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APPROXIMATING THE NUMBER OF INTEGERS FREE OF 
LARGE PRIME FACTORS 

SIMON HUNTER AND JONATHAN SORENSON 

ABSIRACI. Define P(x,y) to be the number of positive integers n < x such 
that n has no prime divisor larger than y. We present a simple algorithm that 
approximates P(x,y) in ( log log logy }) floating point operations. 
This algorithm is based directly on a theorem of Hildebrand and Tenenbaum. 
We also present data which indicate that this algorithm is more accurate in 
practice than other known approximations, including the well-known approx- 
imation P(x, y) - xp(logx/ logy), where p(u) is Dickman's function. 

1. INTRODUCTION 

Let J(x, y) denote the number of positive integers n < x such that n has no 
prime divisors larger than y. In order to optimize the running times of many 
integer factoring and discrete logarithm algorithms, including the number field sieve 
methods (see [9, 13]), good estimates for ' (x, y) are required. 

Unfortunately, computing the exact value of J(x, y) is quite prohibitive in prac- 
tice, as x is typically 20-200 decimal digits long. For example, the obvious way to 
compute the exact value of '(x, y) is to factor all the integers < x over the primes 
up to y. If sieving is used, this method requires time proportional to x log logy. 
There is a simple recursive algorithm to compute J(x, y) using the Buchstab iden- 
tity TJ(x, y) = TJ(x, 2) + Z2<p<y T A(x/pp), which holds for x > 1, y > 2. This 
algorithm requires O('(x, y)) operations, but is easy to implement. Bernstein [1] 
gives several algorithms for computing the exact value of J(x, y), one of which re- 
quires only O(I(x,y)I3(xY)) operations, where 1/2 < 3(x,y) < 1. See also ?5.1 for 
an O(x/ log y) method. None of these methods appear to be feasible for applications 
in factoring. 

The natural alternative to computing the exact value of J(x, y) is to use an 
approximation, and in factoring, a good approximation is normally sufficient. The 
estimate TJ(x, y) xp(logx/ logy), where p is Dickman's function, is very popular. 
Currently, the best rigorous version of this estimate is the following theorem. Let 
u u(x, y) = logUx/ log y. 
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Theorem 1 (Hildebrand [4]). Let c > 0. Then 

'(Xx y) = xp(u)(1 + O g( l 1)) 

for y > 2 and 1 < u < exp((logy)3/5-E). 

Here p(u) is defined as the (unique) continuous solution to 

p(u) = 1 for 0 < u < 1; 
p(u-1) + up'(u) = 0 for u > 1. 

The error term 1 + O(log(u + 1)/ log y) here is the best possible, although the range 
for y can be extended when assuming the Riemann Hypothesis. 

See also ?5.2 for a simple probabilistic approximation algorithm. 
In this paper, we present Algorithm HT, an alternative method for approximat- 

ing TI(x, y) based on a theorem of Hildebrand and Tenenbaum. After introducing 
the necessary notation, we will state this theorem. 

Let u := u(x, y) = min{log x, y}/ log y = min{u, y/ log y}. Define 

((S' y) = 1 H(I -p-s)- 
p~y 

0(s, y) :=log C((S, y); 
dk 

Ok (S,Y) = ds 0(s, y) (k > 1); 

HT(x, y, s) xS(((s, y) 
s W2r2(s, y) 

Let a = a(x, y) be the unique solution to the equation 

q5 (a, y) + log x = 0. 

Theorem 2 (Hildebrand and Tenenbaum [5]). 

P(x, y) = HT(x, y, a(x, y))(I + 0(1/U)) 

uniformly for 2 < y < x. 

Observe that the error terms in Theorems 1 and 2 are roughly equivalent when 
logy is proportional to /logx log log x; this is precisely the situation in current 
factoring algorithms. The error term in Theorem 2 is better than that of Theorem 
1 for smaller y (larger u), but worse for larger y (smaller u). 

Algorithm HT approximates TI(x, y) by computing HT(x, y, a'), where al is an 
approximation of a. It has a running time of 

0 ( log logx + Iol~) 
O 

lY og Y l og log Y)) 

floating point operations, which is roughly proportional to y and essentially inde- 
pendent of x. Note that y is normally at most 108 in practice, so this algorithm is 
quite practical. We present and analyze this algorithm in ?2. 

We also implemented four algorithms based on Theorem 1. The most accurate of 
these has a running time proportional to u. The other three have constant running 
times. We discuss these algorithms briefly in ?3. 
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In ?4, we compare the accuracy of the five algorithms mentioned above. We 
conclude in ?5 with a brief discussion of two additional algorithms for estimating 
'J(x, y) and suggestions for future work. 

For a more thorough introduction to the literature on J(x,y), see Canfield, 
Erdos, and Pomerance [2], Hildebrand and Tenenbaum [6], Moree [10], and Norton 
[11]. We now briefly discuss our model of computation and notation. 

1.1. Computation model. We measure the complexity of our algorithms by 
counting the number of floating point operations. Such operations include ?, x, 
., comparisons, exponentiation, and taking logarithms of real numbers. We also 

include array indexing and branching as basic operations. In practice, we used 
80-bit floating point numbers. 

1.2. Notation. p always denotes a prime number, and sums over p are always 
sums over primes. For positive functions f and g, we write f (n) = O(g(n)) if there 
exists an absolute constant c > 0 such that f (n) < c g(n) for all n sufficiently 
large. If the 0 is subscripted, then c may depend on the subscript. f (n) < g(n) 
means f (n) = O(g(n)). When we write f (n) g(n), we mean f is approximately 
g (this approximation may be very crude). 

2. AN ALGORITHM BASED ON THEOREM 2 

The main steps of the algorithm are as follows. 

Algorithm HT. 

1. Find all primes p < y. 
2. Compute an approximation a& to the solution s = af of f (s) = 0, where 

f(s) k i(sy) + logx. 

We require that l&- al < min{0.0001, 1/(Ulog x)}. 
3. Output HT(x, y, a'). 

In this section, we first discuss the complexity of this algorithm. We then prove its 
correctness by showing that TJ(x, y) = HT(x, y, a')(1 + 0(1/ui)). Finally, we show 
how the algorithm might be improved by using Newton's method in Step (2). 

2.1. Complexity. We now derive the running time for Algorithm HT as claimed 
in the Introduction. 

Step (1) can be performed using a sublinear sieve such as Pritchard's dynamic 
wheel sieve (see [14, 15]), which uses O(y/ log log y) operations. 

Because the number of primes < y is 7r(y) = O(y/ log y), for a given value of s it 
is possible to compute each of ((s, y), X1 (s, y), and k2(s, y) using only O(y/ logy) 
operations. Thus Step (3) requires O(y/ logy) operations. 

For Step (2), observe that when y is fixed, the function 

01 (S. y) = - E logp 
p~y 

is increasing in s when s > 0 (02(s, y) is positive on this interval). Thus af may be 
approximated using bisection. We know that 

log(I1 + y/ (5 log x))< < I 
log y - 
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(see [5, Lemma 2]) which provides the interval to search. As mentioned above, 
we must perform enough iterations to reduce the size of our interval to no more 
than (u7logx)-1. At O(y/logy) operations per iteration, this gives a total of 
O(y log(U log x)/ log y) = O(y(log log x)/ log y) operations. 

2.2. Correctness. We now prove that if we use the approximation a& in place of 
ak, then Theorem 2 still holds. In other words, we will prove that 

HT(x, y, a') = HT(x, y, a)c(1 + 0(1/)). 

We begin with some results on the qk functions. 

Lemma 3. Let 6 = 6(x,y) > 0, with 6 <K 1. If Is - a < 6/logx, then 2(s,y) = 

2 (a, Y) (I + 0(6/1u)) . 

Proof. Taking a Taylor Series expansion of 02 about a, we have 

02 (S, Y) = 02 (ac Y) + E (s 
- 

) Oi+2 (a, Y) 

From Lemma 4 of [5] we easily obtain 

Ok (a, ) 4< k! (logx u 

WLOG, we may assume u > 1. Since the series converges geometrically, we have 

k2(~y)= k(c~y)+ 0(6(logX)2/i12). 02 (S. Y) = 02 (a. Y) + ~~o ) u2 

Again from Lemma 4 of [5] we obtain that 02(a,y)? (logx)2/u, which completes 
the proof. D 

Corollary 4. Under the same hypotheses as the previous lemma, we have 

k(s, y) = k(a, y) + 0(6); 

-X1(s,y) = logx(1+0(6/u?)). 

Proof. By the mean value theorem, there exists an s' between s and ak such that 

-1 (S, Y) = -1 (a. Y) + (S - )2 (S', Y) . 

Applying Lemma 3 and bounding 02 (a, y) as before, we obtain 

-X1(s, y) = -1(al, y) + 0(6(logx)/ui). 

Noting that -01 (al, y) = log x completes the proof for 01. The proof for 0 is easier 
and follows the same lines. D 

Lemma 5. If Is-al < (Ulogx)-1, then HT(x,y,s) =HT(x,y,ca)(1+0(1/ui)). 

Proof. Assume Is - a < 6/log x with 6 = o(1). Applying Corollary 4 we have 
XS = xae-( W xa(I + 0 (6)). We also have log((s,y) = k(s,y) = (al,y) + 0(6) 
so that ((s, y) = ((ay)e0(8) = ((a, y)(l + 0(6)). Applying Lemma 3 and setting 
6= 1/ur completes the proof. D 

We have proven the following. 

Theorem 6. Algorithm HT outputs an approximation for J(x, y) accurate to 
within a factor of 1 + 0(1/u1) using at most 

0 ((log logx + Iol~) 

floatinglg pn o pg rtg ion 

floating point operations. 
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2.3. Using Newton's method. Newton's method may be substituted for bisec- 
tion in Step (2) of Algorithm HT. It is not difficult to show that, using aO := 

log(1 +y/(5 log x))/ logy for a starting point, Newton's method will converge. (The 
function f (s) = q)1 (s, y) + log x has a negative second derivative with respect to s 
on (0,1], so a starting point smaller than al, like aci, is preferable.) In practice, we 
observed quadratic convergence after only 2 or 3 iterations of Newton's method, so 
that 5 or 6 iterations were sufficient. However, we are only able to prove quadratic 
convergence when using a starting point within a distance of O(ui/ log x) from al. 

Let x,y be fixed, and let g(s) := s - f'(s)/f(s) so that g(s) is the iteration 
function for Newton's method. Observe that f'(s) = 02(s,y) and f"(s) = 033(S,y). 

Thus g'(s) = f(s)03(s,y)/k2(s,y)2. We will also need formulas for k2 and O3: 

X2 (S, Y) E (lgpA_ ) 2. 

= ps(logp 1)2 (oy 
E 

(P s -)21 

03(sY) = - s(ps + 1)(logp)3 I: 
(p s - 1)3 

Lemma 7. For 0 < s < 1, -03(SY)/k2(sy) < log y + 2/s. 

Proof. Observing that s log p < ps - 1, we have 

= V(logp + 21lgpg p (logp 
03 (S, Y) I: s- 1} ps) 

? Z~~~logP+ l) p ps (logp) 2 
< logp + ) (p s )2 

< (logp + 
2 

ps (log p)2 

< (log Y + 2 (s Y). g 

Theorem 8. There exists a constant c > 0 such that if h < cu/ log x, then New- 
ton's method converges quadratically to the solution s = a of f(s) = 0 on the 
interval [a - h, a] . 

Proof. We need to show that, for every s E [a - ha], Ig'(s)I < 1. We have 

- I (1 (S, Y) + Log X)q03 (S, Y) WWI = 
0~~~~2 (S, ~) 2 

< IO, (s, y) + log x (log y + 2/s) 
02 (s, Y) 

using Lemma 7. By the mean value theorem, there exists a t, s < t < a, such that 
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X1 (s, y) = ki(ay) + (s - a)02 (t, y) . Observing that X1 (a, y) =-log x, we have 

gW(W)I < (a - s)q02(t, y)(logy + 2/s) 
~2 (S, Y) 

< h(logy + 2/s), 

since 02(S, y) is a decreasing function of s. So if h(logy + 2/s) < 1, we are done. 
For c sufficiently small, we have 

hlogy < cuilogy/logx < culogy/logx = c < 1/2. 

Since a > U/ log x (see [5, Lemma 2]), we can choose c sufficiently small so that 
a > 5h, giving us 

2h/s < 2h/(a - h) < 2h/(5h - h) = 1/2, 

which completes the proof. D 

This result implies that, to find a good approximation to a, one must first use 
bisection to reduce the interval containing a to size O(ui/ log x). One may then 
take the left endpoint of this interval as the starting point for Newton's method 
to obtain an additional factor of O(1/U2) of precision. If u- = u (that is, y > 
logx), then this method will slightly improve the operation count of Algorithm 
HT to O(y/(loglogy)). In other words, finding the primes in Step (1) dominates 
the running time; the contribution of Step (2) drops to O(y(loglogy)/logy). If 

= y/ logy (that is, y < log x), the improvement is (theoretically) negligible. 

3. ALGORITHMS BASED ON THEOREM 1 

We implemented four different algorithms based on the approximation I(x, y) 
xp(u). 

Algorithm A. p(u) can be computed by numeric integration using 

(1) p(u) = U f p(t)dt (u > 1) 

with, say, Simpson's rule (see [17]). The idea is as follows. For 1 < u < 2, we 
have p(u) = 1 - log u, which is easy to compute. Then compute p(i + j/n) starting 
with i = 2 and j = O... n using (1) and Simpson's rule. Repeat this process 
with i = 2,3, .. ., and observe that those points where values of p are needed for 
Simpson's rule are precisely where p was previously computed. 

This requires O(n2u) operations. We used n = 1000, and our values of p(u) 
match those given by van de Lune and Wattel [17, Table 1, p. 420] for integral 
values of u satisfying 2 < u < 20. 

Algorithm B. We have p(u) = u-U+o(u), giving the approximation '(x,y) 
x U. u This crude estimate can be computed using only 0(1) floating point 
operations. 
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Algorithm C. Pomerance [13] observed that for 5 < u < 11, 

p(u) C(u) := exp(-u(log u + 0.56 - 1/ log(u + 1))), 

giving the approximation J(x, y) ' x C(u). This can also be computed in 0(1) 
operations. 

Algorithm D. Let 

D(u) =exp{ ( + loglogu -1+ log log u- 1' 
exp ~~~u ~~ - log(u +1)Jf 

De Bruijn [3] showed that 

p(u) = D(u) exp{O ( ( logou) ) } 

for u > 3. This gives the approximation TI(x, y) x D(u), which can be computed 
in 0(1) operations. (This approximation breaks down for small u.) 

4. A COMPARISON OF APPROXIMATIONS 

We began by computing '(x,y) for x = 2i, i = 10,11,... ,33 and y = 23, 

j = 1, 2,... ,15 (see Table 3). We then ran our five algorithms on the same x, y 
values to obtain estimates to compare to the actual values. On the following pages 
we present tables giving the ratios between the estimates and the actual data, so 
that a perfect estimate will yield 1.00 entries. In the interest of space, we present the 
data only for Algorithm HT and Algorithm A, as the data for the other algorithms 
can be quickly computing from Table 3. Each table is indexed by x across the top 
and y down the left. 

Let us summarize our results. 
* Algorithm HT (Table 1). HT(x, y, a') provides a very good approximation to 

'I(x, y), with the ratio always between 0.9 and 1.1. It took about 5 minutes of 
CPU time on a workstation to produce the approximations used in the table, 
with the list of primes up to 215 computed only once. 

* Algorithm A (Table 2). This approximation is fairly good for small values 
of u, but HT(x, y) appears to be uniformly better. The ratio xp(u)/1(x, y) 
approaches 1 as u decreases, and for fixed u, as x increases. It took less than 
2 minutes of CPU time to compute the approximations in the table. p(u) was 
computed once for all u up to 20, with n = 1000. 

* Algorithms B, C, and D. These approximations were only close for small u, 
with Algorithm B best near u = 1.5 and Algorithm C best near u = 2.5. 
None were as good as Algorithm A, and it is fair to say that Algorithm D is 
essentially useless. As Algorithm A does only a mediocre job of estimating 
J(x, y), it is not surprising that Algorithms B, C, and D, which are based on 
poorer estimates of p(u), do not do very well. 

For a fast, crude approximation, Algorithms B or C may be useful. Otherwise, it 
is clearly a choice between Algorithms HT and A. 

Our program to compute the exact values of TI(x, y) uses sieving, and it factors 
roughly a billion numbers over the primes up to 215 in one CPU day on an HP 
9000 series 715/75 workstation. The values in Table 3 for smaller y were checked 
using the recursive algorithm based on Buchstab's identity mentioned in ?1. All 
programs were implemented in ANSI C. 
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TABLE 1. The approximation HT(x, y, ')/I(x, y) 

_ I X 
y 210 211 212 213 214 215 216 217 218 219 

2 1.0000 1.0000 1.0769 1.0714 1.0667 1.0625 1.0588 1.0556 1.0526 1.0500 
22 1.0244 1.0417 1.0357 1.0308 1.0405 1.0357 1.0316 1.0377 1.0339 1.0385 
23 1.0140 1.0158 1.0161 1.0189 1.0200 1.0201 1.0212 1.0200 1.0199 1.0212 
24 1.0122 1.0114 1.0122 1.0119 1.0121 1.0141 1.0140 1.0142 1.0138 1.0142 

25 1.0023 1.0058 1.0085 1.0076 1.0072 1.0076 1.0084 1.0075 1.0074 1.0076 
26 1.0085 1.0031 1.0025 1.0043 1.0053 1.0055 1.0044 1.0040 1.0047 1.0051 
27 1.0082 1.0094 1.0046 1.0003 1.0005 1.0036 1.0050 1.0047 1.0036 1.0026 
28 1.0000 1.0086 1.0101 1.0087 1.0038 0.9995 1.0002 1.0029 1.0047 1.0047 
29 0.9863 0.9983 1.0070 1.0121 1.0121 1.0086 1.0035 0.9995 0.9999 1.0027 
210 - 0.9843 0.9969 1.0070 1.0128 1.0145 1.0125 1.0082 1.0032 0.9996 
211 - - 0.9849 0.9965 1.0063 1.0131 1.0162 1.0158 1.0126 1.0079 
212 - - - 0.9843 0.9957 1.0057 1.0133 1.0175 1.0184 1.0165 
213 - - - - 0.9849 0.9954 1.0054 1.0133 1.0183 1.0203 

214 - - - - - 0.9850 0.9951 1.0051 1.0133 1.0189 
215 - - - - - - 0.9854 0.9951 1.0048 1.0132 

y 220 221 222 223 224 225 226 227 228 229 

21 1.0476 1.0455 1.0435 1.0417 1.0800 1.0769 1.0741 1.0714 1.0690 1.0667 
22 1.0420 1.0382 1.0409 1.0430 1.0396 1.0413 1.0426 1.0395 1.0406 1.0414 
23 1.0218 1.0224 1.0213 1.0207 1.0212 1.0217 1.0211 1.0207 1.0206 1.0208 
24 1.0144 1.0143 1.0142 1.0140 1.0141 1.0140 1.0139 1.0140 1.0138 1.0139 
25 1.0077 1.0077 1.0076 1.0076 1.0076 1.0076 1.0076 1.0076 1.0076 1.0076 
26 1.0049 1.0047 1.0046 1.0047 1.0048 1.0048 1.0048 1.0047 1.0047 1.0047 
27 1.0025 1.0032 1.0036 1.0035 1.0032 1.0029 1.0029 1.0030 1.0032 1.0031 
28 1.0038 1.0026 1.0018 1.0019 1.0026 1.0030 1.0030 1.0026 1.0023 1.0021 
29 1.0047 1.0053 1.0048 1.0036 1.0023 1.0016 1.0018 1.0026 1.0030 1.0031 
210 1.0003 1.0031 1.0052 1.0061 1.0058 1.0048 1.0034 1.0023 1.0019 1.0022 
211 1.0031 1.0000 1.0010 1.0038 1.0060 1.0071 1.0071 1.0062 1.0049 1.0036 
212 1.0126 1.0078 1.0033 1.0007 1.0017 1.0045 1.0067 1.0081 1.0083 1.0077 
213 1.0196 1.0167 1.0125 1.0078 1.0037 1.0014 1.0026 1.0053 1.0076 1.0090 
214 1.0218 1.0221 1.0202 1.0168 1.0124 1.0079 1.0041 1.0022 1.0035 1.0061 
215 1.0193 1.0229 1.0241 1.0231 1.0204 1.0166 1.0122 1.0080 1.0046 1.0031 

y 230 231 232 233 
2 1.0645 1.0625 1.0606 1.0588 
22 1.0421 1.0426 1.0400 1.0431 
23 1.0211 1.0211 1.0210 1.0208 
24 1.0139 1.0139 1.0140 1.0140 
25 1.0076 1.0076 1.0076 1.0076 
26 1.0048 1.0047 1.0047 1.0047 
27 1.0030 1.0029 1.0029 1.0029 
28 1.0021 1.0023 1.0024 1.0023 
29 1.0028 1.0023 1.0020 1.0018 
210 1.0030 1.0034 1.0035 1.0032 
211 1.0027 1.0024 1.0028 1.0036 
212 1.0066 1.0052 1.0040 1.0032 
213 1.0095 1.0091 1.0081 1.0068 
214 1.0084 1.0100 1.0106 1.0104 
215 1.0044 1.0070 1.0093 1.0109 
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TABLE 2. The approximation xp(u)/I(x, y) 

_ I x 
y 210 211 212 213 214 215 216 217 218 219 

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

23 0.1678 0.1211 0.0806 0.0536 0.0350 0.0241 0.0147 0.0093 0.0055 0.0037 
24 0.5406 0.4729 0.4061 0.3467 0.2936 0.2463 0.2043 0.1681 0.1372 0.1112 
25 0.7104 0.6546 0.6068 0.5593 0.5124 0.4666 0.4243 0.3843 0.3468 0.3115 
26 0.8506 0.8226 0.7881 0.7506 0.7204 0.6909 0.6609 0.6309 0.5993 0.5695 
27 0.9015 0.8835 0.8665 0.8483 0.8249 0.8000 0.7791 0.7597 0.7420 0.7221 
28 0.9376 0.9208 0.9072 0.8970 0.8857 0.8728 0.8564 0.8386 0.8246 0.8119 
29 0.9652 0.9435 0.9287 0.9191 0.9108 0.9028 0.8940 0.8835 0.8702 0.8565 
210 - 0.9696 0.9512 0.9401 0.9321 0.9261 0.9205 0.9148 0.9083 0.9003 
211 - - 0.9737 0.9571 0.9471 0.9406 0.9359 0.9319 0.9279 0.9234 
212 - - - 0.9752 0.9606 0.9517 0.9461 0.9423 0.9390 0.9359 
213 - - - - 0.9780 0.9645 0.9566 0.9518 0.9486 0.9461 
214 - - - - - 0.9792 0.9668 0.9598 0.9555 0.9527 
215 - - - - - - 0.9808 0.9696 0.9630 0.9592 

y 220 221 222 223 224 225 226 227 228 229 

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

23 0.0023 0.0013 0.0006 0.0005 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 
24 0.0893 0.0711 0.0562 0.0441 0.0344 0.0266 0.0204 0.0155 0.0118 0.0089 
25 0.2788 0.2489 0.2213 0.1959 0.1729 0.1521 0.1333 0.1164 0.1014 0.0880 
26 0.5421 0.5139 0.4860 0.4597 0.4333 0.4080 0.3845 0.3607 0.3378 0.3167 
27 0.7013 0.6801 0.6601 0.6409 0.6218 0.6040 0.5847 0.5655 0.5468 0.5286 
28 0.7998 0.7873 0.7740 0.7601 0.7461 0.7329 0.7204 0.7080 0.6954 0.6826 
29 0.8459 0.8368 0.8281 0.8178 0.8085 0.7987 0.7884 0.7782 0.7688 0.7600 
210 0.8902 0.8797 0.8719 0.8654 0.8594 0.8534 0.8471 0.8404 0.8333 0.8259 
211 0.9181 0.9118 0.9038 0.8954 0.8893 0.8843 0.8798 0.8754 0.8724 0.8675 
212 0.9326 0.9288 0.9243 0.9188 0.9120 0.9057 0.8998 0.8965 0.8936 0.8892 
213 0.9437 0.9413 0.9386 0.9354 0.9317 0.9271 0.9215 0.9158 0.9118 0.9087 
214 0.9505 0.9486 0.9467 0.9445 0.9421 0.9393 0.9359 0.9318 0.9269 0.9227 
215 0.9568 0.9550 0.9534 0.9519 0.9503 0.9484 0.9463 0.9438 0.9408 0.9373 

y 230 231 232 33 

2 0.0000 0.0000 0.0000 0.0000 
22 0.0000 0.0000 0.0000 0.0000 

23 0.0000 0.0000 0.0000 0.0000 
24 0.0066 0.0049 0.0036 0.0027 
25 0.0761 0.0656 0.0563 0.0483 
26 0.2958 0.2758 0.2574 0.2392 
27 0.5106 0.4928 0.4765 0.4591 
28 0.6697 0.6568 0.6442 0.6320 
29 0.7512 0.7424 0.7317 0.7225 
210 0.8187 0.8121 0.8060 0.8000 
211 0.8624 0.8569 0.8514 0.8460 
212 0.8863 0.8833 0.8783 0.8748 
213 0.9059 0.9033 0.9007 0.8995 
214 0.9185 0.9167 0.9137 0.9123 
215 0.9331 0.9285 0.9267 0.9241 
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TABLE 3. Values of 'J(x, y) 

_ x 
y 210 211 212 213 2 14 

21 11 12 13 14 15 
22 41 48 56 65 74 
2 3 143 190 248 317 400 
2 4 246 351 490 672 906 
2 5 442 689 1053 1586 2346 
26 589 981 1595 2542 3991 
2 7 731 1270 2179 3679 6094 
28 849 1516 2684 4699 8146 
29 949 1735 3142 5636 10041 
210 1024 1911 3521 6428 11663 
211 1024 2048 3841 7129 13128 
212 1024 2048 4096 7728 14427 
213 1024 2048 4096 8192 15512 
214 1024 2048 4096 8192 16384 
215 1024 2048 4096 8192 16384 

y 2 15 216 217 218 219 

21 16 17 18 19 20 
22 84 95 106 118 130 
2 3 498 614 749 905 1083 
24 1202 1576 2041 2616 3317 
25 3414 4898 6948 9731 13475 
26 6180 9451 14266 21260 31347 
27 9931 16011 25559 40390 63173 
28 13944 23481 39048 64361 105278 
29 17755 31128 54004 92441 156524 
210 21037 37733 67249 118972 208572 
211 24032 43786 79421 143389 257471 
212 26748 49339 90654 165976 302766 
213 29113 54284 100763 186423 343868 
214 31156 58732 110048 205414 382279 
215 32768 62506 118264 222583 417362 

y 220 221 222 223 224 

21 21 22 23 24 25 
22 143 157 171 186 202 
23 1286 1517 1780 2074 2402 
24 4167 5193 6419 7877 9598 
25 18469 25075 33741 45014 59579 
26 45781 66227 94933 134903 190163 
27 97785 149884 227857 343760 514788 
28 170865 275111 439306 695673 1093094 
29 263183 439766 730433 1205820 1977771 
210 361431 620771 1060020 1800976 3045268 
211 459301 812792 1424059 2476303 4285281 
212 550007 994335 1787283 3190043 5644630 
213 632444 1159443 2117721 3851153 6967074 
214 709690 1314383 2428041 4472213 8209619 
215 780651 1457130 2714319 5045563 9357112 
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Values of 'I(x, y) (continued) 

I x 
Y 225 226 227 228 229 

26 27 28 29 30 
22 218 235 253 271 290 
23 2767 3174 3625 4121 4665 
24 11621 13988 16738 19928 23604 
25 78266 102093 132291 170321 217974 
26 266049 369553 509807 698608 951343 
27 765239 1129330 1655298 2410848 3490422 
28 1706546 2648250 4085325 6264989 9551140 
29 3222076 5213665 8383431 13410847 21350049 
210 5124129 8577810 14281205 23642843 38922285 
2" 7385245 12678351 21679370 36917071 62587985 
212 9922778 17371995 30309172 52711748 91378192 
213 12525194 22345935 39643653 70084947 123541536 
214 15010728 27317440 49436058 88862657 158941679 
215 17306519 31909829 58621645 107234657 195171858 

Y 230 231 232 233 
31 32 33 34 

22 309 329 350 371 
23 5260 5912 6624 7398 
24 27828 32659 38169 44433 
25 277365 351007 441920 553606 
26 1287797 1733329 2320213 3089396 
27 5024347 7191651 10237430 14496552 
28 14477597 21826231 32739765 48876982 
29 33828954 53347812 83727582 130784134 
210 63750581 103979865 168933457 273408517 
211 105617305 177380226 296511968 493575295 
212 157873692 271778274 466079862 796104188 
2'3 217188821 380801428 665799447 1160628960 
214 283424267 504144912 894722064 1584321399 
215 353089794 636009446 1142579675 2048212809 

5. MORE ALGORITHMS AND SOME OPEN PROBLEMS 

We conclude with a brief discussion of two more algorithms, followed by some 
suggestions for future work. 

5.1. Another algorithm to compute 'I(x, y). The referee pointed out that 
'I(x, y) may be computed using the following: 

q,(x, y)= E (n) X1 
P(n)>y 

where P(n) is the smallest prime divisor of n, and 1a is the Mobius function. Using 

Lx/(ab)J = LLx/aJ/b], this may be evaluated via a tree-traversal based on the 
primes p where y < p < x. With a list of such primes p in hand, this takes 
O(x/ logy) operations when 2 < y < x/2. 



1740 SIMON HUNTER AND JONATHAN SORENSON 

5.2. A probabilistic approximation algorithm. The referee also pointed out 
that I(x,y) may be estimated probabilistically. This is, in effect, how factoring 
and discrete logarithm practitioners estimate ' (x, y). 

The idea is to choose integers < x at random and factor them over the primes 
up to y. The proportion of numbers that completely factor will give an estimate 
for the ratio 'I(x, y)/x, from which an estimate for 'I(x, y) can be made. Because 
this is a binomial distribution, if kn2x/'!(x, y) random numbers are chosen, then 
with probability at least 1 - 1/k, the estimate for 'I(x, y) will be accurate within 
a factor of 1 ? 1/n. For example, we could set k = 10 and n = 10, which requires 
1000x/l(x,y) random numbers, giving an estimate for I(x,y) that, with proba- 
bility at least 90%, is accurate within ? 10%. We do not know T (x, y) beforehand, 
but this is not a problem; simply continue sampling until 1000 integers are found 
that completely factor over the primes < y. 

5.3. Open problems. We now discuss two open problems. 
Considering how accurate Theorem 2 is in practice, upper and lower bounds for 

T1(x, y) with explicit constants patterned after this theorem would be very useful. 
It would also be nice to know whether the error term 1 + O(1/zi) is best possible. 
Our data implies it is not, especially for smaller u. 

Let f (t) denote a monic, irreducible polynomial with integer coefficients. Let 
Jf (x, y) denote the number of integers n < x such that f (n) has no prime divisors 
larger than y. Is it possible to construct an algorithm to approximate Jf (x, y) to 
within a constant factor? For approximations to If (x, y), see [7, 8, 16]. 
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