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COMPACTLY SUPPORTED TIGHT AFFINE 
SPLINE FRAMES IN L2(R d) 

AMOS RON AND ZUOWEI SHEN 

ABSTRACT. The theory of fiberization is applied to yield compactly supported 
tight affine frames (wavelets) in L2(Rd) from box splines. The wavelets ob- 
tained are smooth piecewise-polynomials on a simple mesh; furthermore, they 
exhibit a wealth of symmetries, and have a relatively small support. The num- 
ber of "mother wavelets", however, increases with the increase of the required 
smoothness. 

Two bivariate constructions, of potential practical value, are highlighted. 
In both, the wavelets are derived from four-direction mesh box splines that are 

refinable with respect to the dilation matrix (1 1) 

1. INTRODUCTION 

Given a finite set IF C L2(]Rd), and a dilation matrix s, the affine system 
generated by IF is defined as the collection 

(1.1) X:= {DkEc'L9: b E , k E 2, aEEd}, 

where 

If E f f( +a) 

is the shift operator and 

Dk: f * I det Sjk/2f(sk.) 

is the dilation operator. A system X c L2(IRd) is a fundamental tight frame 
with frame bound 1 if the map 

T* : L2R (d ) --> 2 (X) : f | * ( (f, X))xEX 

is unitary (but not necessarily onto: a tight frame with frame bound 1 whose 
corresponding T* is onto is necessarily orthonormal). In what follows, all systems 
that we treat are affine and fundamental, and all tight frames that are considered 
have frame bound 1, hence "a tight frame" should always be understood as "a 
fundamental tight affine frame with frame bound 1". A tight frame can be used for 
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the atomic decompositions of functions exactly in the same way orthonormal bases 
are used, i.e., 

T*: f * - T*f 

transform f into discrete information, and its adjoint 

T: f2(X) -+L2 : C F E c(x)x 
xEX 

can then be used to recover f from its discrete transformation (i.e., TT*f = f). In 
order for T* to exhibit good space-frequency localization, the functions IQ should 
be local in the space domain (ideally compactly supported), should be smooth 
(which leads to good decay in the frequency domain), and should provide positive 
approximation order. We refer to [Dl], [D2], [HW] and [RS1], [RS2] for further 
discussions on frames and tight frames. 

While tight frames should ideally be generated by few smooth compactly sup- 
ported functions with simple structure, the only examples of compactly supported 
multivariate tight frames in the literature that we are aware of are bivariate or- 
thonormal bases that were derived in [CD] from the univariate Daubechies' wavelets, 
[D3], as well as tensor products of Daubechies' wavelets. We briefly review those 
constructions now. 

Let L2 := L2 (R2) . Let h be the refinement mask of a Daubechies' scaling function 
q, [D3] (whose shifts are known to be orthonormal), and let 0 be the corresponding 
wavelet. Define the bivariate mask 

T(WI,W2) := h(wi). 

Given a dilation matrix s, a bivariate scaling function (or distribution) ob can then 
be defined by 

00 

w I-+ J[ T (s*iW). 

j=1 

Cohen and Daubechies employed in [CD] two different dilation matrices: 

(1.2) s :=(I - sli=(1 1), 

and obtained therefore two different scaling functions, say b and 4)1, respectively. 
They observed essential differences between the two so-obtained functions. The 
matrix s satisfies s2= 21, and therefore the resulted 1 is clearly the tensor product 
(referred to as "separable" in [CD]) 

@(X)= q(x2)$(X1 - X2), 

and therefore the shifts of 4) are necessarily orthonormal. Furthermore, the standard 
wavelet construction then yields the wavelet 

'@(X) = (X2)0(X1 
- 

X2); 

While the refinable function b is separable, the refinable function 4i and the 
wavelet constructed from it are not separable in any sense. Nonetheless, it is proved 
in [CD] that the shifts of 1i, are orthonormal. It is further proved in [CD] that, 
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unfortunately, 41 cannot be C1, regardless of the order of the univariate scaling 
function which is used. Therefore, it is necessary to develop some other algorithms 
to construct nonseparable compactly supported tight frames with high smoothness. 

It will not be entirely correct to say that the [CD] constructions and tensor prod- 
uct constructions comprise all known multivariate affine tight frames: according to 
[CS], tight frames can be constructed by appending to IF some of their translates 
(=:oversampling); that, of course, only increases the number of elements in each of 
the above constructions, while preserving any deficiences (such as lack of symme- 
tries and low smoothness in the non-separable case, and parallelogram supports in 
the separable case) that the orthonormal system may have had. 

The theory established in [RS2], however, makes the construction of useful simple 
non-separable compactly supported tight frames with high smoothness and a variety 
of symmetries an easy task. In fact, one can essentially construct tight frames with 
the aid of the shifts of any refinable function, and therefore it is possible to impose a 
simple structure on the wavelets by selecting a refinable function with such desired 
structure. Indeed, we constructed in [RS2], for every positive integer m, a tight 
frame for L2 (IR) that is generated by m wavelets, each of which is a spline of degree 
m - 1, support [0, m], and smoothness Cm-2. Further, all knots of the spline- 
wavelets are half-integers, and each spline is either symmetric or anti-symmetric. 
(The case m = 4 of this construction is discussed in ?4). 

Since the variety of possible constructions of multivariate (and univariate) tight 
frames based on the [RS2] theory is unlimited, we carefully selected for the present 
article those constructions which, in our opinion, may be used in practical applica- 
tions. We kept in mind that different applications may require different properties 
from the wavelet system; for example, in data compression applications the num- 
ber of different wavelets used (which accounts to the oversampling rate) should be 
minimized, while in finite element applications many elements with small supports 
may be preferred. Our two favorite bivariate constructions are detailed in ?2 and 
?3: in ?2, the system is generated by many highly symmetric wavelets of small sup- 
port (which, actually, are not so "many" for practical smoothness requirements); 
in ?3, the system is generated by fewer larger elements. In each construction, the 
wavelets are splines, i.e., smooth piecewise-polynomials, always of compact sup- 
port, with various symmetries. Moreover, the relevant grid is the four-direction 
(i.e., quincunx, see below) mesh, hence all the wavelets have a "round" octagonal 
support. On the other hand, similarly to our univariate construction, the number 
of elements used, as well as the volume of the support of each, increase together 
with the increase in the required smoothness. The ease in constructing tight spline 
frames is not limited to two dimensions; in ?4 a general inductive algorithm for 
constructing multidimensional tight frames is provided. The algorithm works par- 
ticularly well with box splines, in fact, with every box spline. We call the box spline 
wavelets obtained by this algorithm boxlets. 

We have chosen to carry the constructions in ?2,3 with respect to the dilation 
matrix s (cf. 1.2). It is possible, though, to carry these same constructions with 
respect to s, with only one limitation: all four directions in the definition of the 
box spline must appear with the same multiplicity. In any event, the use of s, 
instead of s does not yield different systems, and the reason is very simple: for a 
four-direction mesh, not only that S?2 = sI22, but also, in case the box spline q 
has equi-multiplicities, 0(s.) = 0(si.). 
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2. BIVARIATE TIGHT FRAMES I: GENERATORS OF SMALL SUPPORT 

We construct here, for any integer m > 1, bivariate spline tight frames generated 
by m 2_1 mother wavelets in c3m-5, as well as tight frames generated by m2+m-_1 
wavelets of smoothness C3m-4. 

Let 0 be the box spline 

(2.1) ) = (i e71I w)m 

j=1 
~ 

where 

(41 42 4: 4) = ((O (1 (1 (-1) 

and with m1 iM3, and m2 = m4. It is well-known (cf. [BHR]) that the box spline 
q satisfies the following properties: 

(a) It is a piecewise-polynomial of local degree 2(ml + m2 - 1), on the four- 
direction mesh (that is obtained by adding the diagonals to each square of 
integer vertices). 

(b) It is globally Cp-2 with p := min{2m1 + M2, 2m2 + ml}; (in fact, its (p-2)- 
order derivatives are all Lip,, hence its H6lder continuity is p - 1). Further, 
it provides approximation order p. 

(c) It is supported in the octagon 
4 

{Ztjfj: O<tj?mj, j= 1,... ,4}. 
j=l 

Further, it is essentially positive on its support. 
In the sequel, we will introduce a variety of octagonal domains similar to the 

support of 0 above. For reasons of efficiency, we therefore denote 
4 

la,, a2, a3, a4] := Etjfj : O < tj ~< aj, j = 1, .. ., 41. 
j=l 

Note that each [a, b, c, d] is an octagon whose area is 

area([a, b, c, d]) = ab + ac + ad + bc + bd + 2cd. 

We prefer the above box spline over other variants because it is refinable not 
only with respect to the dilation matrix 21, but also with respect to the dilation 
matrix 

(2.2) s: -1_) 
This well-known fact was rarely exploited before because the shifts of the 4-direction 
box spline do not form a Riesz basis (or a frame). The only construction of com- 
pactly supported four-directional spline frames that we are aware of, appears in 
[CJS]. There, the same dilation matrix s is employed, and a compactly supported 
spline wavelet that is orthogonal to the box spline space while lying in the next 
dilation level is identified. This wavelet is then complemiYented by one of its trans- 
lates, and the affine system is then generated by these two mother wavelets, and is 
proved, by an involved argument, to be a frame. The resulted frame is not tight, 
and no estimates for the frame bounds are given in [CJS]. In fact, the problem of 
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finding a dual frame is not addressed in [CJS], and it is likely that a dual frame of 
compact support does not exist. 

In contrast, our constructions of tight frames are obtained with relative ease. The 
main reason for that is that the [RS2] theory provides us with a simple criterion 
for tight frames, that does not impose any a priori assumption on the refinable 
function 0. 

A straightforward computation shows that 

0(s.) =o'7O 

with the function 

'To(w) 1 ( ) (1 ) = 0(w) cosmi (w,/2) cosm2 (W2/2), 

with 

0(w) = e-i(m71w 1+m2w22)/2 

We note that 0 is refinable, which means that the mask To is 2wr-periodic (and 
hence 0(s-1.) can be written as a linear combination of the integer translates of 0). 

Our construction invokes the following theorem, which is a special case of Corol- 
lary 6.7 of [RS2]. 

Theorem 2.3. Let 0 be any box spline that is refinable with respect to the dilation 
matrix s of (2.2), and has a (2wr-periodic) refinement mask T0. Let n be a positive 
integer, and let (Tj)nI be n 2wr-periodic essentially bounded measurable functions. 
Assume that, for a.e. w, and for v: (wr, wr), 

n n 

E1,T12 = 11 ETj E",Tj = 

j=O j=O 

Then the wavelets I := (,j)n 1, defined by 

Cg)s ) := Tjo:) j ,. n, 

generate a tight frame (i.e., a fundamental affine tight frame with frame bound 1) 
for L2. 

It should be understood that the dilation matrix s that is involved in the re- 
finement equation is the same dilation matrix s that is used to generate the affine 
system from T. 

To construct now the wavelets with the aid of the above box spline 0, we first 
define the following univariate 4wr-periodic functions: 

(2.4) yj (t) = y[m] (t) = ( cosm-3 t/2 sin3 t/2, 0 < j <m. 

[in] (Warning: m in y[ is an index, not a power!) Note that, for any fixed m, 
m m 

(2.5) Z yj I21 E yjyj(. +)=O. 
j=O j=O 

We next define the tensor product bidimensional mask system 
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with 

'T (W) := O(W) y[Mll (WI) y[M2] (Wt2) 

Each Tn is 2wr-periodic. 
We then observe that To Tsoo in the above tensor system is the refinement mask 

of 0. Moreover, the convex hull of the spectrum of each Tn, n E N, is independent 
of n (i.e., in down-to-earth language: the 2wr-integers that lie in the convex hull of 
the frequencies of the exponentials whose linear combination form Tn, are the same 
for all n). This means that the (M1 + 1)(m2 + 1) - 1 functions, defined by 

(2.6) '1 := {b+n : 2n(s.) := Tn, n E N\0}, 

are all supported in the support of 0, i.e., in the octagon [i1,M2,Mi,M2]. The 
functions IF are non-separable piecewise-polynomials, with the same smoothness as 
the box spline 0 used. 

The tensor product structure of the masks (together with the fact that 101 1) 
clearly implies (cf. (2.5)) that 

ml M2 

S T(W) 12 (5 Em](1) 2)(E M2] ()2) 1, 
nEN j=o j=o 

and by the same token, for v = (7r, 7r) (with c 0 El'v) 

E Tn (W) E7"Tn (W) 
nEN 

ml M2 

c(E yM1] (,i)y1l] (W + w0) (E y[m2] (W2)Y[m2] (W2 + w)) 0 0. 

j=0 j=O 

Therefore, Theorem 2.3 implies the following: 

Theorem 2.7. The wavelets 'I constructed in (2.6) generate a tight affine frame 
with frame bound 1. 

Remark. Each one of these wavelets is supported in the support of 0, and is a Cp-2, 
p := min{2mi+m2, 2m2+mI}, piecewise-polynomial of local degree 2(mi +m2-1), 
with respect to the mesh s-1M, with M the standard four-direction mesh. The 
mesh s-1M consists of all lines of the form 

X1 + X2 = j, X1 -X2 = j, x1 = j/2, X2 = j/2, 

where j varies over 2, and (XI, x2) is the generic point in the space domain. 

Example. We take m1 = M2 = 1. In this case 0 is the well-known Cl piecewise- 
quadratic Zwart element, supported in the octagon [1, 1, 1,1]. The above construc- 
tion yields three Cl piecewise-quadratic wavelets each supported in [1,1,1,1], and 
each exhibiting various symmetries (cf. Figures 2.1 and 2.2). The support of each 
wavelet is of area 7; this small support comes despite of the fact that we oversample 
by a factor of 3. 

It is hard to compare the above construction to literature counterparts, since, as 
we mentioned before, the latter hardly exist. Here are three possible comparisons. 
In the first, we take the separable construction of [CD], using Daubechies scaling 
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0.2, 

0.11 

01 

-0.1 

-0.2 

0~~~~~ 

-2 

FIGURE 2.1. The C' piecewise-quadratic wavelet 4'0,1. The 
wavelet pr1.o is obtained by rotation. 

0.24, 

0o22 

ol~~~~~~~~~~~ 

The result is a single wavelet supported in a parallelogram of area 25, and whose 
shifts are orthonormal. The smoothness of this half of the above tight frame (in 
terms of Holder exponents: 2 vs. 1.1; cf. [D2, pp. 232-239]), and it lacks symmetries. 
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Another comparison may be with "plain" tensor product of the same Daubechies' 
scaling function. In this case, we obtain 3 mother wavelets each with a square 
support of area 25, and with the same smoothness and (lack of) symmetries. The 
shifts of these wavelets now fill an entire dyadic level. To fill in an entire dyadic 
level using integer shifts of our elements, we need the three elements of support 
area of 7 each, and 6 elements of half-size support, with total area of supports 42. 

Finally, the [CJS] construction provides here two smooth symmetric spline wave- 
lets each supported in a domain of area 28. However, as mentioned before, this 
frame is not tight, and no simple recipe for a dual frame is known. 

Example. We take m1 = 1, m2 = 2. In this case X is globally c2 (and is C3 on 
half of the mesh lines), piecewise-quartic. The construction now yields 5 wavelets, 
all supported in the octagon [1, 2, 1, 2] whose area is 15. They all have the same 
(global) smoothness and local degree as the box spline. 

Example 2.8. We take m1 M2= 2. Then we obtain 8 elements supported each 
in the octagon [2, 2, 2, 2] whose vertices (up to a (1, 1)-shift) are (?3, ?1) U (?1, ?3) 
and whose area is 28. Each spline wavelet is C4 (with Holder exponent 5). The 
local polynomial degree is 6. 

3. BIVARIATE TIGHT FRAMES II: FEWER GENERATORS 

Here, for any integer m, we construct tight frames generated by either 2m mother 
wavelets in C3m-2, or 2m + 1 wavelets in C3m-1. 

The wavelets constructed in this section are selected from the same box spline 
spaces used in the previous section. Given a four-direction box spline with cor- 
responding multiplicities (M1,M2,Ml,M2), the construction selects appropriate 
mother wavelets as the s-dilate of certain functions in the span of the shifts of 
the box spline. This means that the wavelets here are comparable to the wavelets 
of the previous section in terms of local polynomial degrees, underlying meshes, 
and smoothness. 

However, the number of wavelets associated with the previous construction grows 
quadratically with the required smoothness. Though the three examples that fol- 
lowed show that for practical smoothness requirements the number of wavelets is 
"within reason", it is possible to construct tight spline frames whose number of gen- 
erators grows only linearly with the required smoothness. The associated wavelets, 
on the other hand, have larger, somewhat less symmetric, support. 

It is convenient to carry out the construction here not with the aid of the box 
spline X of (2.1), but, rather, with the following "averaged" spline p: 

'Pt ) ( 2 ) 0( ) 

In standard box spline terminology, p is a box spline with direction set (241, 2 43, 44) 

(cf. (2.1)) with corresponding multiplicities (M1, M2, i1, M2). Also, direct compu- 
tation yields that f satisfies 

w (1 +e-+1?e2))ml ( leiw2)m2 

= (w) cost 1 ((wI + w2)/2) cosM2 (w2/2) '(w), 
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where 

WO(w) = e-i(ml,ml1m2).w/2 

Recalling now the definition of [ml in (2.4), we define ml + m2 1 27r-periodic 
functions as follows: 

jW) =O(W) 
[m " (WI + .W2) Y 

M21 
(W2), 0, Ml , 

and 

'T j(&) = (&2) [M21 (W2 )i 1 m2 

where 

0(w) = e-im22/2 

We note that the functions e-im1(w1+?2)/2y[ml] (W + w2) are periodic with respect 
to shifting by (7r, 7r), hence are periodic with respect to the lattice s-12w2Z2. From 
that, together with the fact, (2.5), that 

ml 

ZErn1[ml] 12 , 
j=o 

one immediately concludes that for e c {0, 1}, and v (7r, 7r), 
ml 

ZTj ()E Ij (W) = 0(-_Er) Y[ 2] (W2) Y[m2] (W2 + E?) 
j=O 

This leads further to the conclusions that, firstly, 
ml +M2 M2 

T 
m2 

E jr12 
I 

E I[ 2112 = 1 

j=o j=o 

.and, secondly, with v : (7r, 7r), 
ml+m2 m2 

Tj (w) EV Tj(w) =0 (-) E Y 
2 

(W2 )YVM2] (W2 + wF) 0. 
j=o j=o 

In summary, the mask vector 
('7 )Tl+M2 

satisfies the conditions of Theorem 2.3. 
Consequently, since To in the above construction is the refinement mask of p, we 

conclude from Theorem 2.3 that the m1 + m2 wavelets defined by 

fbj(S-) :=Tfj(p, j=1, . . ., iml + M2i 

generate a tight frame. 

Corollary 3.1. Let (p be the box spline whose direction set is (261 2,43,) with 
corresponding multiplicities (ml, M2, ml, iM2): 

(l+ e iwl ml 

with C, the box spline of (2. 1). Then, with (j)Tl+m2 the above constructed masks, 

the wavelets T := ( 3b1)m1?nl2, defined by bj (s.) Tj: r, generate a tight frame (with 
frame bound 1) for L2. These wavelets share the same smoothness, local degree, and 
mesh with the wavelets of Theorem 2.7. 
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0.2 

0.15- 

0.11 

0.05, 

0 
4 

FIGURE 3.1. The C' piecewise-quadratic box spline that is used 
in Example 3.2. 

Discussion. The box spline y in the above corollary is supported in the octagon 
[2mi, m2, ml, m2] whose area is 2m2 +7mlm2 +m2. As to the wavelets, the "large" 
wavelets, i.e., the first ml elements, have the same support as W. The other m2 
elements have the octagonal support [ml, m2, ml, iM2], whose area is m) + 5m1m2 + 
m2. 

Remark. The general construction detailed in the next section shows that there are 
many possible modifications of the above construction. 

Example 3.2. We consider the case ml = M2 = 1. Figure 3.1 shows the box 
spline W. It is a C' piecewise-quadratic that provides approximation order 3, and it 
is supported in the octagon [2, 1, 1, 1], with area 10. Two wavelets are constructed 
here. Direct computation yields that the larger support wavelet, 'b1 (cf. Figure 3.2), 
whose support is identical to that of W, satisfies 

(3.3) b1 (w) = tan(w /2)f (W), 

while the smaller support '02 (cf. Figure 3.3) has the form 

-e-i(w1-W2)/2 Wl + W2 W1 - W2 

2i 2 ' 2 

The corresponding supports are [2, 1, 1, 1] and [1, 1, 1, 1] with corresponding areas 
10 and 7. 

Example. We consider ml = 1, m2 = 2. The box spline W is then c2 piecewise- 
quartic and provides approximation order 4. Its support is the octagon [2,2,1,2] 
whose area is 20. The mother wavelet set consists of three elements, two "small" 
and one "large". The large element 01 is defined exactly as in (3.3) (only that W 
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0.15 

0.1_ 

0.05, 

- 0.5 

-0.1, 

-0.15 ~ ~ ~ - - 

FIGURE 3.2. The C1 piecewise-quadratic wavelet with larger sup- 
port sb, 

0.22 

0.1 

00 

-0.1 5 

-2 -2 

FIGURE 3.3. The C' piecewise-quadratic wavelet with smaller 
support "2. 

has been changed), and has the support of q$. The other wavelets are 

- 1 - ei(w1w2) Wi + W2 W - W2) 
"P2= 

q 9 2 ' 2 ) 
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and 

-1 + 2e- 2 - e-i(wl2) i + W2 WI-W2 
~b3 

- 
4 'p ( 2 ' 2 

both supported in the same octagon [1, 2,1, 2], whose area is 15. 

Example. The case m1 = M2= 2 yields four wavelets, two supported in [4, 2, 2, 2], 
and the other two supported in [2, 2, 2, 2]. The area of these octagons is 40 and 28 
respectively, hence their total area is 136. The smoothness of the box spline, as 
well as its local degree, is the same as in Example 2.8. 

4. A GENERAL INDUCTIVE ALGORITHM FOR CONSTRUCTING TIGHT FRAMES 

The method described in the last section for the construction of box spline 
wavelets on a four-direction mesh can be significantly generalized. Since we are 
unable to predict, at the time when this article is written, what specific variants 
may be implemented in practice, we decided to simply outline the highest level of 
generalization that we are able to observe. 

The setup here is as follows: we hold a dilation matrix s (i.e., an integer ma- 
trix whose inverse is contractive) and two d-variate functions (or, more generally, 
distributions), say 01, q2, that are refinable with respect to s. The corresponding 
masks, that are assumed to be 27r-periodic (that is a part of the definition of re- 
finability), are also assumed to be bounded; in practical situations the masks are 
trigonometric polynomials, hence certainly bounded. The basic assumption is that 
we already know how to derive a tight frame from the scaling function 01, and we 
would like to use that known frame in order to obtain a new, improved (in terms 
of smoothness, for example) tight frame. Specifically, we would like to extract the 
new frame from the (necessarily refinable) convolution 

0 := 01 * 02. 

This idea (of convolving the given scaling function with a suitably chosen distri- 
bution) has been used in the spline and wavelet theory many times. For example, 
Daubechies obtained her univariate refinable functions whose shifts are orthonor- 
mal by convolving a univariate B-spline 01 (whose shifts are stable but not or- 
thonormal), with a suitably chosen distribution q2. In her construction, the new 0 
provides the same approximation order as the B-spline 01, but is significantly less 
smooth; (the smoothness of the scaling function and the orthonormality of its shifts 
are then transferred to the constructed wavelets). The fact that one cannot obtain 
by convolution the orthonormality of the shifts, while simultaneously improving, or 
at least retaining, the smoothness of the original q1, is one of the main reasons the 
construction of affine orthonormal bases is fairly involved. 

The theory of [RS2] allows us to pay less attention to the properties of the scaling 
function: "bad" properties of the latter may not at all be inherited by the wavelets! 
Specifically, the smoothness of the wavelets and the tightness of the frame they 
generate do not compete any more. In fact, we can separate the construction of 
the smooth tight frame into two steps: in the first a basic low-smoothness frame is 
constructed, and then the smoothness of the frame is improved without hampering 
its tightness: in terms of q1, q2 above, 01 is the low- (or intermediate-) smooth 
scaling function that yields a tight affine system, and q2 is the convolutor that 
should improve the smoothness. 
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We specify now the exact conditions that are imposed on q1, 2. In these 
conditions, we use the notation 

F = 27r(s*-lz d/7d). 

For example, if s = 21, F is the group {0, 7r}d, with addition modulo 27r. Note that 
the order of F is I det sI. 

(4.1) Conditions assumed on q1, q2. 

(a) For j = 1, 2, q5j is a refinable distribution with bounded mask mj. 
(b) There exists a collection T1 of 27r-periodic bounded functions that satisfy, for 

every v e F, and a.e. onR 

T1 El'T1 + E TrE1 r = 6, 
-rET, 

(c) There exist another collection of 27r-periodic bounded functions T2, that sat- 
isfy 

I T212 + E 1,T12 = 1. n- 
-rET2 

Discussion. The fact that we assume q2 to be merely a distribution seems to be 
practically important as we will see in the examples presented at the end of this 
section. On the other hand, q1, in all examples we carry in mind, is a function. 
In fact, if 15Z is a function, Corollary 6.7 of [RS2] "almost" implies that, under the 
condition (b) of the conditions (4.1), the system generated by the wavelets that are 
defined via their Fourier transforms by 

{(S*- ):= -q5l: CE T1} 

is a tight frame for L2(Rd). The only missing condition is a very mild smoothness 
requirement of 01, that all box splines, for example, satisfy (cf. (4.6) of [RS2]). 
Note that significantly weaker conditions are assumed on T2. n 

With the assumptions of (4.1) in hand, we will be able to construct a tight frame 
based not on the convolution 1 * 02, but, rather, on the convolution with larger 
support 

-2(S- ) * 71 
0 I det sl 

Note that q =2(* .)X1, and hence that 0 is refinable with mask 

To := '2(s 'rI. 

We now introduce the new mask collection 

T := T1 U (mrT2(s*.)), 

i.e., we apply s* dilation to each of the masks in T2, multiply each by wi, and then 
append the new collection to T1. Clearly, 

#T = #Ti ? #T2. 

Lemma 4.2. Each of the masks in T above is 27r-periodic and bounded. Further- 
more, for every v e F, 

T?,Evf ? >3 + TE7' - 6v. 
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Proof. We note that the masks in T2(s*.) are not only 27rZd_periodic, but also 
27rs*-lzd-periodic. Therefore, for every v E F, by (c) of (4.1), 

1>sEvTo + S (w1iT)E v (T1) = (TIEv'r) (Ir2(s*.) +2 E S 'r2) = tlEv'ri. 
-rET2 (s* -) -ET2 (s* 

This implies that, by (b) of (4.1), for every v E F, 

i-,Evi-f ? 5 - i-1Ev1-1 ? 5 - 6E. E 
reT rET, 

As we already mentioned above, the properties proved with respect to T in the 
above lemma almost imply that the wavelet system TI: (')4E defined by 

{C$(s*.) := T: r C T} 

generates a tight frame: we only need a mild smoothness condition of 0. Rather 
than quoting the complicated condition (4.6) of [RS2], we assume in the following 
corollary smoothness conditions that are slightly stronger but more transparent. 

Corollary 4.3. In the above notations, if the refinable function XZ is a box spline, 
or if its Fourier transform decays at oo like O( . 1-1/2-6) for 6 > 0, then the wavelets 
T constructed as above generate a fundamental affine tight frame with frame bound 
1 for L2 (Rd). 

(4.4) Boxlets. We assume that the dilation matrix s satisfies Sk = 21, for some 
positive integer k. In this case, there is a natural way for choosing the smoothing 
factor q2: starting with a cycle : = ( ,(Z) of s (i.e., sej = ij+?, j 
1,... , k - 1, hence necessarily Sk= 241), we define q2 as the box spline with 
directions 

02(g)= 1 - 

Then, q2 is refinable with mask 

1 ? e-ielw 

T2 (W)= 2 

Since we tacitly assume to be integer, T2 is 27r-periodic. Selecting T2 is then 
trivial: T2 is taken to be the singleton 

1 -ie1w 
T2 := 2 } 

The satisfaction of (c) in (4.1) is then automatic, and, assuming that T1, 01 are 
already given, and that the refinement mask of 01 is w1, our general inductive step 
reads here as follows: 

(a) The new refinable function is I := q1qt2 (sl.) 

(b) The refinement mask of 0 is 

1 + e- is1 1 ? ei2w 

To+(w) := 'i(w) 2 = 71(w) 2 

(c) The new wavelet mask set T is obtained by appending to T1 the single mask 

1 - e-id2w 
T(w) = 71(w) 2 
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Boxlets correspond to the choice s = 21 for the dilation matrix. The cycles of 
21 are, of course, singletorDs, hence the inductive process allows us to insert one 
direction per step. We may begin the inductive process with any box spline q1 
whose (integer) direction set is a basis for Rd (that box spline is then, up to a 
normalization constant, the support function of some parallelepiped). As the initial 
wavelet masks TI, we take the tensor product construction (thus, we obtain, up to 
a linear transformation, the multivariate Haar wavelets). We select any sequence 

(=i,. * **vm): and, after m insertions obtain the final box spline 

11 2Sjw 

There are 2d _1 + m boxlets in this construction. The first 2d _ 1 ones correspond 
to the initial tensor product masks (which, we stress, are applied to the smooth 0). 
The other masks, which we index by -, have a "triangular structure": 

1 - ei2j w j- 1 ? ei2 w 

2 I 2 
f=1 

with ri the refinement mask of the initial q1. 
Assuming that m is relatively small, most of the boxlets have small support. 

For example, if we wish to construct c2 boxlets, then, independently of the spatial 
dimension d, we may do with m = 3. In this case, there are 2d _ 1 wavelets with 
"small" support, one with "large" support, and two wavelets with intermediate size 
of supports. 

We remark that, in the above construction, we may start with any refinable (box 
spline) q1, provided that a derivation of a tight frame from 01 is available. 

Example. We show that the construction of ?3 is a special case of the construction 
of this section. Here, q1 is a four-direction box spline (as defined in (2.1) with 
multiplicities (0, M2, 0, M2), and 2 is a four-direction box spline with multiplicities 
(rni, 0, rni, 0) (so that each box spline has only two active directions). The function 
q2 is refinable with respect to the dilation matrix s employed in ?3, and with mask 
(up to an exponential factor) cosml (wi /2). Since this mask is univariate, one can 
use our univariate construction from [RS2] to obtain the T2 masks 

T2 :={ 1 m](wi) j=l,. n1ml. 

As to q1, the box spline q1 is refinable with mask (up to an exponential factor) 
cos?n2 (W2/2), and hence the same univariate construction can be repeated (as indeed 
we did). Alternatively, we may assume by induction that T1, the wavelet masks 
associated with q1, are already given. 

Note that the above discussion shows that the construction of ?3 could have 
been made gradual: starting with four-direction box spline with multiplicities 
(O, n2, 0, n2), we may have appended the four-direction box spline with multiplic- 
ities (rni, 0 , ml, 0) step by step: The number of wavelets will be then unchanged, 
(mi +? n2), but a certain saving in the size of the larger support wavelets can be 
achieved in this way. 
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FIGURE 4.1. The four C2 piecewise-cubic wavelets that were con- 
structed in [RS2]. All of them are supported in [-2, 2]. 

Univariate c2 cubic splines. In the final example of this section, we employ 
the general algorithm of this section in the construction of a univariate compactly 
supported tight frame generated by c2 cubic splines. Prior to doing that, we 
recall that [RS2] already provides such a construction. Its construction yields four 
generators (Qpj)4=1, each supported in the interval [-2, 2] whose Fourier transforms 
satisfy 

4(4\ cos4-j (w/2) sin4+j (w/2) 

The graphs of these four functions are given in Figure 4.1. 
Here, we construct another c2 piecewise-cubic tight frame, generated by 3 

wavelets, albeit with larger support. In this construction, we choose q1 as the 
constant B-spline, and 02 as the quadratic B-spline. Thus: 

1(g) = lg , 2 = (X1)3, 

and the corresponding masks are 

7(W) = 2 '2 = 'i 

We now choose T1 to be the singleton 

11 := { e2i T, 
2i 

(that corresponds to the Haar wavelet), and choose T2 to consist of two masks: 

(1 
- 

i)3 3(1 T2 := { 1 ): 4 

It is obvious that T1 satisfies (b) of (4.1). It is less obvious, but still can be checked 
directly, that T2 satisfies (c) of (4.1). Thus, by our algorithm, the following three 
mother wavelets generate a tight frame for L2 (R): 

1e-iwI2_ 
2i q(W/2), 

1?(L) leW/2 3(1- e2i)(/2 ~~~b2 
4 qw2), 

and 

1 + eiw/2 (1-e-iw) 3 
qll3 2/ 2i={\ 

ni/ 9 
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FIGURE 4.2. The three c2 piecewise-cubic wavelets that were con- 
structed here. 

where 

i( eiw) (1 ei2w)3 

The supports of these wavelets are [0,4], [0, 6], [0, 7], respectively, and their 
graphs are shown in Figure 4.2. We note that ~b2 and ~b3 are splines with integer 
knots; i.e., in standard wavelet terminology, they belong to Vo. 
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