, 
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where Bi = [ b%%1, 0 < qi < Bi, and 0 < ri < Bi. We also write 

bij = y + rj, 

where y = 2kvjq and 1 < r] < 2kv with k and q as in Lemma 2.1. Set 

Si = (gi, . ,9-I i), 1 < i < 1. 

As in Algorithms 2.2 and 3.1 we proceed to find the smallest value of y such that 

(6) S'3_1 B gj = S 

where 

(7) q = (ql,.*-. qj - ), ? < qi < Bil qiBi < biiX 1 < i < j, 

B = (Bi,... , Bj-), 4B denotes the componentwise multiplication, and 

(8) R =(jrl,. .., Jj), 0 < ri < B., 1 < i < j, and 1 < r. < 2v. 

Once y is found we have 

bj = o (y) o (0,... . 0) +rio (0, ... ,0) 

1-j 1-i 

where o denotes the concatenation of vectors. 
To be able to check quickly whether (6) holds for a given y we use the sets 

Q {(Si -q B, qj): qu as in (7)} 

and 

R= {(Sjr,: rias in (8)}. 

Just as in the order algorithm and the discrete logarithm algorithm we check 
whether b < v; already during the first computation of R, i.e., when k = 0 in (8). 
For this we use the set 

R = {(Sjir: 0 < ri < Bi, 1 < i < j}. 

Moreover, before computing any element of R we check if bjj = 1. This is done 
separately, because in many cases the algorithm will compute the entire group 
structure with only a few generators, and all the others can be handled by this 
special case. For this check we use the set Q instead of R', since in general Q is 
considerably smaller than R'. 

Here is the algorithm which determines the HNF-basis B for the relation lattice 
L(S). 
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Algorithm 4.1. 

This algorithm computes the HNF-basis for the lattice of 
relations on a generating system for a finite abelian group. 

INPUT: A generating system S = (g,... ,I 91) of G, 
initial step-width vi = (vi,... , vj) E 2N1. 

OUTPUT: A basis B = (b1,... , bl) of the lattice of relations 
on S in upper triangular form. 

(1) R' = {(1, ( ))}, Q = {(1, ( ))}, /* initialization */ 

(2) for (j= 11... ) do 
(3) s = 1, y = Vj, u = Vj 
(4) h = gj /* a = 9j- I b = gjY, 
(5) a= 1, b=gj'v, c=b c=gj */ 

(6) R = 0 
(7) for (all (e, qj E Q) do /* check whether gj is 
(8) d = e * g- contained in current 
(9) if ( there is r- such that (d, r) E R' subgroup */ 

and qi+ri < biiVi = 1,... ,j-1) 
-then 

(10) -b. = qB o (O) o (O ,0. ) + ro 
(1) o (O. .. ., 0) 

( 11 ) break for 
(12) fi 
(13) od 
(14) while (b j == 0) do 
(15) for (i = s,... ,u) do /* new baby steps */ 
(16) a=a*h 
(17) if ( s == 1 and i > 1) then /* check whether 
(18) for (all (d,r) E R' )do 1 < bjj < vj 
(19) e= d * a 
(20) if (there is q such that (e, j) E Q 

and qi+ri < bjjVi = 1,... .j-. 
) then 

(21) bj = q'B o (O) o (0, ... ., O) + r o 

(i o (O).. , O) 
(22) break while 
(23) else 
(24) R = R U { (e, ro (i))} 
(25) fi 
(26) od 
(27) else 
(28) R = RU { (d * a, r o (i) ) : (d , rj E 

R'} 
(29) fi 
(30) od 
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(31) while ((bjj == 0) A (y < u2)) do /* giant steps *7 
(32) for (all (e, q) E Q) do 
(33) d=e*b 
(34) if ( there is F such that (d, r) e R 

and qj+ri <bjjVi =,... ,j-1 
then 

|(35) bj = q'B o (y) o (O,. .. .,) + r ol 
(0 ... ,0) 

(36) break while 
(37) fi 
(38) od 
(39) y=y+u 
(40) b = b c 
(41) od 
(42) s = u + 1 7* double step- 

width *7 
(43) u =2u 
(44) c =c2 
(45) od 
(46) if (j -7 1) then 
(47) Bj = F bil 
(48) B= B o (Bj) 
(49) R' = {(d, io(0)) (d, r) E R'}U /* compute new 

{(d, r) E R: 1 < rj < Bj} R' and Q*/ 
(50) Q = {(eqo (0)): (eq) E Q}U 

{(e* g qBaj q o (qj)) (e, q) E 
Q,1 < qj < Bj IqjBj < bjj} 

(51) fi 
(52) od 

(53) B = (b1,... ,b1) 
(54) return (B) 

We implemented our algorithm using the LiDIA system [7] to compute, once 
again, in ideal class groups of imaginary quadratic orders. During the course of the 
implementation, we found that the sets R', R, and Q are most efficiently stored as 
indexed hash tables, since the algorithm requires traversing the tables in addition 
to fast searching. Using this data structure also allows one to maintain R' and R 
in one table. In the interest of saving storage, the exponent vectors in these tables 
are encoded into single integers. 

For simplicity, we analyze the complexity of Algorithm 4.1 only with initial step- 
width vY = (2, ... ,2). We need the following lemma. 

Lemma 4.2. Let mi,... ,ml E N and e = I{mj mj > 1} . Then we have 

l l 

j=1 j=l 

Equality holds if and only if mj = 2 for all mi with mj > 1. 
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Proof. Let m E N. If m =1, ]= m. If m = 2, [m/] = m/i. If 
3~~~~ < m 5 /m < vf/. If m > 6, 1 < v/ 1 i( 1 ,tu 

F <m] i < m+ < m/r. Hence, Fm-l ? < mfor all m > 2, with equality 
if and only if m = 2. From this our claim follows. E 

Theorem 4.3. Let v = (v1,... ,VI) with v1 = = vj = 2. Algorithm 4.1 executes 
I inversions and at most 

2 2 (I+5) C +41(S) C +log GI 

multiplications in G, where I denotes the number of generators and l(S) denotes 
the number of the bjj that are larger than 1. It uses two tables of at most 

2 2 C and 2 2 + 1 Q 
pairs (e, j) E G x {O,... IGI }'. The total number of table look-ups is bounded by 
2 2 (I(+I(S)+2) CrI 

Proof. Algorithm 4.1 performs 1 outer loops to compute the column vectors b1,... 
b1. We first estimate the sizes of the sets Q, R and R' for each of these outer loops, 
and how many group operations are needed to build up these sets. Let Qj, Rj and 
Rj denote the sets Q, R and R' after the j-th loop. We have 

IQoI = 1 and IQI? < IQj IK Bj, 

where Bj = F b/il. Thus IQjI < JlJ=_1 Bi. Writing 

(9) T= jIB-, 
i= 1 

we get that IQj I < T for all j. It takes at most 

j-1 

IQj-j I| (Bj -1) < (Bj -1) fIBi 
i= 1 

multiplications to compute Qj given Qj-1 The maximum number MQ of multi- 
plications to compute all the sets Q1, ... , Q1 can be estimated as follows: 

1-1 j-1 1-1 Jo j-1 
MQ < Z(Bj-1) HB = E (I Bi-H Bi 

j=1 i=1 j=1 i=1 i=1 
1-1 

= J7JB -1 < T-1. 
j=1 

In considering Rj, we use the arguments of the proof of Theorem 2.3, with initial 
step-width v = 2. At the end of the j-th loop, the set R (= Rj) consists of (at 
most) pjIRj>1- pairs (d * gji, F) with d fE Rj-1 and 1 < i < pj, where pj = 0 if 
bjj = 1, pj = 1 if bjj = 2, pj = 2 if 2 < bjj < 4, and pj < 2 bV/jil- 2 if 2 < /j. 
So we have pj < 2B_ - 2 in all cases. Hence 

IRj I < (2Bj - 2) IRj- 1 

Moreover, the algorithm performs at most 2Bj - 2 multiplications a = a * h (step 
(16)), so that the maximum number of multiplications needed to compute Rj given 
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R'_ l can be estimated by (2Bj - 2) 1 R>_ 1 1 + 2Bj - 2. From the way in which IR' 
is built up, we see that 

IRj1 = IR>_1t + (Bj - I)tR~i_ = BjIR~it_, 

where RI = 1. Thus, 

(10) IRj1I =|Bil , , 1 
i= 1 

and 
j-1 

IRjI < 2(Bj -1) H Bi, ,. 1 
i=1 

so that we always have IR'j < T and IRj < 2T. Therefore, the algorithm requires 
space for at most 4T pairs (e, q) E G x {0,. . . I, GI}' to store Q, R and R'. Let 

E = {gj : j E {1, ... ,l}, bjj > 2} 
= {gj: j E {1, .. ,l}, Gjj -7Gi}, 

where Gj = (9g,... ,gj), 0 < j < 1. Let l(S) = lEt. Then the maximum number 
MR of multiplications required to compute all the sets Rj satisfies 

MR < 2 [(Bj-1) f Bi + Z(BJ - 1) 
P`l i=l j=1 

= 2 r[ Bj-1+ (Bj-1) 
Li=' j=1 

I 

< 2T-2+2 E bjj < 2T-2+21(S) /l. 
j=1 

gjcE 

Next, let us consider the remaining group multiplications and table look-ups in 
the I outer loops. It takes 1 inversions and 1 multiplications to compute gj-1 and 
gj2 at the beginning of each outer loop. To check whether bjj = 1, i.e., whether gj 
is contained in the subgroup generated by g, .... I, gj-1, the algorithm checks for at 
most IQI elements e whether (e * gj, r) E R' for some F. In total, this requires at 
most 

1 IQI < I T 

multiplications and table look-ups. We only have iterations of the outer while loops 
((14) - (45)) if gj E E. To check whether 1 < bjj < 2 (= v;), the algorithm checks 
for at most IR'l elements d whether (d * gj -bjj, Iq E Q for some q. This requires at 
most IR'j < (bjj - 1)T = T table look-ups for each gj E E, so altogether at most 

l(S) T 

table look-ups (the multiplications have already been considered above). We only 
have further computations in the j-th outer loop if 2 < bjj. In this case, we have to 
distinguish between the cases ,/j < 2 and 2 < +X;. If f/ < 2, i.e., bjj = 3 or 
4, then bjj is found during the first iteration of the outer while loop. We conclude 
from the proof of Theorem 2.3 that it takes at most (Bj - 1)IQj = IQj-11 table 
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look-ups and multiplications to check whether some element (e * b, ra) is in R (steps 
(33)/(34)), and it requires at most By -2 (= 0) multiplications b = b*c (step (40)), 
plus one additional multiplication in step (44). If 2 < /, we have in total 

kj= [log bj 1 + 1 = [log bjj 

iterations of the outer while loop, which means in all [logbjj] multiplications 
for squaring c in step (44). We use the results of the proof of Theorem 2.3 to 
see that in the inner while loops ((31) - (41)), the algorithm performs at most 
(2Bj - 3)1 Q-11 table look-ups and multiplications in steps (33)/(34) and at most 
2Bj - 4 multiplications in step (40). Combining the results of the cases VB < 2 
and 2 < /, we get that for each gj E E the algorithm performs at most 

(2Bj - 3) Qj-l I 

table look-ups in the inner while loops and at most 

(2Bj -3) 1Qj - 1 | + 2Bj -4 + [log bjj 

group multiplications in the inner while loops and step (44). The maximum total 
number of table look-ups in the inner while loops, TLI, can be estimated by 

l l 

TLI < Z(2Bj-3)lQij- I < 2 Z(Bj-1)jQjij I 
j=1 j=1 

l j-1 ' 1 

< 2 1,(Bj -1) rl Bi < 2 rl Bj-1 I < 2T -2. 

j=1 i=1 j=1 / 

For the maximum total number of multiplications in the inner while loops, MI, we 
get 

I I 

MI < 2T-2+2Z,(Bj -1)-21+ [logbjj] 
j=1 j=1 

< 2T+21(S) 4G+ log CGJ+ l(S)-21-2, 

where we use that [>1 [log bjj] < log H>1=1 bjj + I(S) = log CGJ + I(S). 

Summing up, Algorithm 4.1 performs 1 inversions, at most (1+5)T+41(S) V + 
log CGJ group multiplications, and at most (1 + I(S) + 2)T - 2 table look-ups. It 
requires space for at most 4T pairs (e, q) E G x {.0 ... I, IGC}. Since T < 2 2 C 
(see Lemma 4.2), this completes the proof. E 

To get reasonable lower bounds for the total number of group multiplications 
and table look-ups we should treat many different distributions and orders of 
{bl, . . ., b11} separately. So we just give lower bounds for the sizes of Q, R and R', 
and the number of group multiplications required to compute these sets. This is 
done in the proof of the following theorem. 

Theorem 4.4. Let v7 = (2,... ,2) in Algorithm 4.1. Then the number of group 
multiplications and the table sizes are 
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Q@fb1)' 

where b11,... ,bul denote the diagonal elements of the basis 3 computed by the al- 

gormtthm. 
Proof. Just as in the previous proof, let Qj, Rj and R' denote the sets Q, R and 
R' after the j-th outer loop. 

From the way Q is built up we get that IQ3I = IQi 1 if bjj = 1, and IQj ' 
_Qj-i(Bj - 1) if Bj > 1 (i.e., if gj E E). Thus 1Qij > Hji=1 (Bi - 1), so at the 

end of the algorithm we have 

1-1 

I QI > rl (Bj -1) =:Li 
j=1 

gjEi 

and it takes at least L - 1 multiplications to compute all the sets Q1,... ,QI-i 
This lower bound is sharp: If bjj < 2 for all j, then Q = {(1, O)} at the end of the 
algorithm. 

From the way R is built up and from Theorem 2.3 we see that IRjt = 0 if b = 1, 
tRjt > tRj11 if bjj = 2, and jRjI > Bj Rj11t if bjj > 3. With (10) it follows that 

IRj >2 H Bi. 
i=1 

Let p = max{j E .1... ,1} : gj E E}. Then tRpt > 1/2 T, and it takes at least 
1/2 . T multiplications to compute Rp, with T as in (9). It also follows from (10) 
that at the end of the algorithm we have that IR'I = T/B1. (Especially, tR'I = T if 
gj f E.) This proves the theorem. D 

Corollary 4.5. Let G = (2/22)k . Then Algorithm 4.1 is of complexity Q(tGC). 

Proof. Let S be a generating sequence of G. Let 1 = IS1. Then for the diagonal 
elements bjj computed by the algorithm we necessarily have k times bjj = 2 and 
I- k times bjj = 1. Since k = log IGI, the assertion follows by Lemma 4.2 together 
with Theorem 4.4. ? 

I(S) Let us further comment on the factor 2 2 , which appears in Theorem 4.3. We 
conclude from Theorem 4.4 that the more cyclic subgroups G has and the smaller 
they are, the larger R and R' (and Q) are, and thus the storage required and the 
number of group multiplications increases. However, this effect only depends on 
the structure of the type of groups we are dealing with. For example, in the case 
of groups of points on elliptic curves over finite fields, which are either cyclic or 
isomorphic to a product of two cyclic groups, this phenomenon is not relevant. In 
the case of ideal class groups of imaginary quadratic fields, where we expect small 
ranks [5], we can say that the worst case does not occur very frequently, especially 
for large discriminants. 

Theoretically there is another possibility to have a disturbingly large exponent 
l(S) even if G is cyclic or consists of very large cyclic subgroups, namely if many 
generators are needed to build up each cyclic factor. 
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To estimate the damage caused by these effects, we did the following experiments. 
For n = 3,4, ... ,10 we took the first 1000 discriminants smaller than 10i. For each 
of these discriminants, we took the ten prime ideal classes of smallest norm in the 
corresponding imaginary quadratic order and used our algorithm to compute the 
subgroup generated by these classes. We measured the sizes of Q and R' and 
counted the number l(S) of prime ideal classes actually used in the algorithm to 
compute the subgroup. In Table 7 we compare IQI and IR'l with IGI and C/, 
and in Table 8 we compare l(S) with the number of cyclic factors of CGJ, which is 
the minimum number of generators needed to compute CG1. 

TABLE 7. Subgroup algorithm size of R' and Q relative to JGJ 
and JGJ1/2 

IQI/IGI 1 IR'I/IGI IQI! GI IR'l/ l 
n max ave max ave max ave max ave 
3 0.50000 0.18271 1.00000 0.42068 1.30931 0.74079 5.65685 1.67457 
4 0.44444 0.11417 1.00000 0.28418 1.33333 0.71759 5.65685 1.74131 
5 0.19048 0.06389 0.66667 0.16840 1.25988 0.69884 5.36656 1.80439 
6 0.13187 0.03534 0.66667 0.09723 1.35710 0.68240 9.23760 1.83296 
7 0.06028 0.01932 0.26667 0.05590 1.34739 0.66498 7.15542 1.89770 
8 0.03896 0.01055 0.16000 0.03205 1.26179 0.64524 9.05097 1.93323 
9 0.01755 0.00581 0.09231 0.01835 1.31979 0.63294 8.41976 1.96326 

10 0.01094 0.00317 0.05424 0.01059 1.15923 0.61567 8.21715 2.02498 

TABLE 8. Subgroup algorithm - worst case data 

I(S) - number of cyclic factors 
n 0 1 2 3 
3 549 423 28 0 
4 520 422 58 0 
5 505 415 77 3 
6 525 385 84 6 
7 505 402 86 7 
8 537 380 77 6 
9 552 373 66 9 

10 536 384 75 5 

Table 7 shows that usually the sets Q and R' do not blow up to the entire group 
size but contain less than 2 X G pairs (g, q) in average. Only for discriminants with 
absolute value smaller than 105 it occurred that JR'1 > JGJ. Due to the way Q is 
built up by Algorithm 4.1, the set Q always contains considerably fewer elements 
than R'. 

Table 8 shows that in more than half of all our experiments the algorithm actually 
uses no more generators than theoretically necessary. Also in the remaining cases, 
I(S) is always very small. 

In Tables 9 and 10 we give some examples of subgroups computed with our 
algorithm. For each discriminant, we compute the group G generated by the classes 
of the 10 prime ideals of smallest norms in the order. As before, GM is the number 
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of group multiplications required and TL is the number of table look-ups. We used 
V= (2,... ,2) as an initial step-width in all cases. 

TABLE 9. Subgroup algorithm - sample run times 

AGC GM TL time 
-(102 + 3) [5] 50 14 0.03 sec 
-(103 + 3) [4] 44 13 0.04 sec 
-(104 + 3) [12] 59 17 0.05 sec 
-(105 + 3) [39] 92 31 0.06 sec 
-(106 + 3) [105] 122 51 0.08 sec 
-(107 + 3) [706] 332 149 0.20 sec 
-(108 + 3) [1702] 421 196 0.28 sec 
-(109 + 3) [1840, 2] 595 245 0.40 sec 

_(1010 + 3) [10538] 1038 369 0.73 sec 
-(1011 + 3) [31057] 2213 1067 1.60 sec 
-(1012 + 3) [62284, 2] 3223 1989 2.56 sec 
_(1013 + 3) [124264, 2, 2] 5794 2464 4.25 sec 
- (1014 + 3) [356368, 2, 2] 9233 3751 7.53 sec 

_(1015 + 3) [3929262] 23564 13182 18.41 sec 
-(1016 + 3) [12284352] 37249 16409 30.36 sec 
_(1017 + 3) [38545929] 67130 29484 1 min, 0.12 sec 
-(1018 + 3) [102764373] 103039 54913 1 min, 30.62 sec 
_(1019 + 3) [78425040, 2, 2, 2] 149197 83049 3 min, 39.47 sec 
_ (102o + 3) [721166712, 2] 343423 210837 6 min, 13.87 sec 

TABLE 10. Subgroup algorithm - sample run times 

A G GM TL time 
-4(102 + 1) [14] 63 18 0.03 sec 
-4(103 + 1) [10, 2, 2] 87 30 0.04 sec 
-4(104 + 1) [40, 4] 140 58 0.06 sec 
-4(105 + 1) [230, 2] 223 91 0.10 sec 
-4(106 + 1) [516, 2] 319 114 0.13 sec 
-4(107 + 1) [1446, 2] 598 243 0.26 sec 
-4(108 + 1) [4104, 4] 1223 640 0.71 sec 
-4(109 + 1) [2560, 2, 2, 2, 2] 1509 385 0.80 sec 
-4(101o + 1) [48396, 2, 2] 3388 1622 1.93 sec 
-4(1011 + 1) [56772, 2, 2, 2] 4891 2660 2.54 sec 

4(1012 + 1) [117360, 4, 2] 6680 3323 3.76 sec 
-4(1013 + 1) [742228, 2, 2] 12037 4233 7.11 sec 

4(1014 + 1) [1159048, 4, 2, 2] 27615 11729 16.91 sec 
4(1015 + 1) [257448, 4, 2, 2, 2, 2, 2] 57387 22013 36.58 sec 
4(1016 + 1) [11809616, 2, 2, 2, 2] 120027 26425 1 min, 11.94 sec 

-4(1017 + 1) [46854696, 2, 2, 2] 134990 65584 1 min, 28.21 sec 
-4(1018 + 1) [264135076, 2, 2] 233224 94688 2 min, 40.54 sec 
-4(1019 + 1) [1649441906, 2] 572162 236334 6 min, 33.53 sec 
-4(1020 + 1) [1856197104, 2, 2, 2] 979126 380022 15 min, 39.46 sec 



ON SOME COMPUTATIONAL PROBLEMS IN FINITE ABELIAN GROUPS 1687 

REFERENCES 

[1] I. Biehl and J. Buchmann, Algorithms for quadratic orders, Proc. Sympos. Apple. Math., vol. 
48, Amer. Math. Soc., Providence, RI, 1994. MR 95m:11146 

[2] J. Buchmann and S. Paulus, Algorithms for finite abelian groups, Extended abstract. To be 
published in the proceedings of NTAMCS 93. 

[3] D.A. Buell, Binary quadratic forms: classical theory and modern computations, Springer- 
Verlag, New York, 1989. MR 92b:11021 

[4] H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin, 1993. 
MR 94i:11105 

[5] H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups of number fields, Number Theory, 
Lecture Notes in Math., vol. 1068, Springer-Verlag, New York, 1984, pp. 33-62. MR 85j:11144 

[6] P.D. Domich, Residual Hermite normal form computations, ACM Transactions on Mathe- 
matical Software 15 (1989), no. 3, 275-286. MR 91d:15020 

[7] J. Buchmann I. Biehl and T. Papanikolaou, LiDIA - a library for computational number 
theory, The LiDIA Group, Universitait des Saarlandes, Saarbriicken, Germany, 1995. 

[8] A.K. Lenstra and H.W. Lenstra, Jr., Algorithms in number theory, Handbook of theoretical 
computer science (J. van Leeuwen, ed.), Elsevier Science Publishers, 1990, pp. 673-715. CMP 
92:01 

[9] S. Paulus, Algorithmen fur endliche abelsche Gruppen, Master's thesis, Universitit des Saar- 
landes, Saarbriicken, Germany, 1992. 

[10] D. Shanks, Class number, a theory of factorization and genera, Proc. Symp. Pure Math. 20, 
AMS, Providence, R.I., 1971, pp. 415-440. MR 47:4932 

TECHNISCHE HOCHSCHULE DARMSTADT, INSTITUT FUR THEORETISCHE INFORMATIK, ALEXAN- 
DERSTRASSE 10, 64283 DARMSTADT, GERMANY 

E-mail address, J. Buchmann: buchmanntcdc. inf ormatik. th-darmstadt . de 

E-mail address, M. J. Jacobson, Jr.: jacobsfcdc.informatik.th-darmstadt.de 

E-mail address, E. Teske: teskefcdc. informatik. th-darmstadt. de 


