
Volume 67, Number 221, January 1998, Pages 221-235
S 0025-5718(98)00895-3

A NEW PARALLEL CHASING ALGORITHM FOR
TRANSFORMING ARROWHEAD MATRICES TO

TRIDIAGONAL FORM

SUELY OLIVEIRA

ABSTRACT. Rutishauser, Gragg and Harrod and finally H.Y. Zha used the
same class of chasing algorithms for transforming arrowhead matrices to tridi-
agonal form. Using a graphical theoretical approach, we propose a new chasing
algorithm. Although this algorithm has the same sequential computational
complexity and backward error properties as the old algorithms, it is better
suited for a pipelined approach. The parallel algorithm for this new chasing
method is described, with performance results on the Paragon and nCUBE.
Comparison results between the old and the new algorithms are also presented.

1. INTRODUCTION

Chasing algorithms are commonly used to find eigenvalues of tridiagonal ma-
trices [4, p8.2]. They can also be used to transform matrices to tridiagonal form,
such as Rutishauser's algorithm for tridiagonalizing banded matrices [6], Gragg and
Harrod's improved version of it, and recently Zha's algorithm for tridiagonalizing
arrowhead matrices [10]. All of these methods use the standard chasing step of [4,
p8.2]. We will refer to them as the standard or Zha's algorithm. Using the graph
representation of matrices we will show that they correspond to chasing edges of the
triangles representing the current entries of the matrix. In this paper, we develop a
new algorithm for tridiagonalizing arrowhead matrices based on a new chasing step.
Unlike the standard chasing step, the new one uses two additional entries outside
the tridiagonal band, and chases nodes instead of edges. The new algorithm can
be implemented on parallel architectures using a pipeline approach more efficiently
than the ones based on the standard chasing step.

In the remainder of the paper, a graphical representation of the structure of
symmetric matrices is used. The graph of a symmetric n x n matrix A consists of
nodes 1, 2, . n. , n with an edge between nodes i and j if and only if a2 - 0.

The structure of the paper is as follows. Section 2 describes chasing algorithms
in general. Section 3 describes the new chasing step. Section 4 describes the
algorithm to transform arrowhead matrices to tridiagonal form. Section 5 describes
the parallel algorithm and optimal data partitioning for this algorithm.

Received by the editor September 19, 1996.
1991 Mathematics Subject Classification. Primary 65F15; Secondary 68R10, 65F50.
Key words and phrases. Arrowhead matrices, chasing algorithms, pipeline algorithms.
This research is supported by NSF grant ASC 9528912 and a Texas A&M University Interdis-

ciplinary Research Initiative Award.

(?)1998 American Mathematical Society

221

222 S. OLIVEIRA

2. STANDARD CHASING ALGORITHMS

Chasing algorithms are standard ways of implementing the QR algorithm for
eigenvalue computations [4, p7.4.21, [4, p8.2.31. These are done using Givens rota-
tions, which are matrices which are equal to the identity matrix except for a 2 x 2
submatrix. Givens rotations have the form

c ... S

-S ... C

where c2 + S2 1. Givens matrices G are orthogonal (GTG I), and so algorithms
based on Givens matrices usually have very good numerical stability properties. A
Givens operation on a matrix A is the operation of computing A' <- GTAG for a
suitable Givens matrix G. Note that the Givens operation preserves the symmetry
and the eigenvalues of A. To compute the eigenvalues of a general symmetric
matrix economically, one first transforms it to tridiagonal form. Then it is easier
to calculate the eigenvalue of the tridiagonal matrix by using the QR algorithm,
for example. The QR algorithm is an algorithm which can be implemented using
chasing approaches. If the matrix is an arrowhead matrix, we may first use chasing
algorithms to transform it into tridiagonal form.

In [6] Rutishauser described an algorithm for changing pentadiagonal matrices
into tridiagonal forms which uses an edge chasing approach. In [81 Huffel and Park
discuss the parallel implementation of four transformation algorithms for reducing
a bidiagonal matrix to tridiagonal form. They use the same approach as Zha's [10],
namely edge chasing. The existence of our new chasing algorithm was discovered
by analyzing the graph structure of the old chasing step. This graph approach for
analyzing Givens rotations was first used in [71.

The numerical computations performed in the standard chasing step are, for the
4 x 4 matrix containing the entries that are changed by the step,

ceoe 0' O 1 ae 0 tt O 1

(1) L0~' 6 ' -S1 L cc 1 ,A ?1 SC -cs
LO0 v'' 7' 1i L JL0 0 a ay1

Chasing algorithms can also be represented graphically in terms of their effect
on the graph of a symmetric matrix. In Figure 1, the Greek letters at the nodes of
the graph indicate the values of the diagonal entries in the matrix while the Greek
letters at the edges of the graph correspond to the off-diagonal entries. The value
at node i represents a i, and the value associated with edge i j is a3j = aj. A
dark edge between nodes i and j indicates that the Givens operation is applied to
rows and columns i and j. A dashed line between nodes i and j indicates that
before the Givens operation, ai3= 0, but after the operation a' 0. If the edge

A NEW CHASING ALGORITHM 223

direction of chase

0~~~
v

(a)

\V" direction of chase
6

(b)

FIGURE 1. Chasing algorithms: (a) standard (b) new

between nodes i and j is marked with a cross (x) then it indicates that aij 0
before the Givens operation, but 0'j = O after the Givens operation. The standard
chasing step is illustrated in Figure l(a).

In matrix notation, for transforming an arrowhead matrix into tridiagonal form,
chasing steps are applied to the original matrix, creating and annihilating entries
in the way illustrated by the 6 x 6 example in Figure 2. In Figure 2, a "*" indicates

** * * * * * 0 * * * * 0
* * * * * *

* * * * * *

* * * * * * + +

* * * ' * + 0 + * *

' O + * + * *

~* * * * ~ * * * 0O

* * * * * *

* * * * + + * * *

* * * 0 + * * * * * +
* * * + * * * * * *

* * * * + * *

* * *

* *

* * *

* * *

* *

FIGURE 2. Description of Zha's chasing algorithm for a 6 x 6 matrix

224 S. OLIVEIRA

XI ~~2 6 / 6 2 \./ 2

5 5 1 5 1

3 3

6-/ / 2 2

5 1 S 1

6 2------6 2

FIGURE 3. Graphical representation of Zha's algorithm for a 6 x 6 matrix

a nonzero entry, "+" indicates a newly created nonzero entry, and "O" indicates
an entry that has just been made zero. Note that at the end of Figure 2, the
matrix is made tridiagonal by swapping rows and columns 1 and 2. This method
of tridiagonalizing an arrowhead matrix is Zha's chasing algorithm [10]. It is also
illustrated graphically in Figure 3.

3. NEW CHASING STEP

Here a new chasing step is used to transform an arrowhead matrix to a tridiagonal
matrix. This chasing step is illustrated graphically in Figure 1(b). The triangle
shown here will be referred to later as a "bulge". In terms of the 4 x 4 matrix of
entries ae to v, the effect of the new chasing step is to compute the new values of
ae' to Ii':

That 0 = [1 a 1 [0 O it [1

a/ A/ 771 Al c s 0 3 A c -s
O '71 VI=c a/ M n ayO1,

LO A' v' 6' L -s cJ Lt A O 6J L c

That is ,

0,! =a0,! I/ = a)

lI = C2f + 2csA + s26,

(2) A' = (c2 _ s2)A + cs(6-3),

6' = S2f-2csA + C26,

/= CO + S8i, 7' = Cr7, VI =-Sr7

for the new chasing step. The variables before and after a chasing step are illustrated
in Figure 4.

A NEW CHASING ALGORITHM 225

Before chasing steps

E* direction of chase

After chasing step 6

FIGURE 4. Variables before and after a chasing step

The values c and s satisfy c2 + S2 1 as usual, and also

c sl 0o *
[:S J- -1t [;;]

This operation requires 29 flops plus a square root. This number can be reduced by
using fast Givens rotations, at the expense of maintaining diagonal scaling matrices.

While the standard and the new chasing step are similar in terms of operation
count and stability properties, the graph representation of matrices clearly shows
the basic difference between the two. They are not the same, even under arbitrary
permutations. From Figure l(b) we can see that, for the new chasing step the
"bulge" always has (before and after chasing steps) a fixed node as one of its
vertices, thus the new algorithm can be thought of as chasing a node along the
path, while the standard chasing algorithm chases an edge. Also note that, the
edge deleted in the old algorithm does not lie on the longest path, but does so in
the new algorithm. Equivalently, there are more edges outside the main path in the
new algorithm. This causes the density of bulges with an edge on the main path
to be greater for the new algorithm, which is responsible for the better efficiency of
our new algorithm for a pipelined implementation.

4. ARROWHEAD MATRICES TO TRIDIAGONAL MATRICES

The new chasing algorithm can be used for tridiagonalizing arrowhead matrices
in a manner which is similar to that used by H. Zha [10]. However, while Zha's
algorithm starts with the last two entries and moves backwards through the matrix,
this new algorithm starts with the 2nd and 3rd entries and moves forward through
the matrix. The arrowhead matrix is assumed to have the point of the arrow at the
(1,1) entry. In Figure 5, the steps for tridiagonalizing a 6 x 6 arrowhead matrix

226 S. OLIVEIRA

_ * * * * * * * 0 * * * * * 0 * *

* * * * + * * * +

* * 0 + * * * +
* * * * 0 + + *

* * * * * *

* * _* *_ _* *_

* * 0 * * * _

* * * O * ** + * * * 0
*** * * * +) * * * *)

O * * * * ~ * * + -

**1 O + + * O*

** *

O* *

FIGURE 5. Description of new chasing algorithm for a 6 x 6 matrix

are shown. In Figure 5, a "*" indicates a nonzero entry, "+" indicates a newly
created nonzero entry, and "0,' indicates an entry that has just been made zero.
The first step is to perform a Givens operation on rows/columns 2 and 3, zeroing
the (1,3) (and thus, also the (3,1)) entry. This step also creates a new nonzero
entry at (2,3) (and its symmetric pair). This new nonzero entry can be left, as
it is part of the tridiagonal matrix being created. Now apply a Givens operation
to rows/columns 2 and 4 to zero the (1,4) entry, which creates the (2,4) and (3,4)
entries (and their symmetric pairs). Apply a Givens operation to rows/columns 3
and 4 to zero the (2,4) entry and its symmetric pair. Apply a Givens operation
to rows/columns 2 and 5 to zero the (1,5) entry, which also creates the (2,5) and
(3,5) entries. Applying a Givens rotation to rows/columns 3 and 5 can zero the
(2,5) entry, but creates another nonzero at the (4,5) entry. Then applying a Givens
rotation to rows/columns 4 and 5 can zero the (3,5) entry, leaving a tridiagonal
matrix except for the (1,6) entry and its symmetric pair. The process can be
continued to push this entry to the (5,6) position, or the matrix can be permuted
using the cyclic permutation 1 -*2 *3 -*4 -*5 -6 -* 1. The corresponding
graphical representation of this example is shown in Figure 6.

Furthermore, the 2-way modification of Zha [101 can also be used here to roughly
halve the number of operations needed to convert an arrowhead matrix to tridiago-
nal form. This is done by creating two branches along which chasing is performed;
before the chasing actually begins, the elements should be re-ordered to make the
middle entry (entry ni/2 or (n i 1)/2) the center of the star. This is illustrated in
Figure 7.

The effect of this permutation is a matrix in the form shown in Figure 8.

A NEW CHASING ALGORITHM 227

4As 4
3

4 >K

2 * 2

21

6 6 6

5 5

3~~
6

2 4 2 4

3 3 5

FIGURE 6. Graphical representation of the new chasing algorithm
for a 6 x 6 matrix

* * direction direction

n/2+2 n/2-2-2 \

n/2+1 n/2-J

n/2+3 n/2-3 n12+3 n/2 / -I n12-3

*

FIGURE 7. Two-way modification of chasing algorithm

* *
* *

* * * * * * *

* *

* *

* *

FIGURE 8. Initial permutation for two-way chasing algorithm

228 S. OLIVEIRA

5. PARALLEL ALGORITHM

Pipelined parallel algorithms are developed here for this new chasing algorithm
on 0(n) processors with 0(n) time complexity for tridiagonalizing an n x n arrow-
head matrix. The basis of the pipeline technique is the ability to chase multiple
bulges along a chain simultaneously, as illustrated in Figure 9. Figure 9(a) shows
simultaneous standard chasing, and Figure 9(b) shows the new chasing step per-
formed simultaneously. For Figure 9(b), the only matrix entries that might be
affected by more than one of the parallel chasing steps are those associated with
the nodes in common with the old and new triangles. These diagonal entries are
not changed by either of the adjacent chasing steps (note that a' = a and y' = Y in
(2)). Thus the chasing steps shown can be done independently. A similar argument
can be applied to Figure 9(a) for the conventional chasing step. Note, however,
that the density of bulges (triangles) is one and a half times greater for the new
chasing step as for the conventional chasing step, but with the same number of
floating point operations per chasing step per bulge. This gives a greater level of
parallelism for the new chasing step. Figure 10 shows the variables for the new
chasing step in parallel.

Practical parallel algorithms need care with problems of overhead in message
passing. This is particularly true for pipeline algorithms where the natural message,
size is quite small, as is the case here. Thus the blocked version of the algorithm
should be considered to make effective use of current message-passing technology.

(a)

(b)

FIGURE 9. Simultaneous chasing: (a) standard algorithm, (b) new algorithm

81 82 83

IDC1 3

E> direction of chase

FIGURE 10. Simultaneous new chasing steps

A NEW CHASING ALGORITHM 229

dir-ectioni of chlase

Pr-ocessor p

Processor p I Processor p+I

over-lap tnoni-over-lap overlap
-egioni r-egioni r-egioni

FIGURE 11. Partitioning of data between processors

It should be noted that many shared memory machines are effectively distributed
memory machines as they commonly have a fast local cache and a considerably
slower global memory which requires access through a large memory switch. To
obtain high performance, access to global memory needs to be minimized and done
in blocks. Another consideration is the load balance across the processors. Provided
the block sizes are not too large, this can be done by using a block wrap mapping
of the data.

In a blocked algorithm, there need to be buffer zones to allow for asynchronous
computation in each processor, and for transmitting blocks of data between pro-
cessors. In Figure 11 the buffer areas are represented as overlap regions between
the processors.

Let k be the number of edges that do not overlap, and I be the number of edges
in each overlap region. Thus in Figure 11, k = 7 and m = 3. Note that in the
new chasing step, the values r1 and ay are only used in computing 71', V', and -y'.
Thus, the values a', /3', 6', 0', A', and ,u' (= 0) are independent of r1 and y. This
means that entries in the matrix downstream do not affect the upstream entries.
Consequently, there is no need for communication from processor p + 1 to processor
p, and there is no need for synchronization until the end of the entire computation.

The sequence of operations on processor p is as follows:

1. Repeat items 2-5 until there are no more bulges to chase:
2. Chase [1/21 bulges from the left-hand overlap region into the non-overlap

region, and from the non-overlapping region into the right-hand overlap
region, in processor p. This takes F(k + 1) /21 simultaneous steps, repeated
I times.

3. Send F1/21 bulges from the right-hand overlap region in processor p to
the left-hand overlap region in processor p + 1.

4. Chase off [1/21 bulges from the right-hand overlap region passing the
right-most edge of this region, treating the end of this overlap region as
the end of the matrix. The nodes in the bulges can be ignored once they
are chased past the end of the right-most overlap region, since down-
stream entries do not affect upstream entries.

5. Receive [1/21 bulges from the right-hand overlap region in processor p - 1
into the left-hand overlap region in processor p.

Note that using the 2-way version of the chasing algorithm, there will be two sets of
data for each processor to process and communicate. They can be blocked together,
which is advantageous for communication.

230 S. OLIVEIRA

6. IMPLEMENTATION

To describe the implementation issues we refer to the matrix model, even though
the design of the new chasing algorithm was based on the graph of the matrix, as
shown in this paper. Consider an n x n arrowhead matrix, three one-dimensional
arrays are used to represent it: one for row one (or column one, since the matrix
is symmetric) and two for the tridiagonal entries which will appear during the
tridiagonalization process.

Processors are connected like an assembly line as shown in Figure 12. The pro-
cessor will receive new bulges from the left, as it passes bulges to the next processor
on the right. Each processor will start passing bulges to the next processor when
it starts processing the maximum number of bulges ([k/21) allowed per processor.
On the other side in matrix notation, the processor load is indicated in Figure 13.

0 1

j-1 . k+1

FIGURE 12. Parallel data distribution in graph notation

1IPO

Pi .. PpPo P 1
...

PP

... Pp1

/ ~~~~~~~~~~~~~~~~~~-

FiGURE 13 Parallel data distribution in matrix notation

A NEW CHASING ALGORITHM 231

p
1 ,p I PO , pI p , Ol Pp

xxx

Oxx

x~~~~~xx

nx nxn

FIGURE 14. Illustration for one chasing cycle

We assume that columns of an n x n arrowhead matrix are divided into r blocks,
which are assigned to p processors in a wrap-around fashion. Let 1 be the length
of a block and m be the number of clocks assigned to each processor (wrap around
number). We have n = Ir = 1pm.

The pipeline algorithm aims to maximize processor utilization and minimize
processor communication. To achieve these goals we implemented three versions
of the algorithm employing techniques such as wrap around and message group
passing:

Implementation 1: The matrix is evenly divided by the number of processors
being used. Each processor is responsible for a particular portion of the matrix
during the calculation.

Implementation 2: To maximize the processor utilization and to minimize
processor idle time, a wrap around of paths (cyclic filling of the pipe) is used.

Implementation 3: To reduce communication time between processors, the
information from several bulges is combined for passing them to other processors.

In matrix notation, it is easy to see that to reach its off-diagonal position, each
element has to go through a chasing cycle. A chasing cycle is a collection of
chasing steps, in which two entries will be chased off to the tridiagonal, one along
the row and the other along the column. We need to perform n - 2 chasing cycles
for a matrix of size n x n; each chasing cycle has a different number of chasing steps.
The whole process starts with one chasing step for the first chasing cycle and ends
with n - 2 chasing steps for the last one. A global view of the chasing cycle is
shown in Figure 14. Initially there is only one processor which is active since there
is only one chasing step in the first chasing cycle. In the subsequent chasing cycles,
the number of chasing steps for each new chasing cycle increases one by one. A
processor will become active whenever the chasing cycle length is long enough to
reach that processor.

232 S. OLIVEIRA

7. PERFORMANCE

7.1. Analytical model. Because processor one is always being used (either initi-
ating new chasing cycles or being re-used by the wrap-around storage), the total
timing for the parallel algorithm is proportional to the time Po is active. This is
represented by the shadowed areas in Figure 13. Let tf be the time required for
completing one chasing step (29 arithmetic flops), then the total computational
time for Po is

Tcomp tf{[nf- - [(n- p)f- +[(n-(m-1)fp)f-]

(3) = (n+ 2p

To estimate the communication time, we assume that passing a message with v
floating-point words from one processor to its neighbor costs tc = t, + vtW, where t,
is the startup time and t,, is the time per word transfer. One bulge data contains six
words. Typically, t >? tw >? tf, and the ratio t,/tf for current parallel computers
ranges from hundreds to tens of thousands. The timings to pass a message with
data for g bulges is given by tg = ts + 6gtu,. Thus, we define ta = t9/g to be the
averaged message-passing time for one bulge. In Figure 13, the size of all messages
sent by Po is represented by the right edges of the shadowed bars (that represents
passing of data of chasing cycles to the next processor in the pipe). Here, we
assume that each group messages with fixed length 6g for all processors. Thus, the
communication time can be estimated by

Tcomm = g((nm--) + (nl-f-p) + + (n-f- l)fp)]
9
1 2 (4) (n +nfp-2nf)t,.

Consequently, the parallel time is given by

Tp = Tcomp + TComm

(5) - 2(n + ?p--)tf + 2- (n + nTp - 2nT)ta.

From this expression we can derive the optimal block length X,

t = ta

p - 1) tf

which yields the optimal number of wrap arounds

mopt =
n p p-1)tf

ta

The speed up of a parallel algorithm is equal to the ratio between the sequential
time Ts and the parallel time Tp: S = TS/Tp. Here T, is equal to (n2/2)tf; thus the
speed up for this algorithm is

(6) S = (2)tf/[2(n + fp -)tf + 2(n2 + nTpP-2nt)tal.

If f = o(n), then S - p as n o oo.

A NEW CHASING ALGORITHM 233

NCUBE PARAGON
20 120

18 . 1 processor 0 0 1 processor

16 4 processors 100 x 4 processors
3K 16 processors 3s 16 processors

14 -onumencal numerical
8 analytcl 80 - analyticl

~12-

810 60-

40-

4-
20-

21 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix size (n) Matrix size (n)

FIGURE 15. Case 1: no wrap around and no group message pass-
ing. Parallel time with respect to different matrix size

NCUBE (2048 x 2048 Matrix) PARAGON (4096 x 4096 Matrix)
20 I , , , , , , , 120

18 ? 2 processors ? 2prOCe8sors

x 4 processors 100 x 4 processors
16 3 16 processors 3K 16 prOoessOrs

-numerical -numerical

8140 anltia 80 - analyticall- -F ----_ __ 1 4 -

20

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Wrap-around number Wrap-around number

FIGURE 16. Case 2: Parallel timings as a function of the number
of wrap arounds. No group messages considered

7.2. Numerical results. The algorithm was implemented on two machines lo-
cated at Texas A&M University: an NCUBE with 64 nodes and a Paragon with 32
nodes. Both are distributed memory MJMD parallel machines.

The matrix results shown here are for a 2048 x 2048 matrix, unless otherwise
stated. Figure 15 shows both analytical and experimental parallel timings, for the
first implementation, as size of the matrix varies, for different number of proces-
sors. The analytical time is predicted by (5), where the coefficients tf a.nd ta were
determined by numerical experiments (tf = 0.000854 a.nd ta = 0.007598 seconds
for the nCUBE and tf = 0.000014 a.nd ta = 0.000168 seconds for the PARAGON).
From this figure we can see that the analytical and numerical results match well.

Figure 16 shows both analytical and experimental parallel timings for imple-
mentation 2 with various processor and wrap-around numbers. Both analytical
and numerical results indicate that the optimal wrap-around number is 8 for two
processors, 7 for four processors, 5 for eight processors, and 4 for sixteen processors.

234 S. OLIVEIRA

NCUBE (2048 x 2048 Matix) PARAGON (4096 x 4096 Mattlx)
11 . , . , . . . ~~~~~~~~~~70-

10 o-- -

O 2 procasrs 0 2 proaessors

8 x 4 processor 50 x 4 processor
a

16 procsesor
a I6 processor

Z 7 - numerlcal - numerical
g - analytcal 40 - analytcal

- - ------- w- i ES3 -
5-

4. 20

10?

2 1 -_

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number ot group massages Number of group messages

FIGURE 17. Case 3: Wrap around and group message-passing.
Parallel time with respect to the number of group messages

NCUBE PARAGON

0.9 0.9

0.8 0.8 - l - -os a

0.7~~~~~~~~~~~~~~~~~~~~~~.

0.7 ,
. - - - - - - - ---------

0.6 - - - - - - --1 0.2 S --- --- -

o :.-: 0c 0.4 C 0 c I
.m0: 3~.

0.3 ~~~~~~~~~~~ ~~x Caase 2x Case 2

0.2 a) Case 3 0.3 LKCase 3
-4 procassots 4 prrooassots

0.1 - 1- lprooaasors 0.2. 16 - procaaars

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Mabix size (n) Matnix size (n)

FIGURE 18. Efficiency with respect to matrix sizes

Figure 17 shows both analytical and experimental parallel timings for implemen-
tation 3 with different group message numbers. Here the wrap-around number is
set to 8.

Efficiency results, corresponding to the three different ways of implementing the
algorithm, are shown in Figure 18. The results are shown for four and sixteen
processors. If we consider four processors, for example, we can make the following
observations: For the first implementation we obtained efficiency around 50%. For
the implementation with wrap around, the efficiency reaches 72%. For the third
implementation (with wrap around and group message passing) we reached 76%
efficiency). We can see from the results that the last implementation is the more
efficient of the three considered, as one should expect.

Finally we want to show that, indeed our new algorithm performs better than
the traditional approach due to the reasons stated in this paper. This is clearly
confirmed by the timings in Figure 19. The timings shown there indicate a modest
difference between the old and new methods. This difference increases at a constant
ratio, as the size of the matrix grows.

A NEW CHASING ALGORITHM 235

14C , I I

120 o 1 processor so60 x 16processors -
-zha / 16 processors & 4 wraps
- - oliveira - zha

100 / 50 -- oliveira

80 00 40

E I 6 - E 30 -

40 -20 -

20 - 10 - -

0 so 1000 1500 2000 2500 3000 3500 4000 4500 0 1000 2000 3000 4000 52000 6000 7000 8000 9000
Problem size Pmoblem size

FIGURE 19. Comparison between standard and new chasing algorithm

ACKNOWLEDGMENTS

I would like to thank Dr. D. Stewart who introduced me to the graph theory ap-
proach while I was visiting the Australian National University and also my students
Z. Chen and Y. Deng who worked on the parallel implementations.

REFERENCES

[1] Z. Chen, A parallel implementation of a chasing algorithm, tech. rep., Texas A&M University,
1996. project report.

[2] Z. Chen, Y. Deng, and S. Oliveira, A parallel implementation of a new chasing algorithm,
tech. rep., Texas A&M University, 1996. manuscript.

[3] Y. Deng, Some applications of pipelining techniques in parallel scientific computing, Master's
thesis, Texas A&M University, 1996.

[4] G. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins Univ. Press,
Baltimore, MD, 1989. MR 90d:65055

[5] W. B. Gragg and W. J. Harrod, The numerically stable reconstruction of Jacobi matrices
from spectral data, Numer. Math., 44 (1984), pp. 317-335. MR 85i:65052

[6] H. Rutishauser, On Jacobi rotation patterns, in Proceedings of Symposia in Applied Mathe-
matics, vol. XV, Providence, RI, 1963, pp. 219-239. MR 28:3534

[7] D. Stewart, A graph theoretical model of Givens rotations and its implications. Accepted by
Linear Alg. Appl., 1996.

[8] S. Van Huffel and H. Park, Parallel tri- and bi-diagonalization of bordered bidiagonal matri-
ces, Parallel Computing, 20 (1994), pp. 1107-1128. MR 95f:65082

[9] , Efficient reduction algorithms for bordered band matrices, Numer. Linear Alg. Appl.,
2 (1995), pp. 95-113. MR 96a:65070

[10] H. Zha, A two-way chasing scheme for reducing an arrowhead matrix to tridiagonal form, J.
Numer. Lin. Alg. Appl., 1 (1992), pp. 49-57. MR 93c:65061

DEPARTMENT OF COMPUTER SCIENCE, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS

77843
E-mail address: suelyQcs.tamu.edu

