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POWER INTEGRAL BASES 
IN A PARAMETRIC FAMILY 

OF TOTALLY REAL CYCLIC QUINTICS 

ISTVAN GAAL AND MICHAEL POHST 

ABSTRACI. We consider the totally real cyclic quintic fields Kn = 

generated by a root 0On of the polynomial 

fn(x) = X5 + n2x44- (2n3 + 6n2 + iOn + 10)x3 

+ (n4 + 5n3 + 11n2 + 15n + 5)X2 + (n3 + 4n2 + iOn + 10)x + 1. 

Assuming that m = n4 + 5n3 + 15n2 + 25n + 25 is square free, we compute 
explicitly an integral basis and a set of fundamental units of Kn and prove 
that Kn has a power integral basis only for n = -1,-2. For n = -1,-2 
(both values presenting the same field) all generators of power integral bases 
are computed. 

INTRODUCTION 

Let n E Z and denote by 'On a root of the polynomial 

fn(x) = X 5+ n2x4-(2n3 + 6n2 + 10n + 10)x3 

(1) + (n+4+ 5nm3 + 11n2 + 15n + 5)X2 + (n3 + 4n2 + lOn + 10)x + 1. 

These polynomials were discussed by Emma Lehmer (cf. [8]). The corresponding 
parametric family of cyclic quintic fields Kn = Qt(t9n), 'On a root of fn, was also 
investigated by Schoof and Washington [10] and Darmon [2] for prime conductors 
m = n4 + 5n3 + 15n2 + 25n + 25. 

Assuming only that m = n4 + 5n3 + 15n2 + 25n+ 25 is square free, we describe an 
integral basis and a set of fundamental units of the field Kn = Q(t19n). We construct 
explicitly the index form corresponding to that integral basis. The coefficients in the 
integral basis of those E e Kn generating a power integral basis {1, (, 42 ,3, ,4} 

of Kn can be obtained as solutions of the index form equation. The index form 
equation reduces to a unit equation in two variables over Kn. By using congruence 
considerations modulo m we show, that this unit equation is only solvable for 
n = -1, -2. 

For n = -1, -2 the fields Kn coincide. This field indeed admits power integral 
bases, generated e.g. by the roots of the polynomial fn. In fact in this case there 
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exist several non-equivalent generators of power integral bases which are explicitly 
determined in the last section of the paper. 

It is a classical problem of algebraic number theory to decide if a number field has 
power integral bases. In connection with this question we considered the problem 
of the resolution of index form equations in cubic, quartic and special sextic fields 
in several recent papers (cf. e.g. [6], [4], [3], [5]). For number fields of higher degree 
k the problem becomes difficult because of the large degree k(k - 1)/2 of the index 
form equation and the number of variables k - 1. 

We remark that unit equations are usually solved by combining Baker's method 
with a numerical reduction algorithm. Sieve methods involving congruence consid- 
erations are commonly applied in the last step to obtain the small solutions below 
the reduced bound. In our case the unit group modulo m is at most of order 10, 
independently from n which enables us to test the unit equation modulo m in a 
parametric form. 

Most calculations involved in this paper were performed by using MAPLE (cf. 
[11]). The calculation with elements of Kn and checking if certain elements are 
integral would hardly be possible without the use of a computer algebra package. 
Hence, short proofs often involve tedious computations. 

A FAMILY OF CYCLIC QUINTICS 

In the sequel we frequently use two integers related to the number fields under 
consideration: 

m := n4 + 5n3 + 15n2 + 25n + 25, 

d := n3 + 5n2 + iOn + 7, 

where m is the conductor of the field and d will turn out to be the index of the 
equation order of fn in the maximal order under appropriate premises. 

Lemma 1. The integers m and d are coprime for every n E 2. 

Proof. Straightforward by Euclid's algorithm. 

For simplicity's sake we denote by d9 ='tn a root of fn of (1) and set K = Kn = 

Q('9n). This field is totally real, cyclic, and the transformation 

(2) x _ ) it = (n+2) +n- x_ (2) Xi X/ = 
I ~+ (n +2)x 

permutes the roots of fn cyclically ([10]). 

Lemma 2. Assume that p2 t rn for any prime p + 5. An integral basis of K is 
given by {1t,9,<t2,'03,W5} with 

W5 = 
I 

((n + 2) + (2n2 + 9n + 9) 9 + (2n2 + 4n- 1),2 + (-3n-4),93 +,4) 

The discriminant of K is 

(3) DK = 
M4- 

Proof. Using (2) we have 

79/ = a + (n + 2)2W5 
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with 

a=( + 2) + (n3 + 4n2 + 5n) + (-2n2 - 6n-5)02 + (n + 2)403. 

It is easily seen that gcd(n + 2, d) = 1, whence W5 is an algebraic integer in K. 
The discriminant of the generating polynomial of d9 is 

d2m4 = D(W9) = (I(79))2DK. 

We shall show, that the index I(t9) = (ZK: 2[9]) is equal to d, which in view of 
D(1 01,021,03,w 5) = m4 implies, that {,I t,02 ,03, w5} is indeed an integral basis. 
The inclusion ZK D 2 [9, W51 D 2L[9] and (2L[0,W51 : 2 9]) = d show, that d divides 
I(W). 

In view of Lemma 1 we must still show, that no prime number p dividing m 
occurs in that index. We discuss the cases p 7 5 and p = 5 separately. 

Let us assume that p + 5 at first. Then -n2/5 is a five-fold zero of fn(x) modulo 
pZ[x]. We get 

fn(x) - X + n)=E biX4-i 

with 

b = - - n 2n3 -62 _ On - 10, 
5 
2 6 4 3 2 b2=- n +n +5n3 +11n2 +15n+5, 
25 

b3 =- 
I 

n8 + n3 + 4n2 + 10n + 10, 

1 10 
b4 =-~m + 1. 

3125 
Setting 

f m for 5tm, 

m for 51m, 

we see that 

5ibi 0 mod mn. 

From this we conclude 

3125 [fn(xo) - XO + 5 mk 

with k = 4n6 + 3n5 + 65n4 - 200n2 - 125n + 125. Another gcd computation shows 
that gcd(mh, k) = 1. Hence, the Dedekind test (Ch. 4.5 (5.55) in [9]) tells us that 
R := 2[1,0,9021,03,w 51 is p-maximal precisely for p2 t m. 

Finally, we consider the case p = 5. Clearly, 5 must divide n. Setting n = 5n we 
obtain m = 52rh with mh = 5(5in4 + 5i3 + 3&2 + ii) + 1. An easy calculation shows 
that 

fn(x) - lOx3 + 5x2 + lOx + 1 mod 25Z[x] 
and therefore 

fn(x)--(X + 1)5 mod 52[x]. 
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For the Dedekind test we must check whether -1 is a zero of 

hn (x) = 5 1 (fn (x) - (x + i)5) 

in 2/52. Because of 

hn(-1) = 5-l(n4+ 6n3 +?14n2+ 15n + 15)-3 mod 5 

we see that R is 5-maximal. 
The discriminant is obtained by direct calculations. 

Corollary. Except for n =-1, -2 the order R f 2[9, W5] is strictly larger than 
2[t]. R is the maximal order of K if and only if there is no prime number p $ 5 
whose square divides m. 

Lemma 3. Any four distinct roots of fn form a set of fundamental units in K. 

Proof. The proof is along the lines of the one given for Theorem 3.5 in [10] for 
the case that m is a prime number. We briefly consider the major steps. By i we 
denote the index of the subgroup generated by four roots of fn (x) and -1 in the 
full unit group of K. 

(i) for In + 11 > 20 we have i < 11. 
(ii) Since 2, 3, 7 and 9 are not norms for 2[(5] over Z ((5 being a fifth primitive 

root of unity), we have i E {1, 5} for In + 1I > 20. 
(iii) The possibility i = 5 is eliminated by considering a prime p $ 5 dividing m 

(compare Step 2 of [10]). Such a prime exists except for n = 0. 
(iv) For those n subject to In + 1I < 20 for which m is not a prime the unit group 

is explicitly calculated with Kant (cf. [1]). 

THE STRUCTURE OF THE INDEX FORM 

Denote by -y(2) (1 < i < 5) the conjugates of any -y E K ordered such that (2) 
maps (i) onto -y(i), j = (i mod 5) + 1. For 1 < i < 5 we set 

L(i)(X) = 19(i)X2 + (d(i))2X3? (9(i) )3X4+(i)X5, 

and 

Lij(X) = L(i)(X) - L(i)(X) (1 < i < j < 5) 

in the variables X = (X2, X3, X4, X5). The index form corresponding to the integral 
basis of Lemma 2 is 

(4) 1(X) = l 1 j (X) 

This is a homogeneous form of degree 10 with rational integer coefficients. 

Lemma 4. We have 

I(X) = NK/Q(A(X))NK/Q(B(X)) 

where 

__ L12(X) 9(1) _ d(2) X (9(1))2 _ (9(2))2 
A(X) - 9(1) - 9(3) = 9(1) - 19(3) 

2 + (1) - 9(3) 

(0(1 ) )3 (,d(2))3 (1) (2) 

+ _ 0(3) X4 + (1) X5 
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and 

B(X) L13 () = X2 + 0(1) + 0(3)) X3 
79(l) - 79(3)=/ 

+ ( )2 + d(1),(3) + (0(3)) )X4 + () (3) X5 
79(l) - ,9(3) 

and the coefficients of these linear forms are integers of K. 

Proof. In view of (3) we have 

I(X) = 2 NK/Q(L12(X))NK/Q(L13(X)). 

We observe that NK/Q(19(1) -9(3)) = -m. By direct calculations it can be checked 

that the coefficients of both L12(X) and L13(X) are divisible by 9(1) - 

It is well known that the algebraic integer ( = x1 + tOX2 + 092X3 + 093X4 + W5X5 

(xi E 2, 1 < i < 5) generates a power integral basis {1, (, 621 631 ~ 41 in K if and 

only if (X2, X3, X4, X5) is a solution of the index form equation 

(5) I(X2, X3, X4, X5) = ?1 in (X2, X3, X4, X5) E 24. 

Remark. By direct substitution we get (cf. Corollary) 

I(79) = I(1, O, 0O 0) = d. 

THE UNIT EQUATION 

In the following we suppose that m = n4 + 5n3 + 15n2 + 25n + 25 is square free. 

This involves 5 t m (or equivalently 5 t n) hence 5 is invertible modulo m. Also, in 

view of Lemma 1, d is invertible modulo m. 

Lemma 5. If X = (X2, X3, X4,X5) E 24 is a solution of (5), then there exist units 
Ei in K such that 

(6) ( (2) -(4) (6) ~~~~~~~~9,(1) - ,9(3)) 1= 

where E' denotes the conjugate of E under (2). 

Proof. Obviously, we have 

(7) L12(x) L23(x) L13(x) _0 
( ) 0~~~7(l) - 79(3) + 0(l) - 79(3) - 0(l) _ 0(3)- 

By Lemma 4 

(8) E = L12 (3) A(x) 

and 

L13(x) -B(x) 
T1 (1) - ,9(3) 

are units in K. The conjugate of E under the mapping (2) is 

= ( L12 (x) L 1123 (X) 

hneteo -(7 ) b e(3) r i i(2) t r(4)e 

hence the second term of (7) can be rewritten in the required form (6). 
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Remark. Equation (6) leads to the unit equation in two variables 

(9) (?(n)-1) + 9(2) ( n) =(4 

Lemma 6. Let 

eo= 1, 

- n2 
eli= 5 

n3 3n2 

(10) e2 =- -- 5~ -n-, 

2n2 
e3= +n+2, 

5 
n3 4n2 

e4 =- + 5 + 2n + 2. 
5 5 

Any unit of the field K is congruent to ek or -ek for a suitable index k (O < k < 4) 
modulo the ideal (m) of ZK, where divison by 5 yields multiplication by the inverse 
of 5 mod m. Moreover, for any unit E of K and its conjugate E' we have 

( 1) 1 =- E- mod m. 

Proof. Because of 

fn(x) (x+) 5 mod m 

all roots ri of fn satisfy 

n2 
(12) --z modm (1 < i < 5). 5 
Moreover, we have /1772773774Th5 =-1, hence 

(13) ( =) -1 modm. 

Lemma 3 implies that {i, "12, r73, 4} is a set of fundamental units in K, hence any 
unit ? can be written as a power product of these elements and possibly -1. Now 
(12) and (13) imply, that for any unit ? there exists an exponent k (O < k < 4) 
such that 

(_ ) mod mn. 

The remainder of (-n2/5)k mod m is just ek (O < k < 4) which implies the first 
assertion of the lemma. (11) follows from 

- n2 
r~i r~i- 5mod m (I < i < 5). 

Lemma 7. If there exists a solution x = (X2, X3, X4, X5) E Z4 of equation (5), then 
there is an index k (O < k < 4) such that 

(14) ?ek(l + a)-1-O mod m, 
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with a suitable sign, where 

n3 4n 2 

(15) a = + 5 + 2n + 2. 
5 5 

Proof. By Lemma 5 there exist units E and q such that (6) holds. We calculate 

79(2) -9(3) 

19(1) - ~9(3) a mod (in). 

Using (11) and (6) we obtain 

E(1 + a) -, _ 0 mod m 

whence 

(i7-1e(1 + a) - 1 0 mod m. 

This implies (14) because of Lemma 6. 

Theorem. Assume as before that m is square free. The field K admits a power 
integral basis if and only if n = -1 or n = -2. 

Proof. The field K has a power integral basis if and only if the index form equation 
(5) is solvable. By Lemma 7 this implies the solvability of (14). 

We calculate the remainders modulo m of the left-hand sides of (14) for 0 < k < 4 
and for both possible signs. These remainders are cubic polynomials in n. It is easy 
to see, that for Inm > 250 they are non-zero and in absolute value less that m. For 

InI < 250 we test all these congruences and the only solutions found are n = -1, -2. 
This case is considered in detail in the next section. 

Remark. This theorem is a special case of the result of M. N. Gras [7] which she 
obtains in a completely different non-constructive way. 

THE CASE n = -1, -2 

For n = -1, -2 the fields K, coincide, which is easily checked by KANT (cf. [11). 
To fix our notation we set n = -1, K = K1, and d9 = ,91 in this section. We note 
that K is the totally real quintic number field of minimum discriminant. We have 
m = IId = 1 hence by Lemma 2 {1,t9,t92,,93,d94} is an integral basis of K. Now 
using standard arguments, by combining Baker's method with reduction algorithms 
and sieving procedures (cf. e.g. [3] for the basic ideas of the algorithm) we solved 
the unit equation (9) corresponding to the index form equation (5). The solutions 
allow to express E/e' and hence also E, which gives (X2, X3, X4, X5) in view of (8), by 
taking conjugates and solving the corresponding system of linear equations. 

We obtained the following solutions (if (x2,x3,x4,x5) is a solution, then so is 
(-X2, -X3, -X4, -X5) but we list only one of them): 

(X2,X3,X4,X5)= (0, 1, 0, 0), (0, 3,0, -1),(0,4,0, -1),(1, -4, 0, 1), 

(1, -3,0, 1), (1, -2, -i, 1), (1, -i, -1,0), (1,0,0,0), (1, 1,0,0), 

(2, -1, -i, 0), (2, 0, -i, 0), (2, 1, -2, -1), (2, 1, -i, 0), (2, 3, -i, -1), 

(2, 4, -i, -1), (2, 8, -i, -2), (3, -1, -i, 0), (3, 0, -i, 0), (3, 3, -i, -1), 

(3, 4, -1, -1), (4, -4, -1, 1), (5, -Ii, -1, 3), (5, 2, -2, -1), (5, 13, -2, -3), 
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Hence, a generates a power integral basis if and only if a = xl ? (x2X9 + X3 92 + 
X403 + X504) with an arbitrary x1 E Z and with a solution (X2, X3, X4, X5) of the 
index form equation. 

We remark, that using KANT [1] the complete resolution of the unit equation 
(9) requires less than one minute by a medium fast workstation. 
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