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A NEW PARALLEL CHASING ALGORITHM FOR 
TRANSFORMING ARROWHEAD MATRICES TO 

TRIDIAGONAL FORM 

SUELY OLIVEIRA 

ABSTRACT. Rutishauser, Gragg and Harrod and finally H.Y. Zha used the 
same class of chasing algorithms for transforming arrowhead matrices to tridi- 
agonal form. Using a graphical theoretical approach, we propose a new chasing 
algorithm. Although this algorithm has the same sequential computational 
complexity and backward error properties as the old algorithms, it is better 
suited for a pipelined approach. The parallel algorithm for this new chasing 
method is described, with performance results on the Paragon and nCUBE. 
Comparison results between the old and the new algorithms are also presented. 

1. INTRODUCTION 

Chasing algorithms are commonly used to find eigenvalues of tridiagonal ma- 
trices [4, p8.2]. They can also be used to transform matrices to tridiagonal form, 
such as Rutishauser's algorithm for tridiagonalizing banded matrices [6], Gragg and 
Harrod's improved version of it, and recently Zha's algorithm for tridiagonalizing 
arrowhead matrices [10]. All of these methods use the standard chasing step of [4, 
p8.2]. We will refer to them as the standard or Zha's algorithm. Using the graph 
representation of matrices we will show that they correspond to chasing edges of the 
triangles representing the current entries of the matrix. In this paper, we develop a 
new algorithm for tridiagonalizing arrowhead matrices based on a new chasing step. 
Unlike the standard chasing step, the new one uses two additional entries outside 
the tridiagonal band, and chases nodes instead of edges. The new algorithm can 
be implemented on parallel architectures using a pipeline approach more efficiently 
than the ones based on the standard chasing step. 

In the remainder of the paper, a graphical representation of the structure of 
symmetric matrices is used. The graph of a symmetric n x n matrix A consists of 
nodes 1, 2, . n. , n with an edge between nodes i and j if and only if a2 - 0. 

The structure of the paper is as follows. Section 2 describes chasing algorithms 
in general. Section 3 describes the new chasing step. Section 4 describes the 
algorithm to transform arrowhead matrices to tridiagonal form. Section 5 describes 
the parallel algorithm and optimal data partitioning for this algorithm. 
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2. STANDARD CHASING ALGORITHMS 

Chasing algorithms are standard ways of implementing the QR algorithm for 
eigenvalue computations [4, p7.4.21, [4, p8.2.31. These are done using Givens rota- 
tions, which are matrices which are equal to the identity matrix except for a 2 x 2 
submatrix. Givens rotations have the form 

c ... S 

-S ... C 

where c2 + S2 1. Givens matrices G are orthogonal (GTG I), and so algorithms 
based on Givens matrices usually have very good numerical stability properties. A 
Givens operation on a matrix A is the operation of computing A' <- GTAG for a 
suitable Givens matrix G. Note that the Givens operation preserves the symmetry 
and the eigenvalues of A. To compute the eigenvalues of a general symmetric 
matrix economically, one first transforms it to tridiagonal form. Then it is easier 
to calculate the eigenvalue of the tridiagonal matrix by using the QR algorithm, 
for example. The QR algorithm is an algorithm which can be implemented using 
chasing approaches. If the matrix is an arrowhead matrix, we may first use chasing 
algorithms to transform it into tridiagonal form. 

In [6] Rutishauser described an algorithm for changing pentadiagonal matrices 
into tridiagonal forms which uses an edge chasing approach. In [81 Huffel and Park 
discuss the parallel implementation of four transformation algorithms for reducing 
a bidiagonal matrix to tridiagonal form. They use the same approach as Zha's [10], 
namely edge chasing. The existence of our new chasing algorithm was discovered 
by analyzing the graph structure of the old chasing step. This graph approach for 
analyzing Givens rotations was first used in [71. 

The numerical computations performed in the standard chasing step are, for the 
4 x 4 matrix containing the entries that are changed by the step, 

ceoe 0' O 1 ae 0 tt O 1 

(1) L0~' 6 ' -S1 L cc 1 ,A ?1 SC -cs 
LO0 v'' 7' 1i L JL0 0 a ay1 

Chasing algorithms can also be represented graphically in terms of their effect 
on the graph of a symmetric matrix. In Figure 1, the Greek letters at the nodes of 
the graph indicate the values of the diagonal entries in the matrix while the Greek 
letters at the edges of the graph correspond to the off-diagonal entries. The value 
at node i represents a i, and the value associated with edge i j is a3j = aj. A 
dark edge between nodes i and j indicates that the Givens operation is applied to 
rows and columns i and j. A dashed line between nodes i and j indicates that 
before the Givens operation, ai3= 0, but after the operation a' 0. If the edge 
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direction of chase 
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v 

(a) 

\V" direction of chase 
6 

(b) 

FIGURE 1. Chasing algorithms: (a) standard (b) new 

between nodes i and j is marked with a cross (x) then it indicates that aij 0 
before the Givens operation, but 0'j = O after the Givens operation. The standard 
chasing step is illustrated in Figure l(a). 

In matrix notation, for transforming an arrowhead matrix into tridiagonal form, 
chasing steps are applied to the original matrix, creating and annihilating entries 
in the way illustrated by the 6 x 6 example in Figure 2. In Figure 2, a "*" indicates 

** * * * * * 0 * * * * 0 
* * * * * * 

* * * * * * 

* * * * * * + + 

* * * ' * + 0 + * * 

*'* O + * + * * 

~* * * * ~ * * * 0O 

* * * * * * 

* * * * + + * * * 

* * * 0 + * * * * * + 
* * * + * * * * * * 

* * * * + * * 

* * * 

* * 

* * * 

* * * 

* * 

FIGURE 2. Description of Zha's chasing algorithm for a 6 x 6 matrix 
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XI ~~2 6 / 6 2 \./ 2 

5 5 1 5 1 

3 3 

6-/ / 2 2 

5 1 S 1 

6 2------6 2 

FIGURE 3. Graphical representation of Zha's algorithm for a 6 x 6 matrix 

a nonzero entry, "+" indicates a newly created nonzero entry, and "O" indicates 
an entry that has just been made zero. Note that at the end of Figure 2, the 
matrix is made tridiagonal by swapping rows and columns 1 and 2. This method 
of tridiagonalizing an arrowhead matrix is Zha's chasing algorithm [10]. It is also 
illustrated graphically in Figure 3. 

3. NEW CHASING STEP 

Here a new chasing step is used to transform an arrowhead matrix to a tridiagonal 
matrix. This chasing step is illustrated graphically in Figure 1(b). The triangle 
shown here will be referred to later as a "bulge". In terms of the 4 x 4 matrix of 
entries ae to v, the effect of the new chasing step is to compute the new values of 
ae' to Ii': 

That 0 = [1 a 1 [ 0 O it [1 

a/ A/ 771 Al c s 0 3 A c -s 
O '71 VI=c a/ M n ayO1, 

LO A' v' 6' L -s cJ Lt A O 6J L c 

That is , 

0,! =a0,! I/ = a) 

lI = C2f + 2csA + s26, 

(2) A' = (c2 _ s2)A + cs(6-3), 

6' = S2f-2csA + C26, 

/= CO + S8i, 7' = Cr7, VI =-Sr7 

for the new chasing step. The variables before and after a chasing step are illustrated 
in Figure 4. 
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Before chasing steps 

E* direction of chase 

After chasing step 6 

FIGURE 4. Variables before and after a chasing step 

The values c and s satisfy c2 + S2 1 as usual, and also 

c sl 0o * 
[:S J- -1t [;;] 

This operation requires 29 flops plus a square root. This number can be reduced by 
using fast Givens rotations, at the expense of maintaining diagonal scaling matrices. 

While the standard and the new chasing step are similar in terms of operation 
count and stability properties, the graph representation of matrices clearly shows 
the basic difference between the two. They are not the same, even under arbitrary 
permutations. From Figure l(b) we can see that, for the new chasing step the 
"bulge" always has (before and after chasing steps) a fixed node as one of its 
vertices, thus the new algorithm can be thought of as chasing a node along the 
path, while the standard chasing algorithm chases an edge. Also note that, the 
edge deleted in the old algorithm does not lie on the longest path, but does so in 
the new algorithm. Equivalently, there are more edges outside the main path in the 
new algorithm. This causes the density of bulges with an edge on the main path 
to be greater for the new algorithm, which is responsible for the better efficiency of 
our new algorithm for a pipelined implementation. 

4. ARROWHEAD MATRICES TO TRIDIAGONAL MATRICES 

The new chasing algorithm can be used for tridiagonalizing arrowhead matrices 
in a manner which is similar to that used by H. Zha [10]. However, while Zha's 
algorithm starts with the last two entries and moves backwards through the matrix, 
this new algorithm starts with the 2nd and 3rd entries and moves forward through 
the matrix. The arrowhead matrix is assumed to have the point of the arrow at the 
(1,1) entry. In Figure 5, the steps for tridiagonalizing a 6 x 6 arrowhead matrix 
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_ * * * * * * * 0 * * * * * 0 * * 

* * * * + * * * + 

* * 0 + * * * + 
* * * * 0 + + * 

* * * * * * 

_* *_ _* *_ _* *_ 

* * 0 * * * _ 

* * * O * ** + * * * 0 
*** * * * + ) * * * *) 

O * * * * ~ * * + - 

**1 O + + * O* 

*** 

** * 

O* * 

FIGURE 5. Description of new chasing algorithm for a 6 x 6 matrix 

are shown. In Figure 5, a "*" indicates a nonzero entry, "+" indicates a newly 
created nonzero entry, and "0,' indicates an entry that has just been made zero. 
The first step is to perform a Givens operation on rows/columns 2 and 3, zeroing 
the (1,3) (and thus, also the (3,1)) entry. This step also creates a new nonzero 
entry at (2,3) (and its symmetric pair). This new nonzero entry can be left, as 
it is part of the tridiagonal matrix being created. Now apply a Givens operation 
to rows/columns 2 and 4 to zero the (1,4) entry, which creates the (2,4) and (3,4) 
entries (and their symmetric pairs). Apply a Givens operation to rows/columns 3 
and 4 to zero the (2,4) entry and its symmetric pair. Apply a Givens operation 
to rows/columns 2 and 5 to zero the (1,5) entry, which also creates the (2,5) and 
(3,5) entries. Applying a Givens rotation to rows/columns 3 and 5 can zero the 
(2,5) entry, but creates another nonzero at the (4,5) entry. Then applying a Givens 
rotation to rows/columns 4 and 5 can zero the (3,5) entry, leaving a tridiagonal 
matrix except for the (1,6) entry and its symmetric pair. The process can be 
continued to push this entry to the (5,6) position, or the matrix can be permuted 
using the cyclic permutation 1 -*2 *3 -*4 -*5 -6 -* 1. The corresponding 
graphical representation of this example is shown in Figure 6. 

Furthermore, the 2-way modification of Zha [101 can also be used here to roughly 
halve the number of operations needed to convert an arrowhead matrix to tridiago- 
nal form. This is done by creating two branches along which chasing is performed; 
before the chasing actually begins, the elements should be re-ordered to make the 
middle entry (entry ni/2 or (n i 1)/2) the center of the star. This is illustrated in 
Figure 7. 

The effect of this permutation is a matrix in the form shown in Figure 8. 
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FIGURE 6. Graphical representation of the new chasing algorithm 
for a 6 x 6 matrix 
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FIGURE 7. Two-way modification of chasing algorithm 
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FIGURE 8. Initial permutation for two-way chasing algorithm 
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5. PARALLEL ALGORITHM 

Pipelined parallel algorithms are developed here for this new chasing algorithm 
on 0(n) processors with 0(n) time complexity for tridiagonalizing an n x n arrow- 
head matrix. The basis of the pipeline technique is the ability to chase multiple 
bulges along a chain simultaneously, as illustrated in Figure 9. Figure 9(a) shows 
simultaneous standard chasing, and Figure 9(b) shows the new chasing step per- 
formed simultaneously. For Figure 9(b), the only matrix entries that might be 
affected by more than one of the parallel chasing steps are those associated with 
the nodes in common with the old and new triangles. These diagonal entries are 
not changed by either of the adjacent chasing steps (note that a' = a and y' = Y in 
(2)). Thus the chasing steps shown can be done independently. A similar argument 
can be applied to Figure 9(a) for the conventional chasing step. Note, however, 
that the density of bulges (triangles) is one and a half times greater for the new 
chasing step as for the conventional chasing step, but with the same number of 
floating point operations per chasing step per bulge. This gives a greater level of 
parallelism for the new chasing step. Figure 10 shows the variables for the new 
chasing step in parallel. 

Practical parallel algorithms need care with problems of overhead in message 
passing. This is particularly true for pipeline algorithms where the natural message, 
size is quite small, as is the case here. Thus the blocked version of the algorithm 
should be considered to make effective use of current message-passing technology. 

(a) 

(b) 

FIGURE 9. Simultaneous chasing: (a) standard algorithm, (b) new algorithm 

81 82 83 

IDC1 3 

E> direction of chase 

FIGURE 10. Simultaneous new chasing steps 
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FIGURE 11. Partitioning of data between processors 

It should be noted that many shared memory machines are effectively distributed 
memory machines as they commonly have a fast local cache and a considerably 
slower global memory which requires access through a large memory switch. To 
obtain high performance, access to global memory needs to be minimized and done 
in blocks. Another consideration is the load balance across the processors. Provided 
the block sizes are not too large, this can be done by using a block wrap mapping 
of the data. 

In a blocked algorithm, there need to be buffer zones to allow for asynchronous 
computation in each processor, and for transmitting blocks of data between pro- 
cessors. In Figure 11 the buffer areas are represented as overlap regions between 
the processors. 

Let k be the number of edges that do not overlap, and I be the number of edges 
in each overlap region. Thus in Figure 11, k = 7 and m = 3. Note that in the 
new chasing step, the values r1 and ay are only used in computing 71', V', and -y'. 
Thus, the values a', /3', 6', 0', A', and ,u' (= 0) are independent of r1 and y. This 
means that entries in the matrix downstream do not affect the upstream entries. 
Consequently, there is no need for communication from processor p + 1 to processor 
p, and there is no need for synchronization until the end of the entire computation. 

The sequence of operations on processor p is as follows: 

1. Repeat items 2-5 until there are no more bulges to chase: 
2. Chase [1/21 bulges from the left-hand overlap region into the non-overlap 

region, and from the non-overlapping region into the right-hand overlap 
region, in processor p. This takes F(k + 1) /21 simultaneous steps, repeated 
I times. 

3. Send F1/21 bulges from the right-hand overlap region in processor p to 
the left-hand overlap region in processor p + 1. 

4. Chase off [1/21 bulges from the right-hand overlap region passing the 
right-most edge of this region, treating the end of this overlap region as 
the end of the matrix. The nodes in the bulges can be ignored once they 
are chased past the end of the right-most overlap region, since down- 
stream entries do not affect upstream entries. 

5. Receive [1/21 bulges from the right-hand overlap region in processor p - 1 
into the left-hand overlap region in processor p. 

Note that using the 2-way version of the chasing algorithm, there will be two sets of 
data for each processor to process and communicate. They can be blocked together, 
which is advantageous for communication. 
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6. IMPLEMENTATION 

To describe the implementation issues we refer to the matrix model, even though 
the design of the new chasing algorithm was based on the graph of the matrix, as 
shown in this paper. Consider an n x n arrowhead matrix, three one-dimensional 
arrays are used to represent it: one for row one (or column one, since the matrix 
is symmetric) and two for the tridiagonal entries which will appear during the 
tridiagonalization process. 

Processors are connected like an assembly line as shown in Figure 12. The pro- 
cessor will receive new bulges from the left, as it passes bulges to the next processor 
on the right. Each processor will start passing bulges to the next processor when 
it starts processing the maximum number of bulges ([k/21) allowed per processor. 
On the other side in matrix notation, the processor load is indicated in Figure 13. 

0 1 

j-1 . k+1 

FIGURE 12. Parallel data distribution in graph notation 

1IPO 

Pi .. PpPo P 1 
... 

PP 

... Pp1 

/ ~~~~~~~~~~~~~~~~~~- 

FiGURE 13 Parallel data distribution in matrix notation 
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FIGURE 14. Illustration for one chasing cycle 

We assume that columns of an n x n arrowhead matrix are divided into r blocks, 
which are assigned to p processors in a wrap-around fashion. Let 1 be the length 
of a block and m be the number of clocks assigned to each processor (wrap around 
number). We have n = Ir = 1pm. 

The pipeline algorithm aims to maximize processor utilization and minimize 
processor communication. To achieve these goals we implemented three versions 
of the algorithm employing techniques such as wrap around and message group 
passing: 

Implementation 1: The matrix is evenly divided by the number of processors 
being used. Each processor is responsible for a particular portion of the matrix 
during the calculation. 

Implementation 2: To maximize the processor utilization and to minimize 
processor idle time, a wrap around of paths (cyclic filling of the pipe) is used. 

Implementation 3: To reduce communication time between processors, the 
information from several bulges is combined for passing them to other processors. 

In matrix notation, it is easy to see that to reach its off-diagonal position, each 
element has to go through a chasing cycle. A chasing cycle is a collection of 
chasing steps, in which two entries will be chased off to the tridiagonal, one along 
the row and the other along the column. We need to perform n - 2 chasing cycles 
for a matrix of size n x n; each chasing cycle has a different number of chasing steps. 
The whole process starts with one chasing step for the first chasing cycle and ends 
with n - 2 chasing steps for the last one. A global view of the chasing cycle is 
shown in Figure 14. Initially there is only one processor which is active since there 
is only one chasing step in the first chasing cycle. In the subsequent chasing cycles, 
the number of chasing steps for each new chasing cycle increases one by one. A 
processor will become active whenever the chasing cycle length is long enough to 
reach that processor. 
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7. PERFORMANCE 

7.1. Analytical model. Because processor one is always being used (either initi- 
ating new chasing cycles or being re-used by the wrap-around storage), the total 
timing for the parallel algorithm is proportional to the time Po is active. This is 
represented by the shadowed areas in Figure 13. Let tf be the time required for 
completing one chasing step (29 arithmetic flops), then the total computational 
time for Po is 

Tcomp tf{[nf- - [(n- p)f- +[(n-(m-1)fp)f- ] 

(3) = (n+ 2p 

To estimate the communication time, we assume that passing a message with v 
floating-point words from one processor to its neighbor costs tc = t, + vtW, where t, 
is the startup time and t,, is the time per word transfer. One bulge data contains six 
words. Typically, t >? tw >? tf, and the ratio t,/tf for current parallel computers 
ranges from hundreds to tens of thousands. The timings to pass a message with 
data for g bulges is given by tg = ts + 6gtu,. Thus, we define ta = t9/g to be the 
averaged message-passing time for one bulge. In Figure 13, the size of all messages 
sent by Po is represented by the right edges of the shadowed bars (that represents 
passing of data of chasing cycles to the next processor in the pipe). Here, we 
assume that each group messages with fixed length 6g for all processors. Thus, the 
communication time can be estimated by 

Tcomm = g((nm--) + (nl-f-p) + + (n-f- l)fp)] 
9 
1 2 (4) (n +nfp-2nf)t,. 

Consequently, the parallel time is given by 

Tp = Tcomp + TComm 

(5) - 2(n + ?p-- )tf + 2- (n + nTp - 2nT)ta. 

From this expression we can derive the optimal block length X, 

t = ta 

p - 1) tf 

which yields the optimal number of wrap arounds 

mopt = 
n p p-1)tf 

ta 

The speed up of a parallel algorithm is equal to the ratio between the sequential 
time Ts and the parallel time Tp: S = TS/Tp. Here T, is equal to (n2/2)tf; thus the 
speed up for this algorithm is 

(6) S = ( 2)tf/[2(n + fp - )tf + 2(n2 + nTpP-2nt)tal. 

If f = o(n), then S - p as n o oo. 
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FIGURE 15. Case 1: no wrap around and no group message pass- 
ing. Parallel time with respect to different matrix size 
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20 

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 
Wrap-around number Wrap-around number 

FIGURE 16. Case 2: Parallel timings as a function of the number 
of wrap arounds. No group messages considered 

7.2. Numerical results. The algorithm was implemented on two machines lo- 
cated at Texas A&M University: an NCUBE with 64 nodes and a Paragon with 32 
nodes. Both are distributed memory MJMD parallel machines. 

The matrix results shown here are for a 2048 x 2048 matrix, unless otherwise 
stated. Figure 15 shows both analytical and experimental parallel timings, for the 
first implementation, as size of the matrix varies, for different number of proces- 
sors. The analytical time is predicted by (5), where the coefficients tf a.nd ta were 
determined by numerical experiments (tf = 0.000854 a.nd ta = 0.007598 seconds 
for the nCUBE and tf = 0.000014 a.nd ta = 0.000168 seconds for the PARAGON). 
From this figure we can see that the analytical and numerical results match well. 

Figure 16 shows both analytical and experimental parallel timings for imple- 
mentation 2 with various processor and wrap-around numbers. Both analytical 
and numerical results indicate that the optimal wrap-around number is 8 for two 
processors, 7 for four processors, 5 for eight processors, and 4 for sixteen processors. 
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FIGURE 17. Case 3: Wrap around and group message-passing. 
Parallel time with respect to the number of group messages 
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FIGURE 18. Efficiency with respect to matrix sizes 

Figure 17 shows both analytical and experimental parallel timings for implemen- 
tation 3 with different group message numbers. Here the wrap-around number is 
set to 8. 

Efficiency results, corresponding to the three different ways of implementing the 
algorithm, are shown in Figure 18. The results are shown for four and sixteen 
processors. If we consider four processors, for example, we can make the following 
observations: For the first implementation we obtained efficiency around 50%. For 
the implementation with wrap around, the efficiency reaches 72%. For the third 
implementation (with wrap around and group message passing) we reached 76% 
efficiency). We can see from the results that the last implementation is the more 
efficient of the three considered, as one should expect. 

Finally we want to show that, indeed our new algorithm performs better than 
the traditional approach due to the reasons stated in this paper. This is clearly 
confirmed by the timings in Figure 19. The timings shown there indicate a modest 
difference between the old and new methods. This difference increases at a constant 
ratio, as the size of the matrix grows. 
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FIGURE 19. Comparison between standard and new chasing algorithm 
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