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TABLES OF UNIT GROUPS AND CLASS GROUPS OF 
QUINTIC FIELDS AND A REGULATOR BOUND 

M. POHST AND K. WILDANGER 

ABSTRACT. Using a new regulator bound we determine unit groups and class 
groups of the 289040 quintic algebraic number fields with absolute discriminant 
less than 2 x 107 (totally real fields), respectively 5 x 106 (other signatures). 
We list significant data. 

1. INTRODUCTION 

In [5] a table of all quintic number fields with absolute discriminant less than 
2 x 107 (totally real fields), respectively 5 x 106 (other signatures) was presented. 
In this paper the unit groups and the class groups of these fields are determined. 
Because of an error in [43 we also develop a new lower bound for regulators. 

2. UNIT GROUPS, CLASS GROUPS AND A REGULATOR BOUND 

The unit groups and class groups of algebraic number fields F are nowadays 
computed jointly by producing sufficiently many relations, i.e. integers a of F 
which generate principal ideals which factor over a given factor basis of prime 
ideals [1], [3]. If we do not assume GRH, then a lower regulator bound is required 
to guarantee the correctness of the obtained result. Such a bound is given in [4, 
Theorem (6.17) and Corollary (6.19)]. However, recently H. Cohen showed that 
(6.17) is e.g. not correct for n > 2 by producing a counterexample. Hence, we use 
the opportunity to correct that theorem. 

Let R be an order of the algebraic number field F of degree n > 3 under consid- 
eration. Let F = FM... ,F(n) be the conjugates of F and define 

n 

T2: F R?O: a I> 3 ( 2 

j=l 

Clearly, T2(a) > n for a E R\{0} and T2(a) n if and only if a is a torsion 
unit of R. Every element cE U(R) (the unit group of R), which is not a root 
of unity, therefore satisfies T2(?) > n. For units cE U(R) satisfying T2(E) > K, 
T2(6-1) > K for some K > n we obtain a lower bound for 3>1(log g(i) )2 as 
follows. 

We set xj log I5(i)I (1 < j < n) and minimize 
n 

f(X) X2 
j=1 

under suitable side conditions. 
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Lemma. The function 
n 

f (x) = E Xj 
j=1 

has a global minimum at a point y of the set 

( n n n 

S= {xERn I ,xj = 0, , e2xj >K EZe-2xj >K 
j=I j.=I j=1 

with at most three different coordinates. 

Proof. The existence of a global minimum is obvious. Because of K > n we have 
0 ? S. If we assume that one of the conditions 

n n 

E e2xj > K: E e-2xj > K 
j=1 j=1 

is not active, i.e. > holds, then the problem is reduced to the one of (6.17) in [4]. 
We obtain a minimum at a point y with at most two different coordinates. 

Finally, we assume that equality holds in both cases. Since we want to apply 
Lagrange multipliers, we need to show that the rank of the matrix 

A(x) 
2e2xj 

... 2e 2xn 1 ... 
1 

A(x= 
|2e2x1 ... ~2e2xn -2,-2xl ... -2e-2xn 

is three for x = y. Because of _n x = 0 and x + 0 any x E S must have 
positive and negative coordinates, hence the rows 1 and 2 of A(x) are independent. 
Let us assume that the third row of A(x) is linearly dependent from the first and 
the second. This implies that x has exactly two different coordinates. We again 
obtain the solution of [4] in this case. 

Finally, we need to consider local minima for which the rank of A(x) is three. 
As we saw above this is tantamount to x having at least three different coordinates. 
Applying Lagrange multipliers to the function 

n n n 

F(x) :=f (x) + A 1:xj + tt tEe2xj _K) + v tEe-2x iK) 

we obtain for a local minimum in x E S the system of equations 

2x- + A + 2pue2xi - 2e-2xi 0. 

If we fix the triple (A,,i, v) we must show that the function 

g(x) := 2x + A + 2p,e2x - 2ve-2x 

has at most three zeros. The corresponding derivative is 

g'(x) = 2 + 4pte2x + 4we2x. 

Obviously, g'(x) has at most two zeros. Therefore g(x) has at most two extremal 
values and consequently at most three zeros. I 
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For a computation of the global minimum of f(x) on S we therefore need to 
look only at the elements x of S with at most three different coordinates. As we 
already pointed out, the premise K > n guarantees that any x E S has at least 
two different coordinates, a positive and a negative one. The extremal values at 
points with exactly two different coordinates are obtained in [4]. They need to be 
compared with the ones which we obtain in the sequel. 

Let x, y, z be the three different coordinates of an element x E S. Let us assume 
that their frequencies in x are nl, n2, n3 E N subject to n1 > n2r> n3 and n1 +rn2 + 
n3= n. For a fixed triple (nl, n2, n3) the potential minima x E S can be calculated 
from the three equations 

nilx+ n2Y+ n3Z O, 

nIe2x + n2e2y + n3e2z K, 
nre-2x + n2e-2y + n3e-2z K. 

This is not at all difficult since we can transform these equations into a pair of 
algebraic equations. We set 

inx + n2Y u = e2x/n3, V =2y/n3 

n3 

and obtain 

n( un3 + n2vn3 + n3ufll v-n2 
n K, 

(niu-n3 + n2V-n3 + n3Unll Vn2 K. 

We summarize what we derived. 

Theorem. Let E E U(R) subject to T2(c) > K, T2(c-1) > K for some constant 
K > n. Let 

T := (n n2 n3 Uv) E N3 x(R>0 )>2 ni?2 n3, ni +n2 +n3 = n, } ~~~~~~~ ~~~~~~(u, v) solution of (1) 

n 

Then E (log Ig(j) 1)2 is bounded from below by the minimum of the set 
j=1 

{ n 
(nm (ni + n3) (log u) + n2 (n2 + n3) (log v) + 2n1n2 log ulog v) 

(ni,n2,n3,U,V) E T } 

n 
{ 

log (K + K9 
2} 

(We note that the single element of the second set comes from [4, (6.17)].) 

We conclude this section by showing that for n = 5 the set T consists of just 

three elements which can be easily calculated. Namely, for n = 5 there are just two 

possibilities for the triple (nl, n2, n3). 

Case I. nr = n2 = 2 = 2n3. 
We have z =-2(x + y), u = e2x V e2y and (1) becomes 

1 2 2 2 2 
2u + 2v + K - + - + uv. 

u2v2 u v 

Setting U = u + v, V = uv we obtain 

2 V2U + 1 = KV2, KV = V3 + 2U. 
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Hence, V is a zero of the quintic polynomial 

9K(t) = t- 1 - Kt2(t -1). 

There are exactly three positive zeros of gK, say 

VI = 1, V2 > 1, V3 =V. 
V2* 

Since with V also v is a zero of gK (t) we obtain V 

V2 = I 
(-I + 4K+5 5 2K-5 - 4K ). 

As corresponding U-values we get 

Ul = 2 'U2= 2(K -V22)= (K -W-) 2'2 2 2 

Replacing U2 by U3 is tantamount to replacing u2, v2 by u-, v-. But the latter gives 
the same lower bound as we immediately see from the structure of the function to 
be minimized, in this case 

Z(V) 2 (lou) + 2 (lov) + (log u + log V)2 

3 
-(logV)2 + logu log 

U 

2 

where log v = log V - log u and w.l.o.g. 
/ 

u=2 ++1 4 -V. 
2 4 

Hence, we obtain two elements 

(22, 1,ul K-1 + (K-1)2 1,1 ) (2,2, 1,U2,V2) 

of T in this case. 

Case II. nr = 3 = 3n2 =3n3 
Then z =-3x-y, u = e2x ,v- =e2Y and (1) becomes 

3u+v+u-3v- I= K = 3u-1 +v- +u3v. 

Eliminating v we obtain that u 54 0 must be a zero of the quintic polynomial 

hK(t) = t- - 
K t(t3 - 1). 
3 

There are exactly three real zeros: 

U1 = 1, 

U2= (K-3+ K2+6K+45 

12 + XvK2 _ 5+(-3)v/K2 +6K +45 ) 

Ul 3 
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The transition from u2 to U3 has no effect on the function to be minimized: 

Z(u) = 4 (3 (log U)2 + (log V)2 + (3logu+log v)2) 

3 (logU)2 + 2(log v) (3 log u + log v). 

Here we can choose v without loss of generality as 

K-3u (K-3u)2 
V = + Vt ) U-3. 

The radicand of that expression is negative for K > 5, however. Hence, in this case 
the only remaining solution is 

(3111K2 +; - 3 3 
2 

As a demonstration of this new result we list the results of the theorem for n -- 5 
and several K-values. The minimum is always obtained in case II. 

[K 15 10 15 20 25 301 
[2 different coordinates 101 2.17 3.88 5.32 6.57 7.67] 

3 different coordinates, case I, u 1 0 2.10 3.71 5.02 6.14 7.13 
3 different coordinates, case I, u > 1 0 2.05 3.56 4.78 5.82 6.72 
3 different coordinates, case II 0 1.85 3.07 4.00 4.77 5.43 

3. RESULTS ON UNIT GROUPS 

Since we cannot present all fundamental units, we give a short overview on the 
size of the regulators RF that occur. With respect to the Galois group we get the 
following distributions: 

Totally real fields 

|________ L A5 IC5 |D5 |Hol(C5) I S5 1 ] 
0<RF<5 0 1 0 0 4 5 

5<RF<10 0 0 1 0 191] 20 

10 < RF< 50 0 2 2 0 1074 1078 
50 < RF <100 3 1 10 3 3735 3752 

100 < RF < 500 15 1 12 12 17288 17328 
500 < RF 0 0 1 0 556 557 

[ Z ft 181 51 26J 15 22676 22740] 

Hol(C5), the holomorph of the group C5, is the semidirect product of C5 (as normal 
subgroup) with its automorphism group. 
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Fields with signature r1 = 3 and r2 = I 

___________J11 S5 
0<RF<5 258 

5<RF<10 1070 
10 < RF < 50 29883 

50 < RF < 100 32242 
100 < RF < 500 15941 

500 < RF 0 

I 1793941 

Fields with signature r1 1 and r2 = 2 

[A5 D5 [ Hol(C5) [ S5 || ___ 

0 < RF< 5 7 16 3 1782 1808 
5 < RF < 10 17 7 2 6944 6970 

10 < RF < 50 140 56 47 91975 92218 
50 < RF < 100 68 23 26 60445 60562 

100 < RF < 500 26 27 3 25292 25348 
500 < RF 0 0 0 0 0 

I 11 258 1291 81 186438 1869061 

4. RESULTS ON CLASS GROUPS 

We conclude with a detailed survey of the class group structures that occur. 
With respect to the Galois group the following tables show the frequency of each 
class group and the corresponding minimal absolute field discriminant (if less than 
107, respectively 5 x 106). For a field F we denote its class number by hF and the 
stucture of its class group by CLF. 

Totally real fields 

hF CLF A5 C5 D5 Hol(C05) S5 | 

1i C, 18 (3104644) 5 (14641) 26 (160801) 15 (2382032) 22550 (24217) 22614 
2 C2 - _ _ _ 119 (4010276) 119 
3 C3 - 6 (8481512) 6 
4 C4 - - 1(13664837) 1 

Z 18 5 26 15 22676 22740 

Fields with signature r1 3 and r2 = 1 

hF CLFI C5 
1 Ci , 77598 (4511) 
2 C2 ~ 1536 (243219) 
3 C3 222 (977483) 
4 C4 32 (2468924) 
5 C5 J 6 (3982352) 

_ _ _ _ _ _ 79394 
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Fields with signature r1 1 and r2 2 

hFI CLF ft A5 | D5 | Hol(Cs) j S5 ft z] 

1 C0 221 (18496) 124 (2209) 79 (35152) 166348 (1609) 166772 
2 C2 9 (1132096) 13724 (41381) 13733 
3 C3 26 (287296) 3822 (130925) 3848 
4 C4 1 (4981824) 1122 (370913) 1123 
4 C2 x C2 2 (1868689) 97 (1002341) 99 
5 C5 1 (4743684) 2 (717409) 2(1830125) 890 (557220) 895 
6 C6 175 (1219509) 175 
7 C7 173 (1298349) 173 
8 C8 40 (2002568) 40 
8 C2 x C4 1 (4255620) 1 
9 C9 31 (2803812) 31 
10 010 7 (2761273) 7 
11 C0l 1 (3825936) 7 (3965816) 8 
12 C12 1 (4892116) 1 
r Z 11 258 ] 129 81 186438 186906 1 

All computations were done on HP 735 and IBM RS 6000 workstations. We used 
the number-theoretic program library KANT V4 [2], which is developed in Berlin. 
All data are accessible with the KANT shell KASH from our data base. KASH can 
be obtained via ftp from ftp. math. tu-berlin. de. Large parts of the data are also 
available on the ftp server in Bordeaux. 
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