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ON A PROBLEM OF BYRNES CONCERNING POLYNOMIALS 
WITH RESTRICTED COEFFICIENTS 

DAVID W. BOYD 

ABSTRACT. We consider a question of Byrnes concerning the minimal degree n 
of a polynomial with all coefficients in { -1, 1 } which has a zero of a given order 
m at x = 1. For m < 5, we prove his conjecture that the monic polynomial 
of this type of minimal degree is given by Hff-1i7(x2k - 1), but we disprove 
this for m > 6. We prove that a polynomial of this type must have n > 

ev"6(1+o(l)), which is in sharp contrast with the situation when one allows 
coefficients in { -1, 0, 1 }. The proofs use simple number theoretic ideas and 
depend ultimately on the fact that -1 _ 1 (mod 2). 

1. INTRODUCTION 

This paper deals with polynomials with all coefficients in {-1, 1}. In particular, 
we are interested in the minimum degree of such a polynomial which has an m-fold 
zero at the point x = 1. In [4], Byrnes asks for a proof or disproof of the conjecture 
that the polynomial of this type with minimal degree is 

m-1 

(1) Bmr(X) = rI (x 1) 

k=O 

which has degree 2' - 1. He states that ... even a proof that the degree of 
such a P must be exponential in m would be of interest". This problem arises in 
connection with the design of antenna arrays and notch filters [3]. 

One of our results here is that Byrne's conjecture is true for m < 5 and false for all 
m > 6. The latter result is proved by exhibiting a polynomial of degree 47 for which 
m = 6. We are also able to show that if n = deg(P), then n > exp(/m-(1 + o(1))), 
which combines with the example (1) to show that there are constants c1 > 0 and 
c2 < o for which 

(2) cle"' < n < C2er. 

This result is in sharp constrast with the situation where the coefficients are all 
in {-1, 0, 1}. Here the best result known is that there are constants C3 > 0 and 
C4 < o for which 

(3) C3m2 < n < C4m2 log m. 
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The existence of the polynomials giving the upper bound in (3) follows from the 
box principle by a familiar argument (as in [2] or [5]). The lower bound in (3) is a 
recent result of Borwein, Erdelyi and Kos [2]. 

The case of {-1, 1}-coefficients is apparently more rigid than that of {-1, 0, 1}- 
coefficients. This is reflected in our methods which are more number theoretical 
than combinatorial. As Peter Borwein has pointed out to me, the difference between 
the two situations is not due to the relative size of the two sets { -1, 1 } and { -1, 0, 1 } 
since our results apply equally well to polynomials with coefficients restricted to 
{-3, -1, 1,3}, for example. 

Let 19(N) denote the set of polynomials with all coefficients in {-1, 1}, leading 
coefficient 1, and with deg(P) = N - 1. (It will be clear that N is a more natural 
variable than deg(P)). Let 1P(N,m) denote the subset of 19(N) consisting of P 
divisible by (x - 1)m (or by some higher power of x - 1). Our main results give 
lower bounds for N in terms of m for P C 1P(N, m). 

The proof of all of our results depends on the obvious fact that if P C 19(N), 
then P(x) -1 + x + . + xN-1 (mod 2). In spite of the simplicity of this idea, it 
gives us the useful results of Lemmas 1 to 3 which lead easily to the lower bounds 
of Corollary 2 and Theorem 1. For example, we find that if m > 2k, then N must 
be divisible by 2k+l, in keeping with the observed high divisibility of N by 2 in 
Bm (x). However, a consequence of Lemma 2 is that if we consider the set of N 
which are not divisible by a given prime p then N > (pl/(P-l))m showing that the 
only possible remedy for exponential growth of N with m is to have N divisible by 
as many primes as possible. 

The proof of Byrne's conjecture for m < 5 requires a certain amount of compu- 
tation. In particular, it is necessary to enumerate some of the sets 12(N, m). Since 
the cardinality of 19(N) is 2N1, it is clear that such computations must be de- 
signed carefully. Our most successful approach uses two algorithms from Nijenhuis 
and Wilf, [6], namely the Gray code ordering of all the subsets of an N-set and the 
"revolving door" ordering of all the k-subsets of an N-set, where here k = N/2. 
This is described in ?3. We naturally have carried out more computations than 
necessary for the proof of Theorem 4. In particular, we show that the counterex- 
ample for m = 6 with N = 48 has the minimal degree. We do not know if it is the 
only example of that degree but it is the only symmetric (reciprocal) example. A 
complete enumeration of 1P(32,4), which has 39 elements, shows that only one of 
these has m = 5, namely the canonical example B5(x). By contrast, 1P(40,4) has 
2207 elements, only one of which has m = 5. 

2. THE MAIN RESULTS 

Let us write AN(X) = 1+X+ * +X N-1 = (XN -1)/(X -1) so that if P 19(N), 
then P -AN (mod 2). We define A((x) = 0. 

Lemma 1. If P 12(N) and Q E 12(M) and if Q(x) divides P(x), then M divides 
N. 

Proof. Suppose N = qM + r, with 0 < r < M. By the division algorithm for 
polynomials over the integers, we have the obvious identity 

(4) AN (X)= AM (X) Aq (XM) + Ar (X) . 



POLYNOMIALS WITH RESTRICTED COEFFICIENTS 1699 

Since P(x) -AN(x) and Q(x) -AM(x) modulo 2, we thus have 

(5) P(x) _ Q(x)Aq(xA1) + Ar(x) (mod 2). 
If Q(x) divides P(x) over Z, then it must divide P(x) over Z/(2). But (4) shows 
that the remainder on division of P(x) by Q(x) over E/(2) is Ar(x), which vanishes 
modulo 2 only when r = 0. Thus MIN. D 

Corollary 1. Let p be prime and let (p denote a pth root of unity. If P E P(N) 
and P((p) = 0, then p divides N. 

Proof. The minimal polynomial of (p over the integers is Ap(x) which is in P(p). 
The condition that P((p) = 0 is equivalent to Ap(x) dividing P(x), which by Lemma 
1 requires that pIN. E 

Lemma 2. If 1P(N, m) is nonempty and if 2k is the highest power of 2 dividing N, 
then m < 2k - 1. 

Proof. Write N = 2kM with M odd. Suppose P C 1P(N, m). Then, writing 
t = x - 1, the Taylor expansion of P at 1 is of the form 

(6) P(1 + t) = cmtm + cm+tml + .... 

On the other hand, modulo 2, we have 

P(1 + t) AN(1 + t) = t1((1 + t)N -1) t-1((1 + t)2kM-1) 

- t1((1 + t2k )A _1) t2 k1 + 

Comparing (6) and (7) we see that m < 2k _ 1. 

Corollary 2. If 1P(N, m) is nonempty and if m > 2k, then 2k+1 divides N. 

Theorem 1. If 1P(N, m) is nonempty and if p is a prime which does not divide N, 
then N > (pl/(P-J))m 

Proof. If P E 1P(N, m), then P(x) = (x - 1)mQ(x) for some polynomial Q with 
integer coefficients. By Corollary 1, P((p) + 0. Hence 0 + P((p) = ((p -1)mQ((p). 
Computing the norm of P((p) by taking the product over all conjugates of (p (i.e. 
over all roots of Ap(x)), we obtain an equation in non-zero integers: 

(8) 0 ? flP(P) = ?pmfJQ( ) 

using the well-known fact that HJ(1 - (p) = Ap(l) = p. Estimating IP((p)l < N 
and IF Q ((Pi) > 1 gives NP- > pm, which completes the proof. O 

Theorem 2. If P(N, m) is nonempty, then N > exp(/ m(1 + o(1))). 

Proof. Let x be a parameter to be chosen shortly. Then Hlp<x p = eo(x) - ex(?+o(1)), 

where 0(x) is Chebyshev's theta function and the final statement is equivalent to 
the Prime Number Theorem, [1, p.79]. If N < lp<xP, then clearly there is some 
p < x for which p does not divide N. Such a p will be guaranteed if we take 
x = log N(1 + o(1)) and then by Theorem 1, 

(9) N > (p1/(P-1))m > Xm/x 

Taking logs we have 

(10) (logN)2 > m(loglogN)(1 + o(1)) > m(1 + o(1)), 

which gives the desired inequality. O 
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Remark 1. It is easy to obtain a more explicit result than given in Theorem 1. 
One simply replaces the use of the prime number theorem by an inequality of 
Chebyshev's type 0(x) > ax, to obtain N > exp( rn/a) by the same argument. 
Explicit values of a may be found in [7]. Note that what is actually proved in 
(10) is m < (log N)2/ log log N(1 + o(1)) so we could have claimed a slightly better 
asymptotic result, e.g. N > exp(Vrmlogrm(1 + o(1))). However, for values of N 
and m which are useful in practice, it is preferable to use the results of Lemma 2 
and Theorem 1 directly (as in ?3). 

Theorem 3. For m < 5, the polynomial Bm(x) of (1) is the unique monic poly- 
nomial of smallest degree with an m-fold zero at 1. 

Proof. The case m = 1 is obvious. If m = 2, then N is divisible by 4 by Corollary 2, 
hence N = 4 is the minimal possible. Since the required example must be divisible 
by (x - 1)2, it is clear that B2(x) is the only choice. For m = 3, N must be divisible 
by 4 by Corollary 2, but N = 4 would mean P(x) = (x - 1)3 which does not have 
all coefficients in {-1, 1}. Thus N = 8 is minimal for m = 3 so B3(x) is of the 
minimal degree. Enumerating 1P(8,3) shows that B3(x) is unique (for more details 
see ?3). 

For m = 4, Corollary 2 implies that N is divisible by 8. But N = 8 is ruled out 
by Theorem 1 since 3 t N implies N > (31/2)4 = 9. Thus N = 16 is minimal and 
hence B4(x) is a minimal degree example. An enumeration of 12(16,4) shows it is 
unique. 

For m = 5, we again have 8IN and hence must consider N = 16,24 and 32. An 
enumeration shows that 1P(N, 5) is empty for N = 16 and 24 and consists of B5(x) 
for N = 32. 0 

Theorem 4. Byrnes' conjecture is false for m > 6. For m = 6, the minimal value 
of N is 48. 

Proof. In ?3, we exhibit a reciprocal polynomial P(x) in 1P(48,6) showing that 
B6(x) is not of minimal degree. An enumeration shows that 1P(N, 6) is empty for 
N = 8,16, 24,32, and 40 and hence N = 48 is minimal for m = 6. The polynomial 
P(x)Bm-6(X48) is in 1P(3 x 2m-2, M) for m > 7 showing that for m > 7, the minimal 
N < 3 X 2m-2 < 2m. 

3. COMPUTATIONS 

We now describe the methods used to enumerate some of the sets 12(N, m). 
The largest such set we completely enumerated was 12(40,4) which took just under 
one week of computation on a fast workstation. Since 12(40)1 = 23' .5 x 1012, 

it should be clear that an efficient method of enumeration is necessary. We first 
introduce some notation: if P(x) = EN 1 a(j)xi-1, then P(1 + t) = EN 1 c(i)ti-1 
with 

(1 1) C(i) = LaWj(i 

It is clear that if P(1) = 0, then N must be even and have N/2 coefficients equal 
to +1 and N/2 equal to -1. To specify P completely, we need only know the subset 
of j for which a(j) = -1 and hence an N/2-subset of the (N - 1)-set {1, .. ., NN-1} 
(since we take a(N) = 1 always). Thus, we can immediately reduce the search from 
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12(N)l = 2N-1 to IP(N, 1) = (N>-1) polynomials. For N = 40, we thus need only 
examine about .7 x 1011 polynomials rather than .5 x 1012. In general one saves a 
factor approximately wN/2. 

Nijenhuis and Wilf have given a "revolving door" algorithm in which the k- 
subsets of {1,... ,N} are enumerated in a list S1, S2,... which is such that S, = 
{1, ... , k} and each set differs from the previous set by the addition of one element 
in and the omission of an element out. In fact, they supply a FORTRAN subroutine 
NXKSRD for this purpose in [6, p.34]. 

We can use this to enumerate P(N, m) as follows: having initialized aj to be -1 
for 1 < j < N/2 and +1 otherwise, initialize ci for 1 < i < m using (11). Generate 
the N/2-subsets of {1, . . . , N-1} using NXKSRD. The P(x) corresponding to Sk+1 

differs from that corresponding to Sk by having a(in) = -1 and a(out) = 1. Hence 
the c(i) can be updated by the simple rule 

(12) c(i) c(i) -2( 1) + 2 out 1) 

for 1 < i < m. If one stores the array 2( 3), each step (12) requires only two 
additions. We need only test whether c(i) 0 for 1 < i < m and output the 
corresponding polynomials. In fact we computed c(i) for 1 < i < m + 2 at each 
stage, in order to more easily recognize elements of 1P(N, m + 1) and 1P(N, m + 2) 
within 1P(N, m). 

This method is easily adapted to the enumeration of 125(N, m) consisting of the 
symmetric (or reciprocal) polynomials in P (N, m). In this case P(x) = xN/2Q(x) + 
Q*(x), where Q E P(N/2) and Q(1) = 0. (Here Q*(x) = xN/2-1Q(1/x).) Thus 
this requires an enumeration of the N/4-subsets of an (N/2 - 1)-set. 

If P(x) is antisymmetric, then P(x) = xN/2Q(x) - Q*(x), where now it is not 
necessarily the case that Q(1) = 0. In this case, we enumerate all subsets of the 
corresponding (N/2-1)-set using the Gray code order as described in [6, p.18]. Here 
the formula corresponding to (10) requires only a single addition and the generation 
of each subset is about twice as fast as with the revolving door algorithm, but one 
enumerates 2N/2-1 sets rather than (Nj2-1). We denote the set of antisymmetric 
polynomials in P (N, m) by Pa(N, m). 

It is easily seen that if P(x) is symmetric, then the order of vanishing of P at 
x = 1 is even while if P(x) is antisymmetric, the order of vanishing is odd. 

Let C(N, m), CS(N, m) and Ca(N, m) be the cardinalities of 1P(N, m),Ph(N, m) 
and Pa(N, m), respectively. For the proof of Theorem 2, we computed C(8, 2) = 4 
and C(8,3) 1, the one element here being B3(x) of (1). Similarly, C(16,3) = 7 
and C(16,4) = 1, the one element here being B4(x). We have C(24,4) = 8, with 6 
of these being symmetric. But C(24,5) = 0, a fact used in the proof of Theorem 2. 
For N = 32, we have C(32,4) = 39 and C(32,5) = 1. The unique element of 
1P(32,5) is B5(x) which is also the only antisymmetric member of 1P(32,4). Of the 
remaining 38 elements of 1P(32,4), 20 are symmetric. 

For N = 40, we have C(40,4) = 2207, C,(40,4) = 258 and C(40,5) = 1 = 

Ca(40, 4). The unique element of P1(40, 5) has coefficients 

a(21), .. , a(40) = 1,-i, -1,1,-1, -1,1,1,-1, 1,1,1,1,-i -11,-1, -1,-1, 1,1. 
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This P(x) factors as (x-1)5(x+1)215(X)>J1i(x)P2()(x), where Jk (X) is the minimal 
polynomial of the primitive kth roots of 1 and P2( is an irreducible polynomial of 
degree 20 having coefficients 

1,3,5,7,8,9,9,9,8,7,7,7,8,9,9,9,8,7,5,3,1. 

From P(x), we can construct x4()P(x) -P(x), an element of 1P(80, 6). It is in- 
teresting that 33 of the polynomials in 1P(40,4) have c(5) = ?20. These can be 
concatenated in pairs to yield at least 33 x 32 = 1056 elements of 'P(80,5). Simi- 
larly, we can concatenate P(x) with B5(x) to yield x32P(x) + B5(x) each of which 
is in 7P(72,5). 

We remarked above that the computation of 1P(40,4) required about one week of 
computation on a fast workstation. The computation of P1(48,5) thus would require 
about 234 weeks or about 4 1/2 years of computation using the same algorithm. 
Thus, for N > 40, we were content to enumerate 1P5(N, m) and Pa(N, m). For 
example Ca(48,5) = 41 while C,(48,5) = C,(48,6) = 1 which provides the coun- 
terexample of Theorem 3. The unique element P(x) of 1P, (48, 6) has coefficients 

a(25), . . , a(48) 
= -1,-1,1,1, -1,-1 , -1,1,1, -1,1,1,1,1,1, -1, -1,1, -1,-1, -1, -1,1,1. 

It factors as (x - 1)6(x + 1)?13(x>34(x)>6(x>186(x)PW28(x), where P28(x) is an ir- 
reducible polynomial of degree 28 with positive (and unimodal) coefficients. We 
can use P and the elements of Pa(48, 5) together with P(40,5) to construct many 
elements of P(88,5), and of course an element of P(96, 7) as in Theorem 4. 

For N = 56, we have C,(56, 6) = 0, Ca(56, 5) = 71 and Ca(56, 7) = 0 so there are 
no symmetric or antisymmetric P with N = 56 and m > 5. For N = 64, we have 
C,(64, 6) = 3, one of these being B6(x). The other two have irreducible factors of 
degrees 52 and 54 respectively. We have Ca(64,5) = 619 and Ca(64,7) = 0. For 
N = 72, we have C,(72, 6) = 44, Ca(72,5) = 14870 and Ca(72,7) = 0. For N = 80, 
Cs(80,6) = 50. 

We can apply Lemma 2 and Theorem 1 to give upper bounds on the maximal 
m for which 1P(N, m) is non-empty. Let us denote this value by m* (N). Then 

(13) m* (N) < min(2k - 1, log N/ log(p1 (P-1))), 

where 2k is the largest power of 2 dividing N and p is the smallest prime not dividing 
N. It is interesting to ask whether N = 96 is the smallest N with m = 7. By 
Lemma 2 we need only consider N divisible by 8. From (13), we obtain m*(N) < 7 
for N = 56,64,72,80 and 88, so 5 < m*(56) < 7, 6 < m*(64) < 7, 6 < m*(72) < 7, 
6 < m*(80) < 7 and 5 < m*(88) < 7, where the lower bounds come from the 
constructions mentioned in the previous paragraphs . On the other hand, for those 
N divisible by 3 x 24, we must use p = 5 in (13) and combining this with Theorem 4 
gives only 6 < m*(48) < 9 and 7 < m*(96) < 11, which leaves open the intriguing 
but unlikely possibility that N = 48 could yield m = 7. 
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