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A GENERALIZED DISCREPANCY AND 
QUADRATURE ERROR BOUND 

FRED J. HICKERNELL 

ABSTRACT. An error bound for multidimensional quadrature is derived that 
includes the Koksma-Hlawka inequality as a special case. This error bound 
takes the form of a product of two terms. One term, which depends only on the 
integrand, is defined as a generalized variation. The other term, which depends 
only on the quadrature rule, is defined as a generalized discrepancy. The 
generalized discrepancy is a figure of merit for quadrature rules and includes 
as special cases the LP-star discrepancy and P, that arises in the study of 
lattice rules. 

1. INTRODUCTION 

The multidimensional integral 

1(f) 

ls 

f (x) dx 

can be approximated by the sample mean, 

(1.1) Q(f) P E ( 
zEP 

w-here Cs = [0, 1)s is the s-dimensional unit cube and P is some random or deter- 
ministic sample of N points in C'. (P may have multiple copies of the same point.) 
Many quasi-random samples designed for quadrature have been discussed in the 
literature. These include (t, m, s)-nets [Nie92, Chapter 4] and integration lattices 
[SJ94]. 

Samples P whose points are uniformly scattered over Cs tend to give more 
accurate approximations to the integral. Some quadrature error bounds in the 
literature take the form 

(1.2) 1-(f) - Q(f)l < D(P)V(f), 
where V(f) is a measure of the variation or fluctuation of the integrand, and D(P) 
is a figure of merit for the quadrature rule, or equivalently, a measure of non- 
uniformity for the sample P. A popular figure of merit is the star discrepancy 
[Nie92, Chapter 2] and its generalization the LP-star discrepancy. For integration 
lattices and periodic integrands the quantity P, is often used as a figure of merit 
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[SJ94, Chapter 4]. A generalization of Pa to arbitrary samples and non-periodic 
integrands is also possible [Hic96]. Asymptotic bounds on these figures of merit 
as N tends to infinity have been derived, but in practice it may be desirable to 
compute their actual values in order to compare different samples P. The question 
then arises as to which figure of merit to choose. 

This article derives a family of quadrature error bounds of the form (1.2). The 
figure of merit, D(P), which we call a generalized LP-discrepancy, includes the star 
discrepancy and P, as special cases. Other figures of merit, which have certain 
advantages over the star discrepancy, are also derived. We first review the figures 
of merit mentioned above and then describe the key idea underlying our analysis, 
reproducing kernel Hilbert spaces. 

Let I I denote the number of points in a set. The empirical distribution function 
associated with the sample P can be written as IP n [0, x) /N. The uniform distri- 
bution function on the unit cube is Vol([0, x)), the volume of the rectangular solid 
[0, x). The star discrepancy is defined as the maximum deviation between- these 
two distributions [Nie92, Definition 2.1]: 

(1.3) D*(P)> sup |Pln [ x) -Vol([0,x)) 

The Koksma-Hlawka inequality [Nie92, Theorem 2.11] is 

(1.4) l1(f) - Q(f)| < D*(P)V(f), 

where V(f) is the variation of f on Cs [0, 1]5 in the sense of Hardy and Krause. 
It is possible to generalize the star discrepancy by defining an LP-star discrepancy. 
Before doing so some useful notation is introduced. 

Let S -{1, ... , s} be the set of coordinate indices. For any u C S let IuI denote 
its cardinality and let Cu _ [0, 1)u denote the Jul-dimensional unit cube involving 
the coordinates in u. This notation allows us to distinguish cubes of the same 
dimension in different coordinate directions. Furthermore, let xu denote the vector 
containing the components of x whose indices are in u, and let dxU -eu dxj 
denote the uniform measure on C" _ [0, I)U. This notation has been used in 
[Owe92, Hic96]. 

Let 11 IlP delnote the LP-norm of a function on CU, that is 
- - l~~/p 

liflilp- If fP dxu (1 <p< oP), jfflf 1-inf {1y: If I < 7 a.e.}, 
71, 

where "a.e." means almost everywhere in CU. This notation is extended to the 
case of a vector of functions (fu), where u is an index running over some or all of 
the subsets of S, and each fu is a function on CU: 

l1(fU)I1P -[ 1 1fulfl~ [PJ If,jP dxul / (1? <_P < oc), 

11 (fU) 1100 max llfu 11=max inf {y: fulI < ay a.e.}. 
U U 

In the special case of a vector of constants 11 lIP corresponds to the 1P-norm. 
The LP-star discrepancy is often defined as 

IP n [0,x)l_ Vol([0, x)) 
N P 



A GENERALIZED DISCREPANCY 301 

a natural generalization of (1.3). However, if one wishes to generalize (1.4) to 

(1.5) 1(f) - (2(f)l < D*(P)Vq(f) (p-1 +q- 1) 

then the appropriate definition of D (P) is 

(1.6) D* (P) (pu n [o, xu) Vol([O, Xu))) 

where Pu denotes the projection of the sample P into the cube CU. This definition 
also corresponds to (1.3) in the case p = oo. The LP-variation, Vp(f), is a gen- 
eralization of the variation in the sense of Hardy and Krause and can be written 
as 

(1.7) VP(f) (Xu l1)) 

Error bound (1.5) was derived by Zaremba [Zar68] for p = 2 and by Sobol' [Sob69, 
Chapter 8] in general. This paper provides an alternative derivation. 

The figure of merit P, arises in the study of good lattice point sets and their 
generalization, integration lattices. It can be written [SJ94, Equation (4.8)] as 

(1.8) PO, - -+- j [I ) Bo,(Zj)] (a even), 

where Bo, denotes the Bernoulli polynomial of degree a [AS64, Chapter 23]. Let 
.F(f)(k) denote the Fourier coefficients of the function f, that is, 

.F(f) (k) = 2fi(x)e k dx. 
,. c~~~~~~~~~~~~~~~~~~~s 

For periodic integrands belonging to the set 

K 
( 1.9) ? (K) f : I (f ) (k) - (k k k- = max(Q kj l, 1), 

the quadrature error for integration lattices satisfies [SJ94, Section 5.2] 

(1.10) 1(f) - Q(f) < PoK, 

which is also of the form (1.2). 
For a = 2 the author has extended this error bound to general samples P and 

integrands that are not necessarily periodic. For any positive constant 3 let 

(1.lla) c2 =-1 + N2 I II {1 + o [ B2({Zj - z'}) + Bi(zj)BI(z)] } 

(Il.Ilb) a2 =-1 + N2 E jI 1+ jB2zi.Zj 1 

where {} denotes the fractional part of a real number or vector. For a certain broad 
class of integrands Hickernell [Hic96, Theorems 2.1 and 3.1] showed that 

(1.12a) 1-(f) - Q(f)l < c Illf III in general, 

(1.12b) 11(f) - Q(f)l < c Illf II if f is periodic. 
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Here jj is a norm whose definition involves L2-norms of the mixed partial deriva- 
tives of the function. Note that c2 - P2 for lattice rules when B - 27r. 

The primary mathematical tool used in [Hic96] is reproducing kernel Hilbert 
spaces. It is also the main tool used here. Let (X, (,)) be some Hilbert space of 
real-valued functions on C', where (,) denotes the inner product. For any x E Cs 

let Tx denote the evaluation functional defined as 

(1.13) TX(f) = f(x) Vf E X. 

If Tx is bounded, then by the Riesz Representation Theorem there exists a repro- 
ducing kernel r7(*, x) E X such that 

f (x) = TX(f) = (7(, x), f) Vf C X. 

Given the reproducing kernel it is straightforward to compute the representer ( for 
any other bounded linear functional T: 

T(f) = (j, f) Vf E X, where ((x) = (r(, x), T) T(r1(., x)). 

In particular, if the linear functional corresponding to quadrature error, I - Q, is 
bounded, then its representer can be found in terms of r7: 

(I - Q)(f) = (t, f) Vf E X, where ((x) = (I - Q) (r1(, x)). 

The Cauchy-Schwarz inequality then implies the following error bound: 

(1.14) 1i(f) - Q(f) ( = I , f) I < 11101 ilif III, 

where is the norm induced by the inner product (not the LP-norm). Equality 
holds when f is a constant multiple of (. This means that ( is the worst-case 
integrand. The quantity 1114111 depends only on the points P and may be identified 
as D(P) in (1.2), a figure of merit for P. Likewise Illf II can be identified as V(f), 
a measure of the size or variation of the integrand. (In fact, the actual definition 
of V(f) will be the norm of f less its constant part.) 

This reproducing kernel Hilbert space approach is quite general. It will be shown 
that for different choices of (X, (,)) one may obtain the error bounds and figures 
of merit summarized above ((1.4)-(1.12)) as well as some new ones. To facilitate 
the exposition we first present the analysis for dimension s = 1 in the next section. 
Section 3 considers the arbitrary s-dimensional problem and contains the main 
results quadrature error bounds in terms of a generalized LP-discrepancy and 
variation. Periodic integrands are treated in Section 4. In Section 5 several specific 
examples of the generalized discrepancy and variation are given and their relative 
merits are discussed. 

2. ONE-DIMENSIONAL CASE 

For s = 1 the key arguments and results are similar to that for multidimensional 
quadrature (s > 1). However, the technical details are simpler. 

Bernoulli polynomials arise in the derivation of the Euler-Maclaurin Summation 
Formula [AS64, Equation 23.1.30]. They also facilitate the derivation of the the- 
ory presented here. Bernoulli polynomials are defined'by the following generating 
function: 

et ex tn 

et -1 Bn (X) ni 
n=0 
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The first few are 

Bo(x) = 1, 'BI(x) = x-1/2, B2(x) = x2-x + 1/6. 

Some relevant properties of Bernoulli polynomials quoted in [AS64, Chapter 23] 
are given in the following lemma. Of particular importance is (2.1) below, which 
relates f (y) to an integral involving the derivatives of f and Bernoulli polynomials. 

Lemma 2.1. For non-negative integers n Bernoulli polynomials have the following 
properties: 

Bn(l- X) = ) ()nBn (X) (n > 0), Bn (O) = Bn (1) (n 74 1), 

dBn (X) _ 

n(d)x = nBn-1(x) (n > ) X Bn(x) dx = O (n > O). 
dx 

For any fixed y, {x - y} as a function of x has jump discontinuities at {x} = {y} 
and has slope 1 everywhere else. Furthermore, 

BnX (x- y}) is continuous for n :4 1, 

Bn ({x - y}) = nBn- 1({x - y}) (n > 1). 

If f is any function whose nth derivative is Lebesgue integrable on [0,1), and F is 
an anti-derivative of f, then for all y E [0, 1) 

(2.1) 1) BnJX- Y) 
dn dx = E _i! d2F 1 n! jBnY dXnl dxzBY fy r>) 

z0 dx 

where I' represents the change in a function from 0 to 1. 

Reproducing kernels require that the space of integrands have enough regularity 
to insure that Tx, as defined in (1.13), is bounded. Integrability is not enough, but 
requiring the first derivative of the integrand to be integrable is sufficient. For any 
p, l<p<oo, let 

(2.2) p {f: df P([ O))} 

The sets Xp are subsets of absolutely continuous functions, and Xq c Xp for q > p. 
For example, the function f defined as 

f(x) = sign(x - 1/2)1x - 1/211/q, df = -Ix-1/21-1+1/q I dx q 

is continuous on [0,1) for all q > 0, and f E Xp for all p-1 + q-1 > 1. 
One can define an inner product and reproducing kernel on X2. Suppose rR has 

the following form: 

(2.3) r1(X, y) = M + /32 [8(X) + 8(y) + 2({x-y}) + Bi(x)Bi(Y)], 

for some constant M (to be specified below), some arbitrary positive constant 13 
and some arbitrary function ,u satisfying 

(2.4) A C XO0, j 1(x)dx = 0. 
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For any y E [0,1), r7(., y) E X2, and for any function f E X2, 

09 q 02 d+ Bi({xx-y}) + Bo(x)Bj(y)]: 

I l &r dff1 dL dfN 
o-2 - dfdx = f(y) - f -_- df dx, 

0 x xdx J& dx dx/ 

by (2.1). The second term in the above expression can be identified as some linear 
functional of f: 

d pdf' 
(2.5) L(f) (f -dx d) dx. 

The inner product on X and the induced norm are defined as 

I_df_d df 
(2.6) (f, g) = L(f)L(g) + -2 j dx, ilif ll2 (L(f), 0 dx!2 

The T7 defined above is then the reproducing kernel, that is, 

(2.7) f(x) = x(r(,x),f) Vf X2, 

provided that M satisfies 

(2.8) 1= L(?(. y))=f (' d ) dx M -2j (?)2 dx. 

Thus, the constant M is determined in terms of 13 and ,u: 

(2.9) M =1+ /32j()d dx. 

Note that L(r7(., y)) = 1, implying that the constant 1 is the representer for the 
linear functional L: 

L(f) = (1, f) Vf E X2. 

Having defined the Hilbert space (X, (,)) and found its reproducing kernel it is 
straightforward to compute the worst-case integrand ( and its norm: 

(2.1Oa) (x) I I(r(, x)) - Q((, x)) 

N E [z(z) + 2B2 ({X - Z}) + Bi (x)BI (z)] 

(2. lOb) dx N E [BIx ( - z) + BI(z)] dx N 
zEP 

- N- E [X - l>z,] =2 [-x + E ix>z] 
zEP zEP 

where lx>z is the indicator function. Since 1 is the representer for L, and quadrature 
rule (1.1) is exact for constants, it follows that 
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Finally the norm of ( follows by straightforward calculations: 

(2.11) IM11112 = (t )=| L((), :- t)| =|:1d| 

(2.11 (L )2 EP' X[Bi ({x - z}) + Bi (z)] [Bi({x - z'}) + Bi (z')] dx 
_ /2 

N2 z [2B2({Z Z'})+ Bl (z)Bl (z')1 
Z ,Z/E P 

2 [12N2 + N (z(i)- 2Ni )]1 

where z(i) < ... ?Z(N) are the ordered values of P, that is, the order statistics. 
Quadrature error bound (1.14) is 

(2.12) (f) (f)Q I = f) I -2 d dx dx < D2(P)V2(f), 

where 

D2(P)~~ =X 111 2 ='3- V2 (f =)-llf W-L(f )111 2= df 
dx 2 dx 2 

The quantity D2(P) is called the generalized ?2-discrepancy since it is the 2_ 

norm of d</dx. In one dimension D2 (P) is independent of the choice of p, and 13 
appears only as a constant multiple. However, this is not true for s > 1 as shall 
be seen in the next section. From (2.11), it follows that the minimum value of 
D2(P) is p3/( 12N), which occurs when P = {(2i - 1)/2N: i = 1, ... , N}. This P 
corresponds to the midpoint rule, which has O(N-2) error when the integrand is 
twice continuously differentiable [DR84, p. 53], but in this case has only O(N-1) 
error under a weaker assumption on the integrand. The quantity V2 (f) is defined as 
the generalized ?2-variation of the f. The variation of a function does not change 
if an arbitrary constant is added to it. Likewise, adding a constant to a function 
leaves the absolute quadrature error unchanged. 

To define the generalized LP-discrepancy and LP-variation it is necessary to define 
norms, II Illp, for Xp. For anyp, 1< p< oo, let 

(2.13) ilif II (L(f), : df) p 

Given these norms it is possible to define the LP-discrepancy and LP-variation as a 
natural extension of the ?2-discrepancy and L2-variation because d</dx is piecewise 
continuous. 

Definition 2.2. For any f E Xp the generalized LP-variation is 

(2.14) Vp(f) =-Ilf -L(f)II = -1 df 
~dx 

For any finite sample P c [0,1) the generalized LP-discrepancy is defined as 

(2.15) Dp (P) _ Vp(<) = 111611 = dx 



306 FRED J. HICKERNELL 

H6lder's inequality for the L?2-inner product and LP-norms implies a H6lder's 
inequality for the inner product defined in (2.6) and the norms defined in (2.13), 
that is, 

(f,9)1 < IlfIllp lllgllq Vf E Xp, g C Xq (1 < p, q < X, p-1 + q-1 1) 

Norms, variations and discrepancies of different orders p < q obey the following 
relationships: 

Ilif IIIP < IlIfIliq: Vp(f) < Vq(f), Dp(P) < Dq(P) Vf C Xq, VP. 

To derive quadrature error bounds in terms of the LP-discrepancy and Lq_ 
variation we note that for any fixed x the reproducing kernel r(*, x) has sufficient 
smoothness to lie not only in X2 but also in X,. Thus, equation (2.7) holds for 
all f E X1. Likewise ( E X, so I(f) - Q(f) = (t, f) for all f E X1. Applying 
H6lder's inequality yields a quadrature error bound that includes (2.12) as a special 
case: 

(2.16) 1_(f) - Q(f)I = I((, f)I = 0-2 [1 dx dx 

<Dp(P)Vq(f) VfCXq(<q<oo p-1+q-1) 

The worst-case integrand, (q C Xq, is that for which the error bound is attained. 
This occurs when 

dx -=_ 

dx dx dx | dx q 

in (2.16), that is, 

(2.17) q (Y) ]sign d\\dx) dx dx (1 < oc). 

Of course, adding an arbitrary constant to (q or multiplying (q by an arbitrary 
constant gives another worst-case integrand. 

A worst-case integrand 4j does not exist. For it to exist d<1/dx would need to 
be a Dirac delta function centered at the point where 1d</dx attains its maximum 
value, but such a 4j does not have sufficient regularity to lie in X1. However, for 
any e > 0 one can find a "nearly" worst-case integrand I,eE C XI such that 

I -[(I E )-Q (&I,e ) I> [Doo (P)- e]V1(QI,e). 

This is done by constructing a dI,El/dx that is only non-zero near the point where 

dj/dx& attains its maximum. 
So far, a family of error bounds and figures of merit have been derived in the 

one-dimensional case assuming a mild amount of regularity on the integrand. The 
following theorem summarizes these results: 

Theorem 2.3. For any f C Xq (1 < q < oo) and for s 1 quadrature rule (1.1) 
has an error 

1I(f) - Q(f)I < Dp(P)Vq(f) (p-1 + q-1 = 1) 

Equality holds for the worst-case irntegrand Eq given in (2.17) for 1 < q < oo. 
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3. MULTIDIMENSIONAL CASE 

This section generalizes the ideas of the previous one to s > 1, resulting in a 
multidimensional version of Theorem 2.3. The integrands are now functions of 
x = (xl,..., x,) and the notation introduced following (1.4) is employed. 

The multidimensional generalization of Xp, the space of integrands defined in 
(2.2), is a space of functions whose mixed partial derivatives are all integrable: 

(3.1) XP(CS) {f: f L EP(CU) Vu C S} 

Note that Xp(Cs) c Xp(C') for any s < t. In the previous section any f C 

Xp([O, 1)) was decomposed into two parts: a constant, L(f), and a nonconstant 
part, f - L(f). The variation of the integrand, Vp(f), depended only on the second 
part. This decomposition is now generalized to 25 components for s > 1. Let 
Lj denote the operator L defined in (2.5) acting on the jth coordinate, let L" 
fi EuLj, and let L0 be defined as the identity. 

Definition 3.1. For any function f E Xp(Cs) iteratively define its components, 
fu as follows: 

(3.2) fu = Ls-u(f)- fv (u C S). 
vcu 

Lemma 3.2. The components of f E Xp(Cs) defined in Definition 3.1 satisfy the 
following properties: 

(3.3a) L ff 0 fori c u, JJ 
Ifu for j ~u, 

(3.3b) fu C Xp*(CU) _ {f C Xp(CU): Lj(f) = Vj C u}, 

and 

(3.3c) fZ fu 
ucs 

Conversely, if fu E Xp* (CU) are arbitrary functions, and f = Eucs fu, then the 
components of f as defined in Definition 3. 1 are, in fact, the fu. 
Proof. Note from the definition of L in (2.5) that L(1) = 1, thus it follows that 
L fu = fu for j ? u. The proof of L fu = 0 for j c u proceeds by induction. Note 
that it holds vacuously for u 0. Now for any u C S suppose that LJfv = 0 if 
j C v for all v c u. For any particular j C u let w = u - {j} cI u. It follows that 

L fu = Lj [Ls-u(f) - fvi Ls- (f) - ZLj(fv) 
L ~~~vCu IvCu 

= Ls-w(f) - E fv = 0. 
vcw 

Equation (3.3b) follows from (3.3a), and equation (3.3c) follows from the definition 
(3.2) for the case u = S. 

Induction is also used to to prove the second part of the lemma. Since Ljfu = 0 

for all j C u, it follows that fo = Ls (f) = fo. Next for any given u it is assumed 
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that f= fv for all v c u. Applying the definition of fu and (3.3a) completes the 
proof: 

fu = Ls-u fL, w - fv = , w- fv = fu. F- 
wvCu wCu vcu 

The component fu is the part of the function that depends only on xu. It 
belongs to Xp*(Cu), a subspace of Xp(Cu) whose elements satisfy the condition 
L-(f) = V Vj C u. The order of a component is Jul. The constant term f0 
is integrated exactly by quadrature rule (1.1), however, the other components are 
subject to quadrature error. If ,u = 0, then the fu are ANOVA effects, used in earlier 
analysis of quadrature error by Owen [Owe92, Owe95] and the author [Hic95, Hic96]. 
They showed how certain quadrature rules integrate components of a certain order 
better than others. 

The inner product (,) on X2(Cs) and the norms III Illp on Xp(Cs) are defined as 
generalizations of (2.6) and (2.13) in terms of the decomposition in Lemma 3.2: 

(3.4) 

(f,'g) - f & f & X, i - (-ll f III 

Note from Definition 3.1 that 

(3.5) O U Ls-u ( &Xu 

This fact is used in Section 5 in deriving formulas for specific cases of the generalized 
variation and discrepancy. As in the one-dimensional case we have a H6lder's 
inequality, 

(fY)l < Illf Ilp llg llq Vf C Xp, g E Xq (1 < p, q < o, p-1 + q 1). 

Under this inner product the reproducing kernel for X2(Cs) is simply the product 
of one-dimensional reproducing kernels (2.3). 

Lemma 3.3. Define 
S 

r(X,y)= fJi(xj,'yj), 
j.= 

where 

71(lY1) = M +2 _t/(Xl) + HY 2(X-1} 1(l)l(1) 

It follows that the components of r1 are 
S 

U (X, Y) = ru(xu, Yu) fJ [ml(X3, yj-1], 
jEu 

and that 

(3.6a) fu(yu) = 3-21ul u I fu uu (, Yu) dxu VYu C, 
Xu &X XU dX C 

(3.6b) fi(y) = (fs, ist(, y) py k Ce 
That i8, r1 is the reproducing kernel for X, (Cs). 
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Proof. Recall from (2.8) that L(ql (o, yi)) = 1. Using induction one can derive the 
components rU. 

Induction is also used to prove (3.6a). This is true for u = 0. Now suppose it 
is true for all v C u. For any j e u let v = u - j. For any fixed xj the function 
&f, /&3xj is in Xp(Cv). Thus, 

f-21ul j &U 6i fu lu(,Yu) dx 
2u 

axu axu a dxv 

J2 [ 21vl a JYV) dxvLI _O_ _(_ _ d 

2 Of Oq0 (x,*C9, Yj dxj = f (yu). 

Equation (3.6b) follows from (3.4) and (3.6a). F 

With the reproducing kernel we can now compute the worst-case integrand for 
X2(Cs) as was done in (2.10). The components of the worst-case integrand can be 
calculated as well. 

s 

S(X)= (I-Q) r(X)) n[M + 02/_(Xj)] 
j=1 

- 1 [7J {M + p [/(x,) + ft(zj) + 2B2({Xj- zj} + Bi(xj)Bi(zj)] } 
zEP j=1 

'tt (xu)- fl[M -1 + f2_(xj)] 
jEu 

+ZU{M M1+? 2 [_t(Xj)?A(ZJ) 
zEP jEu 

IB2 2(Xj- zj}) + Bl(xj)Bl(zj)]} 

alultu =2jul {i P, (xj) )-ffE [I-t(xj) + B, (f xj -zj 1) + B, (zj)] &XU jEu zE_P jEu 

l {Il8(Xj)-NEll[l/t(Xj)+Xj lxjzjI I? 
jEu zEP JEu 

where ,u' is the derivative of ,u, and lxj >zj is the indicator function. The worst-case 
integrand, (, is used to generalize Definition 2.2 for the variation and discrepancy. 

Definition 3.4. For any f c Xp(Cs) let 

(3.7a) V alul f_ 
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The generalized L?P-variation is 

(3.7b) Vp(f) = Illf -s()ll( - f (,3-1ulVp,U(f)) ( 1 1 x ) 
p 

For any finite set P c Cs let 

(3.8a) Dp2(P) =Vp u(3-2Iuj, ) _ -2 ulalul_u_ axu p 

= 7J, A'(xj) - + Z J[,'(xj) + x3 - >j] 
jEu NZEP jEu 

The generalized LP-discrepancy is defined as 

(3.8b) DP(P) -P(O = 1111P 

| ( )U+01:AOp ( x ZU Vu0|l 

| ({/ ( j) fl,u'x) (xj) ? x - J 
>z]}) 

\~{jEu zEPjE3u A0 
In contrast to the one-dimensional case the generalized LP-discrepancy depends 

intrinsically on the choices of 3 and , for s > 1. The consequences of these choices 
are discussed below and in Section 5. Whereas the integrals defining the generalized 
LP-discrepancy are generally intractable, the case p = 2 can be reduced to a double 
sum: 

(3.9a) [D2,U(P)]2 2-2lul jjjSjjj2 21ul(45 y2Klq - 

2 =M ZlE N |[M + ,(Zj) 
zC:PjEU 

N2 2~~ 

~N2 S Ul AM? /(zi)?+ I(z>? +B2({zi - z}) + B(jB(j] 
z,z'CP jEu 

(3.9b) [D2 2f) 
i = Kt 

, 
_ 

(I - 

2s _- [M + 32/(j 

zEPj=1 

+ N2 E M 
Z,Z/ EP 3-1 

+f2 [ia(zj) + u(Z2) + 2B2({z - zj}) + Bi(zj)Bi(Zij } 
where 

M-(M- 1)/02-_ r dd\) dx. 

dx\ 
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Error bounds for multidimensional quadrature are analogous to those for uni- 
variate quadrature and involve the generalized discrepancy and variation. Note 
that 40 = 0. For any f c Xq(CS) 

(3.10) 11(f) -Q(f)I = I(,f)l = $-21u a Ul a fu dxu 

< E Dp,u(P)Vq,u(f ) < Dp(P)Vq(f) (p-1 + q- = 1) 
U=A0 

by H6lder's inequality. There is no contribution from the constant f0 in (3.10) be- 
cause quadrature rule (1.1) integrates constants exactly. Recall that the integrand 
f is a sum of its components fu. The term 

/32jul / &0 u ua fu dxu, 
u OXu axu 

that appears above, is the quadrature error for fu. Furthermore, I(fu) - Q(fu) < 
Dp,u(P)Vq,u(f). The error bound 

E Dp,u(P)Vq,u(f) 
u#VJ 

in (3.10) is independent of ,B since DP,U(P) and Vp,u(f) are themselves independent 
of 3. The quantity Dp,u(P) measures how accurately the quadrature rule inte- 
grates functions in Xp (Cu), that is, functions depending on the coordinates whose 
indices are in u only. On the other hand, both Dp(P) and Vq(f) do depend on 
3 (see (3.7) and (3.8)). They are weighted averages of the Dp,u(P) and Vpu(f), 
respectively, where the weight is a power of /. Choosing a larger value of 3 gives a 
higher weight to the Dp,u(P) with larger Jul and so implies a preference for quadra- 
ture rules that accurately integrate the higher order components of the integrand. 
Conversely, choosing a smaller value of / implies a preference for quadrature rules 
that accurately integrate the lower order components of the integrand. By referring 
to the definition of the variation in (3.7) one may see that j-3 plays the role of a 
length scale. 

If one desires figures of merit for P that are independent of /3 one can compute 
the Dp,U(P) for all u 78 0. However, the number of these DP,U(P) is 2s - 1, which 
grows exponentially as s increases. An alternative is to compute 

Dp,r(P) (Dp,u(P)) uK=r (1 < r < s). 

The quantity Dp,r (P), which is also independent of /, measures how well the quad- 
rature rule integrates r-dimensional components. Also, note that 

Dp(P) =(/3rDp,r(P))i<r<s 

Hickernell [Hic95] compared the relative merits of several different quasi-random 
and random samples using quantities similar to D2,r(P). It was found that some 
s-dimensional samples are good for integrating the lower-dimensional effects, while 
others were better for integrating the higher-dimensional effects. For example, 
a rectangular grid has relatively small D2,s(P), but a relatively large D2,1(P), 
compared to other samples. 
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Using Lemma 3.2 it is possible to construct the worst-case integrand, ,q. Each 
of its components, ,q,u, is defined according to the conditions: 

(3. 11a) OX_ ____ (q 2)juj/(q-1) Sign( axu) 1/(U 1) 

(3.1lb) Lv((q,u) = 0 (0 C V C u). 

These conditions insure that the upper bound in each line of (3.10) is attained. 

Theorem 3.5. For any f e Xq(CS) (1 < q < oo) quadrature rule (1.1) has an 
error 

() - Q(f) ( = I , f) ? < Dp(P)Vq(f) (p-1 + q-1 1) 

Equality holds for the worst-case integrand ,q given by (3.11) for 1 < q < oo. 

4. PERIODIC CASE 

The error bounds in the previous two sections make no assumptions about the 
periodicity of the integrand, as do error bounds (1.10) and (1.12b). To consider 
periodic integrands define 

aklulf (Cs) and aklulf dx 0 
Xp,t (CS) - (9 xk E C ndy ak x=O 

Vk < t, Vj c u, Vu C S}. 

The integer t denotes the degree of periodicity. Note that Xp, I(Cs) is a subset of 
Xp(CS). 

The inner products and norms for Xp(Cs) are now modified to apply to Xp,t(CS). 
First we modify the definition of the operator L previously given in (2.5). For any 
, E Xo,t([O0 1)) with f, dx = 0 let 

fl dt udt f dx d t, 2 

kJ)-IKJdxt dxt) M 1! tj\dxt/ x (4.1) | f tdtdx =+B lI (tl)2 

The components of a function in Xp,t(Cs) are defined as in Definition 3.1, but 
using the new definition of L. The analogous result to Lemma 3.2 for functions 
in Xp,t(Cs) holds. The inner product on X2,t(Cs) and the norms on Xp,t(Cs) are 
defined as follows: 

(f,g)t 2tlu J atlufu a&tlg dxu, 

[llflllp,t Oxt Oxt ucl 

Here and below we suppress the dependence of some quantities on t for ease of 
notation. 

The reproducing kernel for X2,t(CS) is denoted r1 and takes the form: 

(x, Y) = (x., yj), 
j= 
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where 

i(x1, yi ) = M?+/32t [I ) + I_(Y1)- (2t)! B2t ({X1 - Yi)] 

Because ?ji (xl, Yl) must be periodic it cannot contain the term B1 (x1 )B1 (yl), which 
appears in the definition of r7j. Since Xp,t (Cs) contains only periodic functions, it 
follows by (2.1) that 

L(7j (o, yl)) = 1 Vy1, f (x) x(i(,x), f) Vf e X,t(CS). 

The worst-case integrand in X2,t (CS) is 

S 

(42)((X) = IQ)(( x)) = [M + 02t(x) 
j=1 

-NEPr4 {M + 12t 
[_(Xj) + _j(Zj)- (2t)!B2tXj -Zj})] } 

_ _ _ _ _ -{ j E (4.2b) <)tU = vS2tlul {i P|,(t) (xj) 

u jEu~~zEjE 

N ? /()- t! B(iZ}2} 

where p(t) is the tth derivative of p. Given ( it is now possible to generalize Defi- 
nition 3.4. 

Definition 4.1. For any f e Xp,t(Cs) the generalized periodic LP,t-variation is 

VP, (f)Ol|t L l !(-t ul atlul f u) Vp,t(f) -Ilf- LS(f)jjj - (t tHf 

For any finite set P C Cs the generalized periodic LP t-discrepancy is defined as 

(4.3a) Dp, t (P) _VP, t (() = \\(\\ p t 

( { (X)jEu 

zE 11 [A it x) t!Bt( xj -zj} ) 
zEP jEu -UA 

(4.3b) [D2,t(P)12 MsN _ Sf[M?+32tl(Zj)] 
zEPj=l 

+ N2 , fl{M+! [2Zt ?AZ) + P(zj (( tB2t zj Zj})]}. 
j'/P=1 
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For s = 1 the formula for D2,1 (P) can be simplified even further: 

]= p2 {12N2 + 
N [z(i)N- -N Z(j) )] } 

where the Z(i) are again the ordered values of P. From (2.11) it follows that D2,1 (P) 
and D2(P) have the same minimum value. For D2,1 (P) this is obtained for P 
{(i - v)/N: i = 1, ... ., N} for all 0 < v < 1, whereas for D2(P) it is obtained only 
for v = 1/2. In fact, shifting any set of points leaves its periodic LP-discrepancy 
unchanged, that is, for any v E C' 

Dp,t({{z + v}: z C P}) = Dp,t(P). 

Quadrature for periodic functions has an error bound in terms of the periodic dis- 
crepancy and variation. The following theorem is a straightforward generalization 
of Theorem 3.5. 

Theorem 4.2. For any f E Xq,t(Cs) (1 < q < oc) quadrature rule (1.1) has an 
error 

W(f - Q(f) =- (t, f) < Dp,t(P)Vq,t(f) (p-1 + q-1 = 1) 

Equality holds for the worst-case irntegrand 

__ _ _lu = /(q-2)(u-/(q-1) S n a1t )) at E 
____ ___ - sign 

O t 0x 

Lv((q,u) = 0 (0 c v C u), 

for 1 < q < oc. 

The space of periodic integrands Xp,j(Cs) is a subspace of Xp(Cs) since they 
share the same inner product (assuming the same jB and same u E X,1( [0, 1))) . For 
any f E Xp,1(Cs) it follows that Vp,1(f) = Vp(f), and for any sample P it follows 
that Dp,1(P) < Dp(P). The latter assertion follows by applying both Theorems 
3.5 and 4.2 to the worst-case integrand (q: 

Dp,i (P)Vq,I ((q) =(1 - Q)((q)I < Dp(P)Vq((q) = Dp(P)Vq,I ((q), 

for 1 < p < oo. This can be extended to the case p = oo by noting that for a fixed 
P the discrepancy is a continuous function of p and taking the limit as p -> oo. 

5. CHOICES OF 3 AND At 

In the previous section it was seen that the error bounds depend on the choices 
of 3 and t. In this section we show how different choices allow us to recover the 
error bounds and figures of merit in (1.4) and (1.12). It will also be shown that in 
some sense different values of / and ,u give equivalent error bounds. 

Recall from (3.8) that the generalized L?-discrepancy is 

DoO (P) alulu 
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For certain choices of / this formula for the generalized L?-discrepancy can be 
simplified in that one need! not consider all u, but only u = S. Taking the limit as 
xs_u tends to the origin gives 

/3-S aS'~s 

(9XS XS_ u(O .0(,?) 

=3SII/(o)IS-lU J7J'(x?) | 5- U S fj[,'( xi)x )1x->zj] 
jEu zEPjEu 

=t l/(0) IS-lUl _lul 'l0Iulu 

assuming that ,u' has limiting values as x tends to 0. Thus, the essential supremum 
of 0-3,-SOs1/Oxsj will be no smaller than that of 73-lUIOIU(u/jOxuj if 10[t'(O)l = 1. 
Likewise, 

/3S 
a 

/(1) sIuI 73-IUI U 

O XS xS_UT.(l.1) =1XU 

Similar results hold for limits of 0t~S/lOx'. This leads to the following theorem. 

Theorem 5.1. If either limxt Oi3tt'(x) I or limxTi 3lft'(x) I is 1, then 

Dc>c)(P) r/-t ( j)N E rI[tt (xj) +xj-lx,>Z,] 
j=1 z(Epj=1 _0 

For any positive integer t if limxjoOittl(t)(x)j or limxTi tI[t(t)(x)j is 1, then 

D C,t (P) = i AM t(xj) - N i , A[ (xj) t! ({ xj 
- 

]z j=1 zGPj=1 Lt 

In the following subsections we consider four specific choices of ,t and , and give 
the corresponding formulas for the generalized discrepancy and variation. These 
examples yield the star discrepancy (1.6) and P,, (1.8) as well as two new discrep- 
ancies. 

5.1. Star discrepancy. To recover the LP-star discrepancy defined in (1.6) choose 

1 92 4 
,ux =1_ ,(x) x) =-x 1 1A= IMl) = 1, =3 6 2 3 

This implies that Lu(f) flX=1 1) and that the variation is defined as follows: 

Vp(f) (oH:xu XS_u=(l .,1)) u0p 
p 

The formulas for the discrepancy from (3.8) and (3.9) are 

ajUj fJ -xi - 1 E fl(-1lj>zj) = (-i)H {Vol([O,xu)) IPu n [0, x)j } 
09u j eu 

N 
zePjeuN 
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(5.1a) Dp(P) - (ipu n [flxu)I - Vol(tO,xu))) 

(5.1b) Dc (P) Slp n [0Xx) l Vo l(O' ))| N 

(5.1c) 

(D)5Pz] 2 3 N E ( 2)? + 2 E fl[2-max(zj,zj)], 3 
z(Ep j_1 z,z/E'Pj=l 

where we have applied Theorem 5.1. The error bound in Theorem 3.5 for this 
choice of pu and ,B is the generalization of the Koksma-Hlawka inequality (1.5). 

As remarked in the introduction the LP-star discrepancy is often defined as 

(5.2) DS (P) = IPn[0,x)I -Vol([O x)) N 

and this figure of merit has been used to compare different quasirandom samples 
(e.g. [MC94]). It is true that for the choice of jt and d above D,(P) = Doo,s(P) 
because of Theorem 5.1. However, for all other values of p 

{ A ~~~1/p 

Dp (P) { [DP,U (P)]P} > Dp,s(P). 
(U:A 

Specifically, we may compare the above formula for D2 (P) with the following for- 
mula given by [War72]: 

[D2,s(P)]2 (l)S_2 f (1 z ) + N Z fJ[i-max(zj,zj)]. 
z(EP j=l z,z'GP j=1 

The terms inside each of the three products in the formula for [D2,s (P)]2 are one 
less than the corresponding terms in the formula for [D2 (P)]2. Because D2(P) 
appears in a quadrature error (Theorem 3.5), whereas D2,S(P) does not, we prefer 
the former as a figure of merit. Moreover, for a uniform simple random sample, P, 

E{ [D2(PJ}=[(2)- N = - )[( 1 Nv 

E{[D2,s(P)]2}1 [(7 -('71 N, 

(see [MC94]). As a figure of merit E{[D2,s(P)]2} becomes smaller for a random 
sample simply by increasing the dimension. This is undesirable. 

5.2. A centered discrepancy. The discrepancy in the previous section is an- 
chored to the origin because the interval [0, x) appears in its definition. Also, 
there is reference to (1,... , 1), since it appears in the formula for the variation. 
Now we define a discrepancy and variation that refer to the center of the cube, 
(1/2, ... ,1/2). This discrepancy and variation are invariant under reflections of P 
about any plane Xj = 1/2. 

It is useful to introduce some notation describing the vertices of the cube. Let 
As denote the set of 2s vertices of the cube C9, that is, 

As {a E R': aj = 0,1 Vjl}. 
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The planes passing through any point x parallel to the faces of the cube C' can 
be thought of as dividing it! into 25 intervals, each containing the points between x 
and a vertex a: 

J(a, x) {y c C': min(aj, xj) < yJ < max(aj, x,) Vj}. 

The set of 21u1 vertices of the cube Cu is denoted AU, which is the projection of As 
into Ru. The projections of the intervals J(a, x) into RU are denoted J(au, xcc). 
Also, for any vertex au c Au, let 

u(au) _ E aj (mod 2). 
jeu 

In this way one can differentiate even (u(au) = 0) and odd (u(au) = 1) vertices. 
The centered discrepancy comes from the following choices of ft and /3: 

(x) = --B2{X -1/2}), p/(X) = - + lx>1/2, i 1, = 13 
2 12' 

which implies that Lu(f) =fxu=( 1/2,...,1/2), and 

(0c Xs-U=(1/2,..1/2) uo 

Let a(x) denote the unique vertex of C' which is closest to x, that is, a(x) is the 
unique vertex such that x c J(a(x), (1/2, ... .,1/2)). Then 

- fJ = (-X + lx>1/2) E (1xj>12-lxj>zj) 

=(-1)IuI+ffa(ax)u) {Vol(J(au(x), Icu)) - PU 0 J(au(c):ccu) } 

The formula for the discrepancy can be written as 

DP (P) |PunJ(au(x),xu)J _Vol(J(au (x) , u))) 

-(p)]2= (1)S +zh(1?+ 2 zj/22) 

A (P)l~ ~ 2 Ell -1 [+2Izj -1/21 - 2 Izj -1/2 121Ij-' 
zEiP j=1 

~N2 S fj - i 
z,z'(EPi __ 

This formula is similar to that for the star discrepancy (5.1), except the origin is 
replaced by a(x), the vertex of the cube closest to the point x. In contrast to the 
star discrepancy, replacing Xj by 1 -xj for any j leaves the centered discrepancy and 
variation unchanged. Unfortunately, Theorem 5.1 cannot be invoked to simplify the 
formula for D,,(P) because fu'(O) = p/'(1) = 0. The next discrepancy has both the 
desired invariance and a simplified formula for D, (P). 
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5.3. A symmetric discrepancy. In the previous two cases Luf and the variation 
referred to the function value at a single point. However, below we choose [t so that 
Luf is an average of the function values over the vertices of the cube. Let 

,u(x) I-B2(x), itI(x) =-x + 1/2, 
2 

4 
~1 = [u' (?) | =|It'(1)l = 1/2, M 

The notation for the vertices introduced above is used. Furthermore, let Je(xu) 
and Jo(xu) be the unions of the even and odd intervals, respectively, that is 

Je(Xu) = U J(au, xu), J,(xu)= U J(au, xu) 
or(au)=O or(au)=1 

One may show that 

Vol (Je(xu)) - + f rj(2x3 -1), Vol (J?(xU)) = - - - fJ(2x3-1), 
2+2 2 2 

jEu jEu 

which will be used below. 
The linear operator Lu is defined as an average of the function values over the 

vertices in AU: 

Lu(f) = l f ixu=au 
au EAu 

and the variation is defined as 

as EAS-u U s =as-u ) +0 

The symmetric discrepancy is defined as follows: 

alx~ = 2 1 1{ I ( 1/2- x -)-N 
I rr. 1(1/2 - lxj>zj )} 

09U jEuzEN 

~~~2IUI~~~~ = 2lul { ( II (12xj) - E I| sign(zj -xj)} 
{jEu zEP jEu 

- (2)1uI {2V6l (Je(xu)) 1 

- [Pu n Je(xu)l - IPu n Jo(xu)l]} 

- 2(-2) IU {Vol (Je (xu)) - ,Pu 0 Je(Xu) } 

- 2(-2)IU {Vol (Jo(Xu)) IPu n Jo(xu)l } 
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Dp(P) = 2 (IPu n Je(xu) Vol (JW (x)) 

p 

D (P) =2 lNVj0(x)l _ 1(Je (X)) I 
N ~~~~~~00 

[D2( () 
-Nr) j (1+2z -2z2)+2 S fJ(1-Iz -zl ), 

zEP j=l z,z'eP j=I 

where we have applied Theorem 5.1. Comparing this formula to that for the star 
discrepancy, the single rectangular solid [0, x) appearing in (5.1) has been replaced 
by a union of rectangular solids Je(x) 

5.4. P, and its generalizations. As the final example let [t(x) = 0 so M = 1. For 
arbitrary /3 the error bound coefficients c and c in (1.11) correspond to D2(P) and 
D2,1 (P), respectively. The error bounds (1.12) are the same as those in Theorems 
3.5 and 4.2. For /3 - 2ir it follows from (1.8) and (4.3a) that 

P2t = [2,t (P)]2 

for any positive integer t. 
As one can see from the examples above the discrepancy and the variation, as 

well as the operator L and the norms depend inherently on /3 and ft. Although the 
choice of /3 and ft is important, it can be shown that different choices are equivalent 
in a certain sense to be made precise below. For i = 1, 2 let fli and [ti denote two 
different choices of / and ft, respectively. Furthermore let the superscript (i) denote 
the dependence of other pertinent quantities on this choice. The following theorem 
gives the relationship between the different discrepancies and variations defined by 
fli and [ui. 

Theorem 5.2. For any positive !1 and 02 and any Aij and /12 satisfying condition 
(2.4) let 

-p = f2 -At IIfPI dp = 1I (1, AP) IlP, 

K(p,i 1, I2 I [LII2) = ds max /3 2(I I(dq/l) ) |, p1 +q1 q 1. 
k=l,s 

For all finite samples P and all f c Xp the generalized LIP-variations and discrep- 
ancies associated with the /i, Ati (i = 1, 2) are related as follows: 

v1) (f ) < K(p, /1, I2, t1, A2) V(2) (f), 

D(1) (P) < K(q, 02 I 01 I t2, I1 )D (2) (P), 

where p-1 +q- = 1. Furthermore, if the Ati c X,t Q([O, 1)), then for all f E XP,t the 
generalized periodic IP-variations and discrepancies associated with the /i, Ati (i 
1, 2) are related as follows: 

VP',t)(f) < K(p, III i241 I(-l A2-l )E)(f 

f) (1 
(P) < K (q, ot, ot, A2t-I Atl )D(2 p 

Proof. Let L(i) denote the operator L associated with Ati, and let f i) denote the 
component of f associated with Ati. It follows that for any u C S the mixed partial 
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derivative of the component f47) can be written in terms of mixed partial derivatives 
of the components ff2) for v D u by (3.5): 

AlUf47) -L(1) IUIf(2) )L(2) 91u f 

U S-u 
ucvcs (LU aU 

- E X~~ [i t2 (x)4- (xj) dxv @ 

For p-1 + q-1 = 1 one may apply Holder's inequality to the sum of integrals over 
CV'u. This yields 

I < (H () l()) aT 

(f(2) 
f 
il ffL < 11 VIJ/1k] 

< dqI (aHft ) uCC 

where dq was defined in the statement of this theorem. Substituting this inequality 
into the formula for the variation leads to the desired bound: 

<(1)f- ( l i a -f&tl)) U) 

? g (aHf~2)) uCv ) ccs q ) 

(Lz 0Cu d ] D f22)) 

< dq max [1 + dq] (at ) 

- d <g<[+ q 1 d (2 S 

The inequalities for the discrepancy follow by considering the inequalities for the 
variation and (l)a the worst-case integrand (3.11) under bu and :1. For 1 <p < X 

and p-1 + q-1 1 it follows that 

D(1j) (P)Vq(1) (1) ) - iI((1)) )-Q((l) )~ I D(2) (P)V(2) ((1)) 

p~~~~ Dp()(, ,p,82 lvl)(() 

There is no worst-case integrand for q =1 (p =oo). The inequality in this case 
can be obtained by observing that the discrepancy is a continuous function of p 



A GENERALIZED DISCREPANCY 321 

and taking the limit as p tends to infinity. The proof for the periodic case follows 
similarly. EZ 

The inequalities obtained above are not the tightest possible. For example, 
K(p, lol, ll, [lt, [lt) > 1. However, they are among the simplest the author has 
found. 

Theorem 5.2 gives an equivalence among different discrepancies, that is, a low 
discrepancy sample for one particular choice of [t and v3 cannot have too high a 
discrepancy for another choice of [t and v3. However, this does not imply that the 
choice of [t and v3 are unimportant. The better sample under one type of discrepancy 
may not be the better sample under a different type. 

6. DISCUSSION AND CONCLUSION 

A number of figures of merit for quasi-random points appear in the literature for 
quadrature and the related field of experimental design. For an extensive list see 
[FW94, Chapters 1 and 5] and [FH95]. One might prefer a figure of merit, D(P), 
to have the following desirable qualities: 

1. D(P) should arise from an error bound (for quadrature, function approxima- 
tion, or some other relevant application). 

2. Projections of P into a lower-dimensional space should not increase D(P). 
3. D(P) should be easy to compute. 
4. D(P) should have an intuitive interpretation. 
5. D(P) should be invariant under certain transformations of P, such as reflec- 

tions about the plane xj = 1/2 and permutations of the coordinates. 

The generalized LP-discrepancy derived here satisfies the first two criteria. How- 
ever, the traditional LP-star discrepancy (5.2) does not satisfy them unless p = oo. 
Thus, we prefer the definition of star discrepancy given by (5.1). 

The easiest generalized LP-discrepancy to compute is the case p = 2, since it 
involves at worst a double sum (see (3.9) and (4.3b)) that requires O(N2) operations 
to evaluate. In fact Heinrich [Hei96] gives an algorithm for the L2-star discrepancy 
that requires only O(N(logN)S) operations. For [t = 0 the generalized periodic 
L 2-discrepancy can be reduced to a single sum for lattice rules, thus requiring only 
O(N) operations. Some might prefer to use the generalized Lw-discrepancy as a 
figure of merit because it makes the weakest assumption on the integrands. In 
this case choosing v3 and [t so that Theorem 5.1 can be applied will simplify the 
calculation. 

The star, centered and symmetric discrepancies can all be interpreted in terms of 
the relative proportion of points lying in subsets of the integration domain. For P, 
and its generalizations we have not yet found a geometric interpretation, however, 
the decomposition of the the integrand f into a sum of fU corresponds to the 
analysis of variance (ANOVA) decomposition, which is very popular in statistics. 

It has been shown [Woz91, MC94] that the traditional Lp2-star discrepancy gives 
the mean square quadrature error for a Brownian sheet which is zero on all faces of 
the cube xj = 1. If one relaxes this condition so that the values of the integrand on 
these faces are themselves generalized Brownian sheets, then mean square quadra- 
ture error is the Lp2-star discrepancy defined here (Caflisch, private communication 
and [MC94]). 
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The star discrepancy is not invariant under reflections of P about planes xj = 
1/2. The other three figures of merit in Section 5 do have this quality. All figures 
of merit considered in this paper are invariant to permutations of the coordinates. 

For lattice integration rules, the speed at which one can compute Pc. makes it a 
very attractive figure of merit. However, for general quadrature rules the symmetric 
discrepancy has much to commend it. Although not backed by the weight of history, 
it satisfies all the above criteria whereas the star discrepancy does not. 
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