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ON DIVISIBILITY OF THE CLASS NUMBER h+ 
OF THE REAL CYCLOTOMIC FIELDS OF PRIME DEGREE I 

STANISLAV JAKUBEC 

ABSTRACT. In this paper, criteria of divisibility of the class number h+ of the 
real cyclotomic field Q((p + (- 1) of a prime conductor p and of a prime degree 

I by primes q the order modulo 1 of which is 1-1, are given. A corollary of y ~~~~~~~~~~2'ar gie. A c olry f 
these criteria is the possibility to make a computational proof that a given q 
does not divide h+ for any p (conductor) such that both P21 p-3 are primes. 2 ' 4arprms 
Note that on the basis of Schinzel's hypothesis there are infinitely many such 
primes p. 

INTRODUCTION 

Let 1, p be primes such that p = 21 + 1. To consider divisibility of the class 
number h+ of the real cyclotomic field Q((p + (Q-1) by primes q it is suitable to 
sort primes q according to their order modulo 1. The simplest case is the case when 
the order of q modulo l is l - 1, i.e. when q is a primitive root modulo 1. In this 
case the problem is completely solved, because it is proved that q does not divide 
h+. The proof for q = 2 can be found in [1] and for q > 2 in [4]. According to 
complexity, the further case is the case when the order of q modulo l is 1-1, hence 

,when q generates the group of quadratic residues modulo 1. 
In this case we have: 
1) q = 2. If l _ 3 (mod 4), then 2 does not divide h+. (For the proof see [2].) 
2) q = 3. The prime 3 does not divide h+. (For the proof see [5].) 
3) q = 5. If l _ 3 (mod 4) then 5 does not divide h+. (For the proof see [6].) 
T-he divisibility of h+ by a general prime q under the assumption p -1 

(mod q), p - -1 (mod q3) was considered in the papers [7], [8]. 
The aim of this paper is to derive criteria for divisibility of h+ by a prime q 

without any restriction imposed on p (mod q). As an application of derived criteria 
we shall prove Theorem 7 . 

Theorem 7. Let q be prime, q < 23. Let l, p be primes such that p 21 + 1, l _ 3 
(mod 4), and let the order of the prime q modulo I be I - 1 or 1 The prime q 
does not divide h+, the class number of the real cyclotomic field Q((p + P-1). 

Note that if l = 21, + 1, where 11 is a prime, then each q 0 0, +1 (mod 1) satisfies 
the conditions of Theorem 5. 

This implies the following Corollary. 
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Corollary. Let 11, l, p be primes such that I = 21 + 1, p = 21 + 1. The prime q 
does not divide h+, the class number of the real cyclotomic field Q((jp + (P- 1), for 
q < 23. 

Let q be an odd prime. Define the numbers AO, A1, A2,... , Aq-1 as follows: 

iI 
Ao = 01 Aj = , for j q= 1- 

Let s be a rational q-integer. Put A, Aj for an integer j, O < j < q, s-j 
(mod q). 

Let m, n be natural numbers, m - 1 (mod 2), (n, n) = 1. Associate to the 
number n the permutation 4m,n of the numbers 1, 2,... . m21 as follows: 

qm,n(x) I= nx (mod m), for x = 1, 2, ... 2 
Further, associate to the number n the quadratic form Qm,n (Xi, x2,... m 1 

2 

m-1 
2 

Qm,n(XlI X2 ... XX-1) X 1 +2 Xm1 - E XiXm n(i) 
i=1 

The following theorem holds 

Theorem 1. Let q be an odd prime. Let l, p be primes such that p = 21 + 1, 1 _ 3 
(mod 4), p _-m (mod q), m _1 (mod 2), m > 0, and let the order of the prime q 
modulo I be 1'1. Suppose that q divides h+, the class number of the real cyclotomic 
field Q(.p + cP-1). Then for each divisor n, (n, q) = 1, of the number p + m, the 
following congruence holds: 

(i) 

Qm,n(A - IA-2 I . .,A t) (mod q). 
2q q 

(ii) If nq IP+m , then 

p+r = -Qm,qn(A 1 IA 2 v . . . A ) t) (mod q), 

where t = m2n1 

Proof. To prove this theorem, the following assertion from [4] will be used: 

Proposition 1. Let l, p, q be primes, p -1 (mod 1), q -7 2; q -7 1; q < p. Let K 
be a subfield of the field Q((ip + ,pi), [K : Q] = I and let hK be the class number 
of the field K. If q IhK, then qjNQ((1)/Q(w), where 

w=b, E X(i) + b2 E X(i) + + bq-i x(i)) 
i_1 (mod q) i-2 (mod q) i-q-1 (modq) 

with the sums all taken with 1 < i < p - 1, with x(x) a Dirichlet character modulo 
p of order 1, and bj defined by the expressions 

P ((P5 I) ) I) b1(p + b22 + **+ bp(PP-1 (mod q). 

The following lemma will determine the coefficients b1, b2,... ., bf-i. 
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Lemma 1. Let p _ z (mod q). Then 

bi = Ai , for i = 1,2,. ... ,q-1. 

Proof. We note that the b- can be determined explicitly by multiplying the above 
expression through by (pq -1: In fact we get (taking bo 0 and each bk= bk (mod p)) 

p (bj_q -bj )p- ( q 
) (Kq 1)) q 1 (q) 

q-1 z 
_ (mod q), 
izl 

since 

I (q) I (q -l)(q -2) .. (q -i +1)_() (mdq __________________ (l)i-1 (mod q). 

Comparing coefficients we see that bjq - b-q -bo + p6j (mod q), where 

63. = 1 if 1 < j < q - 1 and 6j = 0 otherwise. Adding these congruences together 
for j = O,-q, -2q,... , -(n - 1)q and noting that bo = 0, we obtain bnq =2nbq + 
( + (2p) + + (mP)q (mod q), where (m + l)p > nq > mp and (jp)q is the 

least positive residue of jp (mod q), by an easy induction. Taking n = p gives that 
0 = bo- =pbq+1+ 2+ +--+ Ipb-q (modq) (since + 0 _ O (modq) 
for each j), and thus b-q 0 (mod q). Therefore, if 1 < j < p - 1 we write 
j =(m + l)p - nq, so that 

bj = bjnq = 2 m+ + 2 + + ( j/ P)q (mod q). 

Lemma l is proved. D] 

Let p z (mod q). By Proposition 1 we have 

p-1 

EA -ix(i). 
i=1 

Denote 

O<i< P2 

It is easy to see that w = 2r. 
Since the order of q modulo I is 121 according to [10], Theorem 2.13, we have 

that q is splitting to two divisors in Q((7). Because I -3 (mod 4), it holds that 
( 11) =-1, hence if qjNQ((1)/Q(w), then q divides rr. 

The following formula holds 

(1) Ti = 3 A-iA x(ij-1) =do +dli +d2(12+ +di-,('-. 
i,j < P 

Then q 1T- if and only if 

do - di- di-, (mod q). 

Let p-- -m (mod q), m > 0, m _ 1 (mod 2). Hence bi A . Denote by m 
r such a number that r < 1, gr =_ +n (mod p). Let X(ij-') = I.Then either 
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ind(ij-1) = r or r + 1, therefore 

(2) ij-1 +n (mod p), i, j < P 
2 

The following lemma determines the coefficient dr of (1). 

Lemma 2. Let p--m (mod q), m > O, m _ I (mod 2), gr _+n (mod p). For 
the coefficient dr, r < 1, the following holds: 

dr = A?Aj. + A A? A+ 
?<<n n <<n 

+ A Ajn+2 + + A j Ajn+n- 
n i<n n p<i< 2 n-i 

for n odd, 

dr = AjAjn+ Z AjAjn1 m m m m 
?<i<n n<i< n 

+ Aj3 A+2+ + .. A i An+n-jj 
2p <j< 3p (n _-l)p 
ni ni 

2 
<3<2 

for n even. 

Proof. By (2), ij1 In (mod p), i, j < P. Therefore either i _ nj (mod p) or 2 
i _p - nj (mod p). Let nj < p. From (1) we get the term A ? An X(ij1) if 

nj < P and AjAp-njX(ij-1) if nj> P. Clearly Pm'? j n-1 - (modq). From 2 2 m m mdq.fo 
p + _-1 (mod q) we get Anj = Ap-nj. If p < nj < 2p, then the coefficient 

of X(ijY) is A j Anj-P and hence A j An? +1 Repeating this procedure we obtain m m m m 

dr= A3An + A A3+ + A An+2+.... r-I 
?< <n n <i<n n <i<n 

The following lemma determines the coefficient dr, gr In (mod p) in the 
special case when nj Pm' The reason why we restrict ourselves to such special q 
coefficients is that in this case it is possible to give such criterion of divisibility h+ 
that has a simple form (see Theorem 1). If n does not divide p+m, then things are 

q 
more complicated and even in the most simple case when n = 3 and 3 does not 
divide p+m, the corresponding criteria have a more complicated form than Theorem 

q 
1 (see Theorem 2). 

Lemma 3. Let p---m (mod q), m > O, m-1 (mod 2), gr-In (mod p). For 
the coefficient dr, r < 1, n. p+m the following holds: 

q 
q-1 q-1 

dr - A( AnZ +A AiAnZA +1 
qn i=1 i= 1 

q-1 q-1 

+...+EA i A.nT+n-3 + -E_AiA_n+n-) 
i=l 1 i=l 

rn-i ~ m 
2 -t 

2 

-E A iA -nT+[ni (mod q), 
i=1 
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for n _ 1 (mod 2), 

q-1 q-1 q-1 

dr A i Ani + Ai Ani+i + +ZAi Ani?+n_ qn xi= M =. rn = m 2J 

E A-iA- ni+[ n] (mod q), 
i=l1 

for n-O (mod 2). 

Proof. The following congruences hold 
m-1 

S A,A A, EA A 5An -E A-iA-ni, m mn qn m. m m rezb 
?< j< n i=l [ m ]=0 

rn-i 

q-1 2 

n-1 A 3 A wr^+n_1 P 2 A i Ant +1 
- n - 1 

n-iA-i-nA__ _ 

n n -r < 2 

for nt odd. 
And 

rn-i 
+ 

q-1 2l 

A 3 An+n-1E,A iAnin-1 A-i A-ni+?b- E ~ 2 qn m m nz m 
?n-1 nI i= [ m 2 ? 

2~~~~~~~~~~~~~~~~~~~ _<< 17' 
n 3j< n2i=l [ m ] 1 

And~~~~~~~~~~~~~~~r- 

P+M q-1 2 

S AiA +iL EAiAnIi E A-iA-n?i, 
0( 2 )q<i<nP i=1 [imn]=o 2 -i 

for n3 even. 
These congruences can be proved as follows. Let nt be odd. If s _t (mod q), 

then A_ At (mod q). On the basis of this fact it is enough to prove that for each 
k =1, 2,* <j, n2 - the following holds: the set {j i <j < (k1)P} U { [m] 
k,i?< m2- 1} gives p?m exemplars of the full residue system modulo q for k= 

nqn 
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1, 2,.. ., n3, and P?+n exemplars of the full residue system modulo q for k - n2l. 2 2qn2 

From ftp?+ m we get that (m,tn) 1. Hence [in] = k, k #0 if and only if 

km . (k + 1)m 
f ft n n 

Denote P+? = v, hence m = nqv - p. It implies 
nq 

kqv- < i < (k + 1)qv-( + 1)p 

Multiplying by -1 and adding (k + 1)qv, we get 

(k+l)p 
<-i + (k + 1)qv < 

kp + qv. 
n n 

Denote i* =-i + (k + 1)qv. Now we have 

kp (k+1)p; (k+1)p <i* kp 
I ~ <- qv. 

n n n n 

This provides qv successive natural numbers, hence we have v = P+m exemplars of 
full residue systems modulo q. If k = 0, then the terms Ao and Aqv will be missing. 
Since Ao = Aqv 0 O, the congruence will hold for k = 0 as well. For k - 

n2I 

by the same method we get P2+m exemplars of the full residue system modulo q. 
Summing the congruences we get the required congruence. The same procedure 
applies for n even. Lemma 3 is proved. O 

In the formula for dr, there is the sum 
m-1 

2 

AaA-niA [ni. m m m 

i=l1 

We shall prove that 
m-1 r- 

2 2 

Z A-ni -[n,(o ) A -iA m - .m] E Xi X m, n (i) (o ) 
i=1 

forXi =A -, fori= 1,2,..., 21 

Clearly 

+ ni - m ~~~~(mod q). m Lm_ m -m- 

The number ni - m [In] is equal to the residuum ni modulo m. It follows 
that ifni-m[] < -m thenni-m [n] ni 

<m,n(i). If ni-m [m] > M, then 
nim m = m - Om,n (i) 

Consider the numbers 

A qm,n(i) resp. A-1 (M-nm, n (i))* 

Since 

Om, n (i) + -(m - m,n(i)) = -1, 
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there holds 

A 'frrn(i) A - (rn?/,(i)) (mod q), 

which implies the required relation. 
Now we shall express the coefficient do corresponding to the value n 1. The 

substitution into (3) gives 

rn-i 

2~ 1 do = XE Ai2 E A2 t 

If qlh+, then do -dr (mod q) and hence for n _ 1 (mod 2) there holds: 

P M q-1 q-1 q-1 

p + m A i Ani + , A i Ani+l + .+ AitA'ni +n-3 qn m m m m m m 2 
i=l i=l i=l 

Iq-1 
+ 2 EA i Anmn+n1) 

m-1 1 mi1 

E A A _p +mE A2 E A2 d) 

It is easy to prove that Ei=1 Aii 2 (mod q). Therefore 

P M q-1 ii=1 i=q-1 

+ EA i Anm+n- + 1) 

-Qm,n(A-1,A2 ...At) (mod q), m m m 
where t rn-i 2 

By [8] (proof of Theorem 1), the following holds: 

1 q-1 1 q-1 Iq-1 
-, A i A ni + - A i A nt+j + + +-EA i A n +n-3 n m m n m m n M mm 2 

t=1 t=1 i=1 

Iq-1 
+ 2j A i AnA+n-i + 1 

1 ftq1 - 1i=1 

1nq--1 
- -~ q (mod q). 

The congruence (i) is now proved for n1 (mod 2). Analogically, the congruence 
(i) can be proved for n- 0 (mod 2), on the basis of the congruence 

q1 1 q-1 q 1 

-EA i Ani +-EA i Ani+j + + +-EA i An?-+n_l + I 
n m m m m n m m 2 

i=1 i=1 i=1 

n q-1 
( 1 

2 a ~(mod q). 
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Now we shall prove the congruence (ii). Substituting nq, where nql P+m, instead 
of n into the formula for the computation dr, we get for n- 1 (mod 2) the following 
sum: 

A,(Al +A2 + +Aqi1) +A2(Aj +A2 + +Aqi1) 

1 
+ + -Arq-1 (Al + A2 + + Aq-l). 2 ~2 

It is easy to see that Al + A2 + + Aq -1 (mod q), therefore 

Ai(Aj + A2 + + Aqi1)+ A2(Aj + A2 + + Aq-1) 

+ +2A,,,q-1(Al + A2 + + Aq-1) - (mod q). 
2 2 2 

Analogously for n 0 O (mod 2) we get 

A,(Al + A2 + + Aq-1)+ A2(Aj + A2 + + Aq-1) 

+ +A.1i q-=- (modq). 

Theorem 1 is proved. C] 

We shall show 12 corollaries of Theorem 1. 

Corollary 1. Let q be an odd prime. Let l,p be primes such that p = 21 + 1, 
I _ 3 (mod 4), p -3 (mod q), p 0 -3 (mod q3) and let the order of the prime q 
modulo I be 1-1. Suppose that q divides h+, the class number of the real cyclotomic 
field Q((p + C,-1) Then 2q-1 _ 1 (mod q2). 

Proof. By Theorem 1, (i) putting nf 2 we have 

p+32-1_I 
2q q -Q3,2 (A ) (mod q). 

Clearly Q3,2 (X1) = 0, hence 

2q q -0 (mod q). 

n2ql_ q 
If P+3 0 0 (mod q), then 1 (mod q). Supposethat qlP+3. By Theorem 

1, (ii) we have 

_P2- =-Q3,q (A - 0 -- (mod q) , 2q 3 

hence p+ 3- 0 (mod q3) a contradiction. C] 

Corollary 2. Let q be an odd prime. Let l, p be primes such that p = 21 + 1, 1 - 3 
(mod 4), p _-5 (mod q) and let the order of the prime q modulo I be 1-1. Suppose 
that q divides h+, the class number of the real cyclotomic field Q((p + ?P-1). Then 

Fq(5) =0 (mod q2), 

where F, is the nth Fibonacci number (Fo O, F1 = 1, Fn+2 = Fn+1 + Fn for 
0 < n). 

Moreover, if p 0 -5 (mod q3), then 27-1 1 (mod q2). 



ON DIVISIBILITY OF THE CLASS NUMBER h? ... 377 

Proof. The number p + 5 has the divisors n - 2,4. Therefore by Theorem I (i) 

1Q5,2(A-IIA-2) (mod q), 
2q q 5 

p 
Q,4A4 7A12)(-1q) 2q q - 

Clearly 

Hence 

Q5,2 (XI X2) -X2 X22 -2XIX2 -(XI _-X2)2, 54X1X) 0 

It is easy to see that 
()~~~2 

p+A-1 A-2 = Z ) (mod q), 
2q q~~~q<j 

1 

0((modq). 2q q -q << 

Because 2qll 0 (mod q) if and only if 4-1_I 0 (mod q), we get that if 
q q 

qjh then 
S K0 (mod q). 

By [1 1] , for q > 5 there holds 

~q-) (mod q), 
5 <* 

which proves the first- assertion of Corollary 2. 
I 

q1 0- 0 (mod q), then 0 (mod q). By (ii) we get 2q 
0 

(mod q)-a contradiction. D- 

Remark. P.L. Montgomery [91 reports no solution of Fq(5 0 (mod q2) with 

q < 232 

Corollary 3. Let q be an odd prime. Let 1,1 p be primes such that p -21 + 1, 1 =- 3 
(mod 4), p -=-7 (mod q) and let the order of the pri'me q modulo 1 be L-1 Sups 2 ups 
that q divides h+, the class number of the real cyclotomic field Q((p~ + (-1). Then 

(*) ~~~~) I I I =-U (mod q). 
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Moreover, if p - -7 (mod q3), then 2q-1 - 3q-1 - 1 (mod q2). 

Proof. The number p+7 has the divisors n = 2, 3, 6. By Theorem 1 (i) the following 
holds 

2q q -- Qr,2(A-71,A j2,A-3) (mod q), 2q q ~~ 
~~~7 7 7 

P+732 1 1- Q7,3(A- ,A-2,A-3) (mod q), 
2q q Q, 

7 7 7 

p+76q -1 7 2q - q- - 7,6A-1, 7,A3 (modaq) 

Clearly 

$7,2 = 7,3 )2 3 07,6 2 3 

Hence 

Q7,2(X1, X2, X3)= Q7,3(X1, X2, X3), Q7,6(X1, X2, X3)= 0. 

By rearrangement we get 

Q7,2 (A -i , A2 2, A-3) 

p+ 7q- 7 

2 2 

+ + (mod q), 
\q <i< 2q( 2q 3 qIq<<3 \-L <i<~ <j< / 

Therefore we have 

p + 7 2q-1 _ I 
2q q 

2 2 (mod q), 

2q q 

2 /2 

TJ ~~~~~~~~(mod q), 

p+76q-1 1~(o) 

2 ~2q 

If~~~~ 
(~~ ~~)2 ()2 (#?0 4 ~0 (mod q), 
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then P+7 X 0 (mod q), 6q-l _ 0 (mod q) and 2ql1 _ 3q11 (mod q) and 2q q q q (mdqan 

2~ q- 0 o (mod q). This easily yields a contradiction. 
If 

( E t) + ( E t ) + ( E t) ( E t) _ 0 (mod q), 

and P+7 X 0 (mod q), then 2q 

2q-1 3q-1 1 (mod q2). 

If P 0+7-O (mod q), then by Theorem 1 (ii) PI+7i 0 (mod q) and therefore p -7 
(mod q3) a contradiction. C] 

Corollary 4. Let q be an odd prime, q -2 (mod 3). Let l, p be primes such that 
p = 21 + 1, 1 -3 (mod 4), p _-7 (mod q) and let the order of the prime q modulo 
I be 1-1. Suppose that q divides h+, the class number of the real cyclotomic field 
Q((p+(p1). Then 

S t d E -?0 (mod q). 
q < i < 27q 2q <i< 3q 

Proof. The left side of the congruence (*) can be expressed as the norm of the field 
Q(W) into Q. If q -2 (mod 3), then q does not decompose in the field Q(W), and 
it implies the assertion of Corollary 4. C] 

By [3] there holds: For 1 < a < 6, and any odd prime q # 7, 

Bq-i (a -Bq-i- (Uq(7,a,b)-1) (mod q), 
7 ~~2q 

where b = 1, 2 or 3 with b +q (mod 7), and U, satisfies the recurrence relation 

Un+3 = 7Un+2 - 14Un+1 + 7Un. 

The values of U1, U2, U3 are given in the table below 

?a ib U1 U2 U3 

2 1 1 2 5 
3 2 2 7 26 
1 3 2 6 19 
3 1 12 6 
1 2 3 11 41 
2 3 2 5 13 
a a 1 3 10 

From Corollary 4 and the just mentioned result we get: 

Corollary 5. Let q be an odd prime, b _ +q (mod 7) where b 1, 2 or 3 and 
q -2 (mod 3). Let l, p be primes such that p = 21 + 1, 1 _ 3 (mod 4), p --7 
(mod q) and let the order of the prime q modulo 1 be 1-1. Suppose that q divides 
h+, the class number of the real cyclotomic field Q((p + (p-1). Then 

Uq(7, 1, b) -Uq(7, 2, b) _ Uq(7, 3, b) (mod q2). 
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Corollary 6. Let q be an odd prime. Let 1, p be primes such that p = 21 + 1, 1 3 
(mod 4), p --9 (mod q) and let the order of the prime q modulo 1 be 1-1. Suppose 
that q divides h+, the class number of the real cyclotomic field Q((p + (p-1). Then 

( E 0 ) + I E z ) (mod q). 
q <j< 29q 2q <j< 4q 

q 
<j< 29q 2q <i< 4q 

Moreover, if p # -9 (mod q3), then 2q-1 1 (mod q2). 

Proof. The number p + 9 has the divisors nr 2,4,8, which follows from p + 9 
21+10= 2(l+5) = 2(4k+3+5) =8(k+2). Therefore, we have 

09 2 
1 2 3 4 

09 t1 2 3 4 
09 t1 2 3 40 

4), 2 4 3 1y 4)v 4 1 3 2J 4), 1 2 3 4y 

Hence 

Q9,2 (X1X2, X3, X4) = Q9,4 (X1X2, X3, X4) 

= 12 X2+ X4 (X1X2+X1X4+X2X4), 

and 

Q9,8(XlX2,X3,X4) = 0. 

By rearrangement we get 

Q9,2(A-i I A -2 )A -3A IA ) 

( ) ~2 ()2 ()() 

- + + ~~~~~~~~~~~(mod q). 

The rest of the proof is the same as in the case of Corollary 3. 

To prove the remaining corollaries, the following fact will be used. 
1. If n _ +1 (mod m), then the permutation q$m,n is identical and therefore 

Qm,n (Xli,X2....Xmi-) = O. 
2. If nrn2 +1 (mod m), then the permutations qm,n1, qm,n2 are inverse and 

therefore 

Qm,n, (Xl i X2) Xm- 1) = Qm,n2 (Xl I X2..*.*. ) Xrn-l) 2 2 

Corollary 7. Let q be an odd prime. Let l,p be primes such that p = 21 + 1, 
I _ 3 (mod 4), p _-13 (mod q) and let the order of the prime q modulo 1 be 11. 

Suppose that q divides h+, the class number of the real cyclotomic field Q ((p + P-). 
Then 

Q13,2 (A -1, A2 1, A -3 A -4 )A -5 A-6) 

-Q13,3 (A _ , A2 _ A _3 A 04 A 5,A-6)=O (mod q). 

Moreover, if p # -13 (mod q3), then 

2q-1 3q-1 _ 1 (mod q2). 
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Proof. The number p + 13 has the divisors n = 2, 3, 4, 6, 12. By Theorem 1 (i) we 
have 

-1 e -Q13,2(A -l, A -2),A -3, A -4, A -5, A-6) (mod q), 2q q 13 13 13 13 13 13 

p+ 133 -1 Q13,3(A-1,A-2,A-3,A-4,A-5,A-6) (mod q), 2 q q 13 13 13 13 13 13 

p+214q-1 -1 -Q13,3(A-1 , A-2 ,A-3, A-4, A-5I,A-6) (mod q), 
2q q 13 13 13 13 13 13 

~~~p + 13 6q-1 I- mdq 

p+ 136q-1 
1~~~ Q13,2(A -1,A-2,A -3,A -4,A -5,A-6)(mod q), 

2q q 13 13 13 13 13 13 

p +13 12q-1 -1I 

2q~~~ 
(mod q). 

If either 

Q13,2 (A- I3 A2 l,A-3, IA-43 IA-5, IA6 ) 0 (mod q) 

or 

Q13,3 (A1 I3 A2 )3,A -13 IA4 )3A -5 IA-6 ) 0 (mod q), 
the p13 0(mo(modhnc q),ll 

then P+13 2 0 (mod q), hence 1 q (mod q) and this yields a contradiction. 

Corollary 8. Let q be an odd prime. Let l,p be primes such that p = 21 + 1, 
I-3 (mod 4), p _-17 (mod q) and let the order of the prime q modulo 1 be 1 1 

2 
Suppose that q divides h+, the class number of the real cyclotomic field Q((p +(j1) 
Then 

Q17,2(Am , A -2 IA-3 A -4, A , A -6, A ), A-8) 

-Q17,4(A A2 ,A3 ,A4 ,A5 sA6 ,A7 ,A 08) (mod q). 

Moreover, if p # -17 (mod q2), then 2q1 1 (mod q2). 

Proof. The number p + 17 has the divisors n = 2, 4, 8. By Theorem 1 (i) we have 

p +17 2ql-1_I 
p+ 1 q 1 --Q17,2(A-1 , A -2I,A-3 ,A-4I,A-5, A-6 ,A-7, A-8) (mod q), 

2 q q 1 7 1 7 1 7 1 7 1 7 1 7 17 7 

2q e -Q~Q17,4 (A -1 I A -72 A - 
3 ) A -4 ) A _s, A -6 ) A -7 A -8 ) (mod q), 

1q Q17,2(A -1i A -2, A -3, A -4 A -5, A -6, A -7 A -8) (mod q). 2q q 1 7 1 7 1 7 1 7 1 7 1 7 1 7 17 
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If either Q17,2 # 0 (mod q) or Q17,4 # 0 (mod q), then 2+17 q 
0 (mod q) and 

2q-l 0 (mod q). The first and the third congruence imply that 
q 

2q-1 _ I 8q-1_ (mod q), 

therefore 2q 1- 0(mod q) a contradiction. E 

From now on, the function values of quadratic forms will be omitted, i.e., instead 
Of Q19,2(....) we shall write Q19,2- 

Corollary 9. Let q be an odd prime. Let l,p be primes such that p = 21 + 1, 
I _ 3 (mod 4), p _-19 (mod q) and let the order of the prime q modulo 1 be 11. 2 
Suppose that q divides h+, the class number of the real cyclotomic field Q((p + 
(P-1). Then Q19,2 0 (mod q). If Q19,3 # 0 (mod q), then 2q1 1 (mod q2). 

Moreover, if p # -19 (mod q2), then 2q-1 1 (mod q2). 

Proof. The number p + 19 has the divisors nr 2, 3, 6. Hence 

p + 19 2q-1 _ I 
p+192q -l = -Q19,2 (mod q), 
2q q 

p + 19 3q-1 _ I 
2q q - Q19,3 (mod q), 

pq + 19 6q-1 - Q19,3 (mod q). 
2q q 

If Q19,2 0 
0 (mod q), then 2 q-ll 

0 (mod q). The second and the third 
congruence imply that 

3q-1 _ 1 6q-1-1 
q - q (mod q), 

which is not possible, because 2 q-l_ 0 (mod q). If Q19,3 0 
0 

(mod q), then 
q 

3q-1 _ 1 6q-1-1 
(mod q), 

q q 

and it follows that 2q-1 =1 (mod q2). D 

Corollary 10. Let q be an odd prime. Let l,p be primes such that p = 21 + 1, 
I _ 3 (mod 4), p _-25 (mod q) and let the order of the prime q modulo 1 be 11. 2 
Suppose that q divides h+, the class number of the real cyclotomic field Q (p + Ql)* 

Then 

Q25,2 Q25,30Q25,4 _ (mod q). 

Moreover, if p # -25 (mod q3), then 2q- 3q-1 _ 1 (mod q2). 

The proof is analogous as for p _-13 (mod q). 

Corollary 11. Let q be an odd prime. Let 1, p be primes such that p = 21 + 1, 1 _ 3 
(mod 4), p _-m (mod q), p # -m (mod q2), m > 0,; m 1 (mod 2) and let the 
order of the prime q modulo I be 1-1. Suppose that there exist divisors nl, n2 of the 
number p+ m such that niln2 +I1 (mod m) or n_ +Tn2 (mod m). If q h+, then 

n q1 -nq (mod q2). 



ON DIVISIBILITY OF THE CLASS NUMBER h+ ... 383 

Proof. Since nrn2 +1 (mod m) or nr1 +n2 (mod m), we have 

Qm,nj (Xl,i X2, * .. *iXm21 )--Qm,n, (Xl, X2, . .. vXmn-1) (mod q), 2 (md2) 
and hence 

p +m n q-1 p+mnq-1 - 
(mod q). 2q q 2q q 

The Corollary now follows from P+? # 0 (mod q). D 
2q 

Corollary 12. Let q be an odd prime. Let 1, p be primes such that p = 21 + 1, 1 3 
(mod 4), p _-m (mod q) and let the order of the prime q modulo 1 be 1 1. Suppose 
that q divides h+, the class number of the real cyclotomic field Q((p + (p-1). Then 
for arbitrary nl, n2 such that nrrn2 IP + m, (nrrn2, q) = 1, the following congruence 
holds. 

Qm,nin2(A 1,A -2..A t 

=Qm,ni(A-, A 
'2.. 

A_ + Qn,n2(A- ,A 2,...,A t) (mod q), 

where t= m2n1 2 

Proof. Since (n1n2)+-l-l _ n7-1 + q (mod q), the preceding congruence 
q qq 

implies Theorem 1 (i). D 

The following example shows the possibility of applying the congruence of Corol- 
lary 12 in order to find out the divisibility of the class number h+ of the real 
cyclotomic field Q (p + p- 1). 

Example 1. Let p _-11 (mod 43). If p # +2 (mod 11), then 43 does not divide 
the class number h+. If p + ?2 (mod 11) and 431h+, then 

p+ll=2.43'.p7lp22 Pn 

wherepi_+1 (mod 11), for i=1,2,...,In. 

Proof. Let 43S1P+ p+ and 43s+1 does not divide p+ 11, where 1 < s. Put nr1 = P+ 
__ ~~~~2.438s 

n2= 2. Then it holds: 

Q11,2n1 (A39, A35, A31, A27, A23) 

Q11,nj (A39,A35,A31,A27, A23)+ Q11,2(A39,A35, A31, A27, A23) (mod 43). 

In the following we shall write quadratic forms without arguments. Because 43 _ 
-1 (mod 11) we have 2nr1 = P++p - p (mod 11). Because Qm,n = Qm,-n, it is 
enough to consider the cases p _ 1, 2, 3, 4, 5 (mod 11). 

1) p _1 (mod 11), then Q11,1 = 0-Qll, + Q11,2 (mod 43). From Qll, = 

Q11,2 we have Q11,2 0 (mod 43). 
2) p _ 2 (mod 11), then Q11,2= Q11, + Q11,2 (mod 43), hence in this case we 

do not have any information, as Q1,1 = 0. 
3) p 3 (mod 11), hence Q11,3 =-Qll 3 + Q11,2 (mod 43), 3 7 (mod 11), 

3.7 _-1 (mod 11) therefore Qll 3 = Q11,3 and we get that Q11,2 0 (mod 43). 
4) p _ 4 (mod 11), then analogically as in the preceding cases we get the con- 

gruence Q11,3 -2Q11,2 (mod 43). 
5) p_ 5 (mod 11), then we get Q11,3 0 (mod 43). 
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By substituting A39, A35, A31, A27, A23 we have Q11,2(A39, A35, A31, A27, A23) 
Q11,2 (9, 33,15, 20, 10) 11 (mod 43) and Q11,3(9, 33, 15, 20, 10) 39 (mod 43). 

Hence Q11,2 0 0 (mod 43), Q11,3 # 0 (mod 43), and Q11,3 # 2Q11,2 (mod 43). 
By this we proved that if p # +2 (mod 11), then 43 does not divide h+. 

The preceding calculations show that if p+ 1 had another divisor than 2 different 
from ?1 (mod 11), then 43 would not divide h+. Therefore p + 11 must have the 
above mentioned form. D 

Throughout the rest of the paper, we shall consider the divisibility of h+ by the 
concrete primes q =7,11,13,17,19,23. Theorem 1 and its corollaries would not 
sufficiently solve this task. The reason is that for some m (e.g. m = 11), only one 
suitable divisor of p + m is known, namely n = 2. 

In what follows, Bj resp. Bj (X) will denote a Bernoulli number resp. a Bernoulli 
polynomial. 

Theorem 2. Let q be an odd prime. Let 1, p be primes such that p = 21 + 1; 1 _ 3 
(mod 4), p--m (mod q), for m 1, 3,5,... 2q-3, m _ 0, 2 (mod 3) and let the 
order of the prime q modulo 1 be 'y. Suppose that q divides h+, the class number 
of the real cyclotomic field Q((p + (P-). Then the following holds: 

I. m -0 (mod 3). 

(i) if q 1 (mod 3), then 

p + m 3 1 +1 (1) m C (mod q). 
2q q + 3q 

(ii) if q _2 (mod 3), m+2 < q, then 

p + m 3 1 + 2B2 (1) m Cm (mod q). 
2q q + 3q 

(iii) if q 2 (mod 3) and m + 2 > q, then 

p m -q 9 q_2 (3 =-Cm (mod q). 

II. m 2 (mod 3) 
(i) if q 2 (mod 3), then 

p+m3q-1 I I (1) m (modq). 

(ii) if q_1 (mod3), m+2<q, then 

2qm3 9B1 2 (1)C m (mod q). 
2q q + B 3 

(iii) if q 1 (mod 3), m + 2 ? q, then 
p+m3 l~1 1Bq-2 = Cm (mod q), 2q q 9 B~ \3/ 

where 
m-1 m-1 

2 2 k-1 1 

Cm Z E A2 Z_ A-iA-3i+l+ 7 3 A- 
i=l i=l i=l in 

3i$m (mod q) 

and k m+2 (mod q), 0 < k < q. 
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Proof. By Lemma 2, for the coefficient dr, where gr = +3 (mod p), we get 

dr - Ai A3i + AiA3i+l. m m 7nm 

o<i< 3- R <i< P2 

Then we proceed similarly as in the proof of Lemma 3. The corresponding congru- 
ence will be obtained from the fact that qjh+ implies do- dr (mod q), using the 
following results of [8]. 0 

Theorem 3. Let q be an odd prime. Let l, p be primes such that p = 21 + 1, 1 - 3 
(mod 4), p--m (mod q), for m = 1, 3, 5,... 2q-3, m _ O, 2 (mod 3) and let the 
order of the prime q modulo 1 be 1-1. Suppose that q divides h+, the class number 
of the real cyclotomic field Q((p + (p-1). Then the following holds: 

(i) m 0 (mod 3), q 1_ (mod 3), then 

2~m~4q 3~l -1 - Qm+4q,3(A-lv A-2. .vA ) t (mod q), 
2q q m m 

where t = 4q+m- 1 

(ii) m_ 0 (mod 3), q 2 (mod 3), then 

p~m~2q3~l 1 --Qm+2q,3(A-1, A-2,. .,A t (mod q), 
2q q m r-n 

where t = 2q+m-1 

(iii) m 2 (mod 3), q 1 (mod 3), then 

p~m~2q3~l 1 --Qm+2q,3(A- A-2, ..A t) (mod q), 
2q q m m 

where t = 2q+m?-1 

(iv) m_ 2 (mod 3), q 2 (mod 3), then 

-Qm+4q,3(A v A2 .A_ t) (mod q), 

where t = 4q+m-1 
2 

Proof. (i) If m 0 O (mod 3) and q 1_ (mod 3), then because p _ 2 (mod 3) we 
have p + m + 4q- 0 (mod 3) and the assertion (i) follows from Theorem 1 (i). 
Further we proceed analogously. O 

Lemma 2 of [8]. Let n, k be integers such that nk 0 0 (mod q). Then 

A = 
+ Bq-2 (mod q). 

ni$-k (mod q) 

Lemma 3 of [8]. Let n be an odd number. Then 

q-1 
-1I -12 

AiAni-=- 2(n-2)Bq-2 + 2(n - 4)Bq-2 

+ *- *+n21Bqn2(- ( 
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By Lemma 2 of [8] we get 
q-1 q-11 

ZAiAni+l=- AiAni + 1Bq-2 (mod q), 
i=l 1=l 

Z AiArni?2 E AjAnli +-3q-2 +-) +-Bq-2 (mod q), 

AiAni+2 n21-EAiAni + -nBq-2 n - +-q_ n-) 

i=1 ~~i=1 

q-1 q1 1 (2\ 

SAjA n~in-i iiEiS AnAi + 1Bq-2 
I B -2 

i=1i= 

+ * 1 +Bq-2 (mod q). 

Theorem 4. Let q be an odd prime. Let l, p be primes such that p = 21 + 1, 1 _ 3 
(mod 4), p--m (mod q), for m = 1, 3,5,...,2q-3, m -3 (mod 4), and let the 
order of the prime q modulo 1 be 1-1. Suppose that q divides h+, the class number 
of the real cyclotomic field Q((p + p1). Then the following holds: 

(i) if m+3 < q, then 

p+m4 ~l~ 1 -1B (-) Cm (mod q) 

2q q - Bq 4 

(ii) if m+3 > q, then 

2q +38-q 1 (1) Cm (mod q), 
2q q + 4q 

where 
m-1 m-1 

2 2 k-1 1 
Cm=EA2 - E A-iA-4i+l + A j A- Cm 5m Ai 4ii S -4 7 

i=l i'=l i=l m 

4i$m (mod q) 

and k = m+3 (mod q), 0 < k < q. 

Proof. Analogous to the proof of Theorem 2. 

To prove that q does not divide h+ for p _-1 (mod q), the following Theorem 
5 will be necessary. 

Let j be an integer, 0 < j < 2q, j-0 (mod 2). Define the sums 

2 j-1 l q-1 j-1 

Sj = ,Ai , 2ji + k E Ai E 2ji + k 

k_1 (mod 2) 2 k--l (mod2) 
2ji$-k (mod q) 2ji$-k (modq) 

Theorem 5. Let q be an odd prime. Let l,p be primes such that p = 21 + 1, 
I-3 (mod 4), p _-1 (mod q), and let the order of the prime q modulo 1 be 11' 

Suppose that for each j such that Sj 0 O (mod q) there exists n, (n, 2q) = 1, nrlp+l 
such that S.* 0 0 (mod q), where j*- nj (mod 2q). Then q does not divide h+, 
the class number of the real cyclotomic field Q((p + p-1). 
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Proof. Let 2Vlp + 1 and let 2v+1 not divide p + 1. Let n be a divisor of p + 1, 
(n, 2q) = 1. Denote M = 2v+ln. We shall compute the coefficient dr, r < 1 in (2), 
where 9r = +M (mod p). By Lemma 2 we have 

dr E AiAMi + E AiAMj+lj+ 
O<i< M 

p 
<i< 2p 

It implies that 

dr-S+ (PjN -2) E EAiAMi+k (mod q), 
k i= 1 

where 

2 q-1 2 q-1 

S 5 AiAMi + E AiAMi+l + AiAMi+2 + E AiAMi+3 

i=1 ?= q+1 i=j = q+ 
2 -2 

2 q-1 

+*** + AiAMi+M2+ 5 AiAMi+ m -1. 
i=1 i= q+ 

Therefore 
M-i M-1~~q- M4_ q-1 q-1 M21 

S= AAiAMi+2k +E Ai Mi+k 
k=O i=1 q+1 k=1 

2 k-1 (mod 2) 
Mi$-k (mod q) 

By Lemma 2 of [8] and Lemma 3 of [8] we get 

EEAiAmi+2k-4 (2+ ) 
k=O i=1 

M 1 
1 2k 

2M E Bq_ (-2 (mod q). 
k=1 2 

k =1 (mod 2) 

If qjh+ then dr do (mod q), hence 

S + _ (+1ME AiAmi+ AiAMi+k- 
(mod q). 

q k=O i=1 k=O i=1 q 

By [8] we have 

1 lq1 1 q1 
1 + Y Y 'AiAMi+k (mod q). 

k=O i=1 q (o ) 

The congruence 

p+ I M -1_I M lM ll 

2q q 2 2 q 

follows. 
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Substituting for S we get 

p +l Mq-1 _ l q- 2 -1 1 1 2_ k 
_+ E Ai E Mi+k2M E Bq-2Qt). 

2q k-1 (mod 2) k-1 (mod 2) 
Mi$-k (mod q) 

By Theorem 1, qjh+ implies that 

p + 1 Mq-1-- (mdq 

2q q 

Therefore 

q-1 2-1 1 _1 

5 Ai 5 Mi+k2M 2 (mod q). 
g?1 k=_i+k 

2 
= 

2 k_1 (mod 2) k=_1 (mod 2) 
Mi$-k (mod q) 

By Lemma 2 of [8] and Lemma 3 of [8] we get 

q-1 2 1 2 2 1 

(4) Ai E -M k Ai E Mi+k (mod q). 
q+1 k=1 i=1 k=1 

2 k-1 (mod 2) k=1 (mod 2) 
Mi$-k (mod q) Mi$-k (mod q) 

Clearly 

2q-1 

E M+k-0 (modq). 
k=1l 

i 
k-1 (mod 2) 

Mi$-k (modq) 

Therefore the congruence (4) can be rewritten as follows 

q-1 
q-1 j-1 1 2 j-1 

E Ai E 2jik-EAi E 2ji0+ -? (mod q), 
i=q+k k=1 2ji + k 

i=1 k=1 j+k 
2 k _1 (mod 2) k_1 (mod 2) 

2jio-k (mod q) 2jio-k (modq) 

where j- 2'n (mod 2q). 
Let 2V Ip + 1 and let 2V+1 not divide p+ 1. If p runs through all primes of the form 

21 + 1, then the numbers 2V (mod 2q) run through the set { j -j 2,4, 6,. . ., 2q - 2}. 
If Si 0 (mod q) for all j 2,4,6, ... , 2q - 2, then q does not divide h+. Let 

Sj- 0 (mod q) for some j. For this j there exists the corresponding coefficient 
dr, r < 1, where gr = 12v+1 (mod p). Consider the coefficient dri, r' < 1, where 
gr +2v+ln (mod q), nlp + 1, (n, 2q) = 1. If qjh+, then dr -dr/ _ do (mod q). 
Hence Sjp- 0 (mod q), where j* -nj (mod 2q). Theorem 5 is proved. -[ 

Theorem 6. Let q be an odd prime. Let 1, p be primes such that p =21 + 1, 1 _ 3 
(mod 4), p --1 (mod q), the order of the prime q modulo 1 be 2 and let the 
congruence 2q-1 - 3q-1 -1 (mod q2) not hold. 
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Suppose that q divides h+, the class number of the real cyclotomic field 
Q((p + (p-r) . Then for each k, (k, q) = 1, the following congruence holds: 

k- 1 
k Ql+2kq, P (A-,,A-2,... ,At) (mod q), 

q 2 

where t = kq. 

Proof. By Theorem 1 (i) put n = p+1+2kq = P+1 + k If qlh+, then similarly as 2q 2q 

in the proof of Corollary 1 we get P+1 0 (mod q2) and hence n = k (mod q2). 

Clearly n p+1?2kq 
p 

_ 2q 2q (mod d + 2kq) and Theorem 6 is proved. 

Theorem 7. Let q be prime, q < 23. Let 1, p be primes such that p = 21 + 1, 1 - 3 
(mod 4), and let the order of the prime q modulo 1 be I-1 or -. The prime q 
does not divide h+, the class number of the real cyclotomic field Q((p + (p-1). 

Proof. If the order of q modulo l is l - 1, then q does not divide h+ by [1] and [3]. 
Suppose that the order of q modulo l is 1-1. For q = 2,3,5, Theorem 7 was proved 
in the papers [2],[5],[6]. 

Now we shall prove that q does not divide h+ for q = 7,11,13,17,19, 23. 
Let p _-1 (mod q). By a computation we get that Sj 0 (mod q) if and only 

if either j = q - 1 or j = q + 1. Since 31p + 1, by Theorem 5 we get that q does not 
divide h+. On the basis of the Remark after Corollary 2, the case m = 5 need not 
be considered. 

I. Case q= 7 
By the assumption of Theorem 1, we have that the order of q modulo l is 2 

Therefore 

Since l _ 3,5,6 (mod 7), then p 21 + 1 -4,6 (mod 7). Therefore m 1, 3, 
i.e. either p _-1 (mod 7) or p -3 (mod 7). 

For p _-3 (mod 7) by Corollary 1 we get 

p + 3 26 -1 I 

14 7 0 (mod7). 

By Theorem 2, J,(i) we have 

1+337- + B5 )C3 (mod 7). 14 7 9 3 

By computation, 

3 -6 (mod 7), C3-6 (mod 7), B5 _6 (mod 7). 

Hence 

6P+3 + 
6 

6 (mod 7), 
14 9 

which is a contradiction 

p + 3 261 _ I 

14 7 -0 (mod 7). 
II. Case q= 11 
Analogously for q = 7 we get m = 1, 5, 7, 9, 17. 
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1. m = 7, p--7 (mod 11). 
By Corollary 3, if 111h+, then 

2 ~~~~~2 

( 2( 1j + K 2) ( zE ) - ? (mod 11). 1 1 22 ~~22~<i<33 2221<<3 

By computation, we get that this sum is 102 +32 +3.10 7 (mod 11), therefore 
11 does not divide h+. 

2. m = 9, p _-9 (mod 11). 
By Corollary 6, we have 

~ 22'~,) 2~ ) + (z u 

( <29 ( 2<i<9) I(<q <9 

-62 + 72 + 6.7-6 (mod 11). 

Therefore 11 does not divide h+. 
3. m = 17, p --17 (mod 11). 
By Corollary 8, it is enough to prove that 

Q17,4(A 1, A 2, A_3, A , A-s, A 6, A_7 A -8)O (mod 11). 

By computation we have 

Q17,4 (A -1A 2A3 ,A4 4A-s,A6 ,A7 ,A 8) _3 (mod 11), 

therefore 11 does not divide h+. 
III. Case q= 13 
In this case we have m 1, 5, 7,17,19,23. 
1. m= 7, p --7 (mod 13). By Corollary 3, 

2 2 

( 16 26<i< (13 26 26 ( 39 

32 + 2 + 3.5 =10 (mod 13), 

therefore 13 does not divide h+. 
2. m = 17, p --17 (mod 13). 
By computation, using Corollary 8, we get that 
A1 = 1,A2 8,A3 = 4,A4 = 1,A5 = 9,A6 = 7,A7 = 9,A8 - 1,A9 = 4,A10 = 

8, A1l = 1, A12 - 0. 
For the permutation q17,2 we have 

01 (i2 1 2 3 4 5 6 7 8> 

~17,2 2 4 6 8 7 5 3 1) 
hence 

Q 17,2 (XI i X2,.... ., X8) = X12 + X22 +.. + X82-(X1X2 + X2X4 + + X8X1)- 

By computation modulo 13 we get 
A-1 = A3 = 4,A-2 =A6 = 7,A-3 = Ag 4,A 4 A12 = 0,A-5 = A2 

17 A 6-A5 = 9, A17 17 17 17 

81 A -6 =A5 =9,A-7 =A8 =1,A-8 =All1= 1. 
1 7 1 7 1 7 
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Hence 

Q17,2(4, 7, 4, 0, 8, 9,1,1)-11 (mod 13), 

therefore 13 does not divide h+. 
3. m = 19, p --19 (mod 13). 
By Corollary 9 we have that 

Q19,2(8,1,7,1,8,0,1,4,9)=6 (mod 13), 

therefore 13 does not divide h+. 
4. m = 23, p -23 (mod 13). 
By Theorem 1 (i), putting n = 2, we get 

p +23 2 12 _1 

26 13 -Q23,2(A-13*** A11A ) (mod 13). 
By computation we have 

p 23 
-1 (mod 13). 

26 
Further we proceed using Theorem 2, III, (iii). The congruence (iii) can be 

rewritten as 

q-4 

p+m3ql-1 _ 1/I 1\3 q-1 _13 

P2q q --Bq-2 )+ -A- + 1 Ai (mod q). 

By substitution m = 23, q 13 and by computation we get 311 8 (mod 13), 

B1l (3) 7 (mod 13), A 1=A4 = 1, Z=1 43 A -2 (mod 13). 
33 

This implies the congruence 

8 23 1 (mod 13), 
26 

which is a contradiction with the congruence 

P +23 1 (mod 13). 
26 

The case III, q = 13 is solved. 
IV. Case q= 17 
By computation we get that the corresponding values of m are m 1,3, 7,15, 25, 

29,31. 
1. m = 3, p --3 (mod 17). 
By Theorem 1 (i) and Theorem 2 I.(ii), the following congruences hold: 

p +3 2 16 -1I 
34 17 -O0 (mod 17), 

p3316-1 29B (+ _ C3 (mod 17), 
34 17 + B 3 

where 
12 1 

C3 -All+Z j ~A -1. 
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By computation we get that C3 = 5, B15 (3) 8 (mod 17). Therefore 
p1-3~~ 

10 Ep3 7 (mod 17), 
34 

p +3 216 -1 

34 17 ?0 (mod 17), 
-a contradiction. 

2. m 7, p -7 (mod 17). 
By Corollary 3 it is enough to prove that 

+ 0~~~ ~ !~ (mod 17). 

1)+(E i) ( 
E 

\177 374 374 < i < 5171 177 374 374 < i< 571 

3. m = 15, p --15 (mod 17). 
In this case by Theorem 1 (i) we have 

p+ l= - Q1s2(A-S, I... A-7) (mod 17). 
34 17 Q1,2Af, . . 15 

By computation we get 

p+ 15 216 - 1 
34 - 17 -Q15,2(10, 1, 5,10,2,16, 12) (mod 17), 

hence 

13 
P+ 

-2 (mod 17). 
34 

By Theorem 2 I, (i) we have 

10 
p 

_ 7 (mod 17), 
34 

-a contradiction. 
4. m = 25, p --25 (mod 17). 
By Corollary 10, it is enough to prove that 

Q25,2(10, 12,5,8,5, 12,10,0, 1, 16,2, 10) 0 0 (mod 17). 

By computation we get 

Q25,2(10, 12,5,8,5, 12, 10,0, 1, 16,2, 10) _6 (mod 17). 

5. m = 29, p --29 (mod 17). 
By Theorem 1 (i) we have 

p +29 2161Q - I4) (od1) 
p+23416-1 =Q29,2(A-1, ..., A 14)(mod 17), 

34 1729 9 

34 17 - Q29,2(A-, I......... I ,A_14 ) .(mod 17). 

By computation we get 

13 -11 (mod 17), 
34 

9 
p - 29=8 (mod 17), 

-a contradiction. 
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6. m= 31, p --31 (mod 17). 
By Theorem 1 (i) we have 

p +31 216 _ I 
p+31316-1 -Q31,2(A-i.... ,A-15) (mod 17), 

34 17 31 31 

<4 
l7 

-~Q31,3(A-1, I ........... ,A 15 )(mod 17). 

By computation we get two congruences 

p +31 2 161 -_ 
342 17 --13 (mod 17), 

p+ 3 = 13 (mod 17), 
34 17 

a contradiction. 
V. Case q= 19 
By computation we get that m = 1, 7,9,11,13,17, 21, 31, 33. 
1. m = 7, p --7 (mod 19). 
By Corollary 3 it is enough to prove 

/ ~~~2 2 

19 38/ (38 <<57 (19<<38 38 <i<57 () 

By computation we have that the left side is equal to 13 (mod 19). 
2. m= 9, p _-9 (mod 19). 
By Corollary 6 it is enough to prove that 

( E ) ( >E 9 + ( E (m(_d E1md 9). 
19 38 38 <i< 76 19 38 38 <i< 76 

By computation we have that the left side is equal to 2 (mod 19). 
3. m = 11, p _-11 (mod 19). 
By Theorem 1 (i) we have 

p31128 8- = Q11,2(A-1....A-5) (mod 19). 38 19 h i 

By computation we get that 

Q11,2(A . A 15 Q,(11,14, 1, 15,5) -15 (mod 19). 

By Theorem 2 II, (ii) we have 

p+ 11318 -1 2 I9 
38 19 + -B17 - Cll (mod 19), 

where 
5 5 16 

=A-i - A-,A-13 + i+ E 3j 1-?=-117 (mod 19), 
i=l i=l1i=l 11 
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B17 (3) 13 (mod 19). 

Therefore 
p+ li 

3 15 (mod 19), 
38 

18 38 12 (mod 19), 

a contradiction. 
4. m = 13, p --13 (mod 19). 
By Corollary 7 it is enough to prove 

Q13,2(A ..., A6 )# 0 (mod 19). 

But 

Q13,2(11, 14, 15, 3, 10, 1) 3 (mod 19). 

5. m = 17, p --17 (mod 19). 
By Corollary 8 it is enough to prove 

Q17,2(Ai I ... IA A-8) # 0 (mod 19), 

but 

Q17,2(15, 1,3, 11, 11,5, 14, 10) _ 18 (mod 19). 

6. m = 21, p -21 (mod 19). 
By Theorem 1 (i) we have 

p + 21 218 1 QI _ 

38 19 --Q21,2(A2*,...,A-1o) (mod 19), 

pA-21 418- 1 Q= _ 

38 l9 - Q21,4(A- I1 ... A - o) (mod 19). 38 19 21 (md1) 
By computation we get 

Q21,2(13,0,15,1,3,11,11,5, 10) _ 4 (mod 19), 

Q21,4(13, 0,15,1, 3,11,11, 5,14, 10) -3 (mod 19), 

which gives a contradiction. 
7. m = 31, p --31 (mod 19). 
By Theorem 1 (i) we have 

38 19 -Q31,2(A-1, ... ,A-15) (mod 19), 

p + 31 3181- 

38 19 --Q31,3(A-1, ...,A -15) (mod 19), 

Q31,2(3, 5, 10, 11, 1, 13,1,11,10,5,3,0,15,11,14) 4 (mod 19), 

Q31,3(3,5, 10, 11,1, 13, 1, 11, 10,5,3,0, 15, 11,;14) 3 (mod 19). 

By computation we get 

3 1 3 (mod 19), 
38 
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18 3 7 (mod 19), 
38 

a contradiction. 
8. m = 33, p --33 (mod 19). 
By Theorem 1 (i) we have 

p +33 2181 -_ 
38 19 --Q33,2(A 33 v , A -16) (mod 19), 

p +33 4181 -_ 
P 
+ 
384 19 Q33,2(A-i, .... ,A-16) (mod 19). 

By computation we get 

Q33,2(10, 15,11,11,1,14,13,14,1,11,11,15, 10, 0, 5, 3) 18 (mod 19), 

Q33,4(10, 15,11,11,1,14,13,14,1,11,11,15, 10,0,5,3) 1 (mod 19), 

a contradiction. 
VI. Case q= 23 
The possible values for m are m 1, 3, 5, 7, 11, 15, 17, 25, 31, 35. 
1. m = 3, p _-3 (mod 23). 
By Theorem 1 (i) we have 

p + 3 222-1 _0 
46 23 0 (mod 23). 

By Theorem 2 I.(ii) we get 

p +3 322-1 2 (1\ + -B21 I ) 3 (mod 23). 
46 23 9 (3) 

By computation we obtain that C3- 19 (mod 23), B21 (1) 13 (mod 23), a 
contradiction. 

2. m = 7, p --7 (mod 23). 
By Corollary 3 it is enough to prove 

2 ~~~~~2 

S 

E (z))+ ( 

(mod 23). 
23 <i< 46 46 <i< 69 23 < 46 46 69 

By computation we get that the sum is different from zero (mod 23). 
3. m = 11, p -11 (mod 23). 
By Theorem 2 II.(i) we have 

p-112 -1 B21 ( 
Ci> l (mod 23), 

46 23 9 (3) 

where 
5 5 11 

Cl1= EA - A-iA-3+1 + 3j A - 3 (mod 23). 
i=l i=l i1 11 

Hence 

p + 11322 _ 1 22 (mod 23). 
46 23 



396 S. JAKUBEC 

By Theorem 1 (i) we have 

p+ 11 222 _ 1 

46 23 -Q11,2(A-,, . . A_s) (mod 23). 
Therefore 

P+8l 2- 1 17 (mod 23), 

46+ 11322 1 _ 22 (mod 23), 

a contradiction. 
4. m= 15, p -15 (mod 23). 
By Theorem 1 (i) we have 

p +15 222 _1~QS ( ~ 7 
46 23 -Y15,2 (A -l ................. A7 7)4 (mod 23). 46 23 15 (md 3) 

By Theorem 2 I.(ii) 

pI- 15 322 -1 2 
46 23 + -B21 C15 (mod 23). 

By computation we get a contradiction. 
5. m = 17, p- -17 (mod 23). 
By Corollary 8 it is enough to prove 

Q17,4(A - ,** A_s 87 0 (mod 23), 

Q17,4 (A-i,* A -8 )--8 (mod 23). 

6. m = 25, p --25 (mod 23). 
By Corollary 10 it is enough to prove 

Q25,4 (A -5 i . A _12 ) 0 (mod 23), 

Q25,4 (A. 2 1.. ) *)A-12 )1 1 (mod 23) . 

7. m= 31, p --31 (mod 23). 
By Theorem 1 (i) we have 

p+31 22-1 -Q31,2(A-1 ...A -15)13 (mod 23), 46 23 3 1 3 1 

p + 31 3 22 -1 QI (-,. A1) 1 
46 23 (A - i A 

-15 15 (mod 23), 

-a contradiction. 
8. m = 35, p --35 (mod 23). 
By Theorem 2 II. (i) we have 

p+35322l- 1 ( 35 (mod 23), 
46 23 9B21 '3} 

by computation we get the congruence 

p1-15 3221 1 10 (mod 23). 
46 23 
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By Theorem 1 (i) we have 

p + 35 2 22 - 1! 

46 2 35 222-1!Q35,2(A-, .. . A-_ 170 
-O (mod 23), 

-a contradiction. Theorem 7 is proved. D1 

Now we give the values of j such that Sj- 0 (mod q) for q < 173 (see Theorem 
5) 

1. q = 29,j = 4,28,30,54 16. q 101, j = 38,100,102,164 
2. q=31, j =30,32 17. q 103,j = 102,104 
3. q = 37, j = 36,38 18. q 107, j = 68,92,106,108,122,146 
4. q=41,j=40,42 19. q=109,j=108,110 
5. q = 43,j = 34,42,44,52 20. q 113,j = 112,114 
6. q = 47, j = 46,48 21. q -127, j = 12,26,116,126,128,138,228,242 
7. q = 53, j = 14,48,52,54,58,92 22. q 131, j = 130,132 
8. q = 61, j = 36,60,62,86 23. q 137, j = 76,80,136,138,194,198 
9. q = 67, j = 66,68 24. q 139,j = 56,138,140,222 

10. q = 71, j = 70,72 25. q 149, j = 2,126,148,150,172,196 
11. q = 73,j = 72,74 26. q 151,j = 84,150,152,218 
12. q = 79, j = 78,80 27. q 157,j = 12,156,158,302 
13. q = 83, j = 82,84 28. q 163,j = 162,164 
14. q = 89, j = 88,90 29. q 167,j = 166,168 
15. q = 97, j = 96,98 30. q 173,j = 80,172,174,266 

By Theorem 5', putting n = 3, we obtain that q does not divide h+ for q < 173. 
By computation it was verified that the assumption of Theorem 5 (putting n = 3) 

is satisfied for all q < 857. 
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