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A NOTE ON STABILITY 
OF THE DOUGLAS SPLITTING METHOD 

WILLEM HUNDSDORFER 

ABSTRACT. In this note some stability results are derived for the Douglas 
splitting method. The relevance of the theoretical results is tested for an 
advection-reaction equation. 

1. PRESENTATION OF THE RESULTS 

Consider the initial value problem for a system of ODEs 

(1.1) u'(t) = F(t,u(t)) 

with 0 < t < T and given initial value u(0). We shall consider numerical schemes 
with step size r yielding approximations u?, to the exact solution u(tn) at time 
levels tn = nT for n = 0, 1, 2,, starting with uo = u(0). 

For problems that arise by spatial discretization of multi-dimensional PDEs it 
is often possible to decompose the function F into a number of simpler component 
functions, 

(1.2) F(t, w) = Fi (t, w) + F2(t, w) + + Fs(t, w). 

Splitting methods use this decomposition by treating in each stage at most one 
of the components implicitly. The best known method of this type is the ADI- 
Peaceman-Rachford method, but this method can only deal with 2-component 
splittings, see [5]. In this paper we shall consider the related second-order method 
of Douglas [1], also known as the method of Stabilizing Corrections [4], 

(1.3) 
vo =un +TF(tn i un), 

vi =Vi-1 + lT (Fi (tn+l, ivi) -Fi(tni Un)) (i = 1,2, , s), 

Un+1 = Vs, 

with internal vectors vi. 
A big advantage of (1.3) over many other splitting methods [4, 5] is that all 

internal vectors vi are consistent approximations to the exact solution, namely 
at time tn+1. This implies that if we are in a steady state F(u) = 0, with F 
independent of t, then this steady state is also a stationary point of the scheme 
(1.3). 

Received by the editor July 29, 1996. 
1991 Mathematics Subject Classification. Primary 65M06, 65M12, 65M20. 
Key words and phrases. Numerical analysis, initial-boundary value problems, splitting 

methods. 

@1998 American Mathematical Society 

183 



184 WILLEM HUNDSDORFER 

We shall present some stability results for the scalar complex test equation where 

(1.4) Fj(t,w) =Ajw 

with Aj E C. In applications for PDEs the Aj will represent eigenvalues for the 
various components, found by inserting Fourier modes. Let zj = TAj. For the test 
equation the method reduces to 

(1.5) u+= Run 

with growth factor 
s s 

(1.6) R = I + (H1 (I 1z )) Ei 
j=l j=1 

This R corresponds to the stability function for standard one-step methods. Ideally, 
one would have IR I < 1 for arbitrary A. in the left half-plane C- without restriction 
on the time step. As we shall see, for R given by (1.6), this is not true if s > 3. 

It is easy to verify that IR < 1 when all zj are real and negative (unconditional 
stability for purely parabolic equations, see Douglas [1]). On the other hand, it 
can also be shown that if s > 3 and all zj = iy, then JR I > 1 for any y 74 0 
(unconditional instability for purely hyperbolic equations, see Warming and Beam 
[6] and also Remark 2.1). In this paper we shall present some intermediate results 
which are applicable to advection-diffusion and advection-reaction equations. It 
will be assumed that the zj belong to the wedge Wa= {-( E (C: jarg(-()I < a} in 
the left half-plane. We consider the statement 
(A) . . [RI < 1 for all Zj E W. 

Theorem 1. Let R be given by (1.6) with s > 2. We have 

(A) a < -. 

s-1 2 

For s -2 we thus get stability for a < /2, which allows the zj to range over 
the whole left half-plane. However, for s = 3 we get the condition a < 7r/4, which 
is already quite restrictive. One may expect the situation to become better if some 
z; are real and negative. In the following theorem we assume that there are r such 
Zj < 0. Consider the statement 
(B) ... I R I 1 for arbitrary ZiI ... Zs_r E W13, Zs-r+?1 ... )Zs < 0. 

Theorem 2. Let R be given by (1.6), and let 1 < r < s - 1. We have 

(B) 3 < 1 2 
-s-r 2 

It is somewhat surprising that for r = 1 we get the same condition as in Theo- 
rem 1. So again, already for s = 3 we may get a quite restrictive condition, unless 
there are two zj that are real and negative. If s = 3 with arbitrary z1, Z2 E C- 
then we have stability if Z3 0, but letting Z3 < 0 may destroy this stability. 

The proof of these results will be given in the next section. In Section 3 some 
numerical results will be presented for an advection-reaction equation. 

Remark. For linear problems, where Fj (t, w) = Ajw + gj (t), the stability results 
can be applied provided the matrices Aj are normal and commuting. Some results 
for non-commuting matrices were given by Douglas and Gunn [2] under very strict 
conditions on the step size. 
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2. PROOFS 

2.1. Proof of Theorem 1. In the following, all summations will be from 1 to s, 
unless indicated otherwise. Let 

= R-1 and r1=-_ EZj2( I+1) 

j~~~~ 
Clearly IR I 1 is equivalent with the following 

11+4j1 < Re<-K- <# Rer?>0. 
2 

The last criterion will be used in this proof. By some calculations it is seen that 

(2.1) 

=-( j) (i + ( )2Z)E ZjZk + (- Z)3 j ZkZI + + (-1>Z .Z. ) 

j j<k j<k<l 

To verify the statement of the theorem it is, according to the maximum modulus 
theorem, sufficient to consider zj on the boundary of W,. In the following, let 
tj > 0 be arbitrary, 0 < q < 1S and 

z=-eiatj (I < j < S -q), z=-e -iatj (- ) 

First, consider q = 0. Then we obtain 

(e-ia Zti)(1 + (1)2e2iaZtjtk + 
j j<k 

Rer1 = (Ztj) (cos(a) + (2)2 cos(cY) Etjtk + + (1)s COS((S - 1)a)t1t2.--ts). 
j j<k 

ItfollowsthatRer1 > foralltj > Oifandonlyif cos(ka) > 0 (k =1,2,...,s-1), 
that is, 

(2.2) (s<-1)a <2. 

Next, suppose that q = 1. Then (2.1) gives 

s-1 

1 (= e tj + eiats) (Zpkeika) 
j<s k=O 

with Pk > 0 depending on the tj. The actual expressions easily follow from (2.1). 
In particular we find 

Ps-1 = (2)1t1t2...ts_l, 

Ps-3 > (2)s1t1t2...ts (A1 + + + 1 ). 

Assuming (2.2), it follows that 

Re r1 > ( 1 )s-1 Cos(sa)tlt2 .. .tS + ( 1 )s- (s - 1) cos((s - 4)a)t1t2X...tS 

Further, (2.2) implies cos(sa) + (s - 1) cos((s - 4) a) > 0. Hence, also for this case 
q = 1, we see that (2.2) implies IR I < 1. 
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Finally, suppose that q > 2. Then 
s-q 

7= ( E e-tj + E eiti) ( E qke) 
j<s-q j>s-q k=-q 

with qk> O . Therefore, Re r1 is a sum of cos(ka) terms with -(q+1) < k < s-q+1 
and nonnegative coefficients, and again it follows that (2.2) is sufficient to have 
IRI <1. 

Remark 2.1. If we have s = 3 and zj = iy for j = 1, 2, 3, then Re r1 = -y4 < 0 

foranyy 80. Hence,foranyC>0,wehave max{R :zj=iyj, Iyj?<C}>l. 
This instability result was already obtained by Warming and Beam [6] for a class 
of multistep splitting methods, containing the Douglas method as a special case. 

2.2. Proof of Theorem 2. First we consider the case where one of the Zk is real 
and negative, say zs < 0. The other zj are assumed to lie in the wedge Wg. It will 
be shown that 

(2.3) (s- 1)3 <? 

is necessary to guarantee that JR K 1 if zs -> -oc. By Theorem 1 we already 
know that this is a sufficient condition for arbitrary zs < 0. 

In the limit zs -> -oc we have R -> S with 

s = 1 - 2 (1I(1 - i - 
j<s 

It is easily seen that IS I < 1 is equivalent with 

Re 11(1 - zj) > 1 
j<s 

Take zi =-eitj (I < j < s-1) with tj > 0. Then 

Re fJ(1- zi) 
j<s 

= Re (1 + (- ) E Zj + (12)2 ZjZk + * + ( _12)s -zzz) 

j<s j<k<s 

= 1?+ cos(/3) Et 
j<s 

+ ( )2 )cos (23) E tjttk + + ( )s COS((S-1)3)tit2 ... ts-1- 
j<k<s 

Thus we see that (2.3) is necessary if t1, ..., ts-1 are sufficiently large. 
Next we consider the general situation z, ..., Zs-r E Wf3, Zs-r+?1 ..., Zs < 0 

with 1 < r < s - 1. We now have to show that 

(2.4) (s-r)3 < 2 

is necessary and sufficient for IR < 1. 
Note that R is fractional linear in all zj with denominator 1 - zj. Considering 

fixed z1, ..., Zs-r, it follows that we have 

JRI < 1 forall Zs-r+,...l Zs <K 
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iff this holds for Zsr?+, ..., zs equal to 0 or oc. This amounts to verification of the 
two inequalities ! 

t 1+ ( (I (- 
1 
zi)) j<1 1-2(I (1 2zj)) <1 

j<s-r j <s-r j<s-r 

From the above results, with s - r replacing s and s - 1, respectively, it follows that 
this will be satisfied for arbitrary z1, ..., Zs-r E WQ if and only if (2.4) holds. 

3. EXAMPLE 

In this section we shall present some numerical tests for an advection-reaction 
equation. For comparison we also consider the following method, 

VO = Uni 

3.1 vi = v_i_ + 'TFi(tn, Vi1) (i = 1,2, , ), 
Vs+i = vs+i_i + 1TFs+1?i (tn+1?, vs+?) (i = 1, 2,... s), 

Un+?1 = V28. 

This method has been tested in [3], where it was called the trapezoidal splitting 
method. It is also a second-order method but the internal vectors vj are not con- 
sistent approximations to the exact solution. It is more stable than the Douglas 
scheme, however. If we apply (3.1) to the scalar test equation (1.4) we get the 
growth factor 

s 

(3.2) R = ]7(i - zj)-1(1 + 1 ) 
j=1 

and thus with this method we have IR < 1 for arbitrary zj in the left half-plane 
C-, irrespective of s. 

To verify the relevance of the results for the scalar test equation (1.4), we consider 
the following advection equation with a linear reaction term, 

Ut = au. +buy + Gu on Q = [0,112. 

The velocities are given by a(x, y, t) = 27r(y- ), b(x, y, t) = 2( 2- x). Further, 

u(x,Y,t)= ( u (x,y,t) ) 
G G= -ki k2 

We take k1 = 1. The second reaction constant k2 will be used to vary the stiffness 
of this reaction term. Note that the matrix G has eigenvalues 0 and -(k1 + k2). 
We have a chemical equilibrium if u1 /u2 = k2/k1. 

The initial condition is chosen as 

Ul (X, y, 0) = c, U2 (X, y, 0) = (I1-c) + ,u exp(-80(x _-1)2 _ 80(y _3)2) 

with c = k2/(k1 + k2). To avoid a strong transient phase, we take ,u = 100/k2. 
So, if k2 increases we start closer to the chemical equilibrium to maintain some 
smoothness. 

The exact solution is given by 

ul(x,y,t) = c(e-(kl+k2)t + (1e- (kl+k2)t)d(x, y t)) 

u2(x, y, t) = d(x, y, t) - u(x, y, t), 
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with 

d(x, y, t) = 1 + ,u exp(-802 - 80(i - 4)2) 

= cos(2it) (x - - sin(27rt)(y - 1), r = sin(2-rt)(x - ') + cos(2-rt)(y - 

After a mild transient phase this is purely an advection problem, and the velocity 
field gives a rotation around the center of the domain. At t = 1 one rotation is 
completed. 

Dirichlet conditions are prescribed at the inflow boundaries. At the outflow 
boundaries we shall use an upwind discretization in space, in the interior second- 
order central differences are used. We consider splitting with F1, F2 the finite 
difference operators for advection in the x and y direction, respectively, and with 
F3 for the linear reaction term. The test has been performed on a fixed 80 x 80 
grid, and with r = 1/80 and 1/160. The spatial difference operators will have 
eigenvalues close to the imaginary axis. 

Although we are not in a model situation with commuting, normal operators, 
application of a standard von Neumann analysis (ignoring boundary conditions and 
freezing the coefficients) yields local growth factors R with z1, Z2 on the imaginary 
axis between -i C and i C with local Courant numbers C, which are maximally 
80,rr, and with Z3 = 0 or -r(ki + k2). 

On the basis of Theorem 2 we expect the Douglas scheme to be stable only if k2 is 
not large. The following table shows that this scheme becomes indeed unstable for 
large k2, whereas the trapezoidal splitting remains stable. Note however that the 
transition from stable to unstable is very hesitant. Several rotations are sometimes 
needed to give a significant instability. 

TABLE 3.1. Maximum errors for the Douglas method (1 rotation 
and 4 rotations) and trapezoidal splitting (4 rotations). The entry 
* denotes overflow. 

Douglas, 1 rot. Douglas, 4 rot. TrapSplit, 4 rot. 

k2 = 500 r = 1/80 4.5 10-2 1.0 10-1 1.0 10-1 
T = 1/160 2.9 10-2 8.3 10-2 8.3 10-2 

k2= 1000 r= 1/80 2.2 10-2 8.1 10+8 5.0 10-2 

r= 1/160 1.4 10-2 4.1 10-2 4.1 10-2 

k2= 2000 r 1/80 8.4 7.6 10+22 2.5 10-2 
r = 1/160 7.2 10-3 7.5 2.1 10-2 

k2= 4000 T = 1/80 1.9 10+3 5.6 10+30 1.2 10-2 
r = 1/160 1.4 10+3 1.0 10-2 

The reason for the fact that the transition from stability to instability is not 
clear-cut with the Douglas method lies in the fact that the growth factors do not 
become large. In the following figure the modulus JR I is plotted for z1, Z2 fixed on 
the imaginary axis and Z3 < 0 varying. Although we have RI > 1 if Z3 << 0, 
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FIGURE 1. Modulus IRI versus x E [0,100]. Top picture with 
Zl = liZ3 = -x. Bottom picture with z1 = Z2 = 2i,Z3 = 

-X. 

the value does not become large (it can be shown that for z1, Z2 on the imaginary 
axis and Z3 < 0, the case z1 = Z2 2i, Z3 -4 oc gives the maximal growth factor, 
namely 2). Therefore, it takes some time for the instability to become visible. 

It is also clear from the above table and figures that a mild stiffness in the 

reaction term is allowed. This is quantified in the following theorem. We consider 

the statement 

(C) IRI < 1 for all zj = iyj (j = 1,2),Z3 = -x with Iyj I < y( = 
1,2),0 < x < 6. 
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Theorem 3. Let R be given by (1.6) with s = 3. We have 

(C) < 

8? 

< 6 + 
8y-2. 

Proof. Consider?r defined by (2.1). Here we have 

Re?r = (1--Y1Y2 - Y1Y2X)X + (YI + Y2)x 

So, for x > 0 we have Re?r > 0 iff 

8 + 2(y2 + Y1Y2 + y2) 

Y1Y2 
in case Y1Y2 > 0, whereas there is no restriction for Y1Y2 < 0. By some straightfor- 
ward analysis the result follows. D 

In conclusion it can be said that the Douglas method seems only suited for 
multi-dimensional PDEs if either 

* advection dominates only in one direction, or 
* advection dominates in two directions but the other components are nonstiff. 
On the other hand, in situations where the method is stable, it is in general more 

accurate than a method like (3.1), due to the fact that the internal stages are all 
consistent approximations to the exact solution. 

It is an open question whether multi-component splitting methods exist for s > 3 
which are internally consistent and stable for all zj E C-. 
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