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ON THE DIOPHANTINE EQUATION lax' - byl = 1 

MICHAEL A. BENNETT AND BENJAMIN M. M. DE WEGER 

ABSTRACT. If a, b and n are positive integers with b > a and n > 3, then 
the equation of the title possesses at most one solution in positive integers x 
and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 < a < 
min{O.3n, 83} and 17 < n < 347. The proof of this result relies on a variety of 
diophantine approximation techniques including those of rational approxima- 
tion to hypergeometric functions, the theory of linear forms in logarithms and 
recent computational methods related to lattice-basis reduction. Additionally, 
we compare and contrast a number of these last mentioned techniques. 

1. INTRODUCTION 

In 1909, Thue [Th] used a result on rational approximation to algebraic numbers 
to show that if F(x, y) is an irreducible binary form (in Z[x, y]) of degree at least 
3, and m a nonzero integer, then the equation 

(1) F(x, y) = m 

has at most finitely many solutions in integers x and y. This fundamental relation- 
ship between homogeneous (and related) diophantine equations and diophantine 
approximation has been exploited in subsequent years in bounding the number of 
solutions of given equations and even the size of such solutions. The equation 

(2) laxn -bynl =1 

where a, b and n are nonzero integers and n > 3, is, in a certain sense, the simplest 
case of (1), and has been frequently studied both from the viewpoint of diophan- 
tine approximation and from a more algebraic perspective. In particular, Delone 
[De] and Nagell [N] independently showed that if n = 3, then equation (2) has at 
most one solution in positive integers x and y, corresponding (if it exists) to the 
fundamental unit of Q(X /a/b) (see also [Ljl]). Later, paralleling this (primarily 
algebraic) approach, Ljunggren [Ljl] (see also [DF] and [Ta]) proved a like result 
for equations of the form 

lax4 -by41 = 1 

(i.e. that they too possess at most one solution in positive integers for each pair 
(a, b) of nonzero integers). 
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In 1937, by extending Thue's method and constructing explicit rational func- 
tion (Pade) approximations to 1 - z, Siegel [Si] deduced that if c is a given real 
number, then the inequality 

(3) laxn -bynl<c 

has at most one (positive) integral solution (x, y), provided 

(4) lab12l > 4 (nUlp P?1) c2T2. 

pin 

By refining this approach, Domar [Do] was able to prove that (2) has at most two 
solutions in positive integers under the restriction that n > 5, and that, if a = 1, 
equation (2) possesses at most one positive solution, except possibly when b 2 
or n = 5 or 6 and b = 2n ? 1. In the special case when b = 2 in the above 
equation, Darmon and Merel [DM] have shown that no solutions exist with xy > 1, 
as a consequence of a much more general result extending Wiles' remarkable work 
on the Shimura-Taniyama-Weil conjecture. With a fundamental improvement of 
Siegel's gap principle (to prevent potential solutions to inequality (3) from being 
too close together in size), Evertse [Evl] significantly relaxed condition (4) (see also 
Mueller [Mu] for a rather different treatment, closer to Thue's original approach). 
For a more detailed historical perspective of results on equation (2), the reader is 
directed to [Mo] and [R]. 

In this paper, we combine the Thue-Siegel machinery (as used by Evertse) with 
recent explicit bounds for rational approximation to algebraic numbers due to the 
first author [Be2] (see also [Bel]), new estimates for linear forms in the logarithms of 
two algebraic numbers due to Laurent, Mignotte and Nesterenko [LMN], somewhat 
older estimates for linear forms in the logarithms of several algebraic numbers 
due to Baker and Wuistholz [BW] and techniques from computational diophantine 
approximation. We prove 

Theorem 1.1. If a, b and n are integers with b > a > 1 and n > 3, then the 
equation (2) has at most one solution in positive integers (x, y), except possibly for 
the cases where b = a + 1, 2 < a < min{0.3n, 83} and 17 < n < 347. 

It should be noted that this approach combining the techniques of linear forms 
in logarithms (the Gel'fond-Baker method, and, to be more precise in our usage in 
Section 4, the Schneider-Waldschmidt method) with irrationality measures derived 
from consideration of hypergeometric functions (the Thue-Siegel-Baker method) 
has been utilized previously on similar problems, by, for example, Shorey [Sh] and 
Shorey and Tijdeman [ST]. Additionally, Mignotte [Mi] has recently applied the 
aforementioned bounds for linear forms in two logarithms to deduce a number of 
results of a flavour reminiscent of the above (including that (2) has exactly one 
positive solution for b =a + 1 and n > 600). The advantage of Theorem 1.1 is that 
it provides a very explicit bound upon both a and n and treats small values of n. 
F'urther, the cases omitted above (which by Domar's theorem may possess at most 
two such solutions) may each be "effectively solved" via the theory of linear forms 
in (several) logarithms (see e.g. [Ba3]). In reality, however, as one may observe 
from a perusal of Section 3, this appears to be a rather difficult computational 
problem. 
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It was conjectured by Siegel and proved by Mueller and Schmidt [MS] that the 
number of solutions to the general Thue equation (1) depends only upon m and 
the number of monomials present in the form F(x, y). In this regard, equation (2) 
is a minimal case. It appears that the techniques of this paper are not particularly 
well suited to generalization to nonbinomial forms (unless n = 3; see [Ev3]). 

This paper is organized as follows. In Section 2 we apply arguments based on 
rational function approximation to hypergeometric functions (a la Thue-Siegel) to 
prove Theorem 1.1 for "small" n relative to max{a, b}. In Section 3, we treat a 
number of special cases with 5 < n < 13 where the aforementioned techniques fail 
to apply. Here we use linear forms in several logarithms of algebraic numbers and 
tools from computational diophantine approximation. Additionally, we compare 
and contrast the efficiency of certain of these methods, relative to this problem. 
Finally, in Section 4, we state a lower bound for linear forms in the logarithms of 
pairs of algebraic numbers, due to Laurent, Mignotte and Nesterenko [LMN], and 
use it to finish the proof of Theorem 1.1. 

2. THE METHOD OF THUE-SIEGEL 

In [Evl], refining Siegel's result in [Si], Evertse proved 

Theorem 2.1. If a, b and n are positive integers with n > 3 and c is a positive real 
number, then there is at most one positive integral solution (x, y) to the inequality 

lax -bynl < c 

with 

max{ axn>, lbynl} > /3nc?n, 

where /3n and an are effectively computable positive constants satisfying /33 
1152.2, 34= 98.53 and 3n < nK2 for n > 5. 

While techniques from [Bel] and [Be2] enable us to sharpen this somewhat, the 
above formulation is adequate for our purposes (as, for that matter, is an earlier 
sharpening of Siegel's result due to Hyrro [H], at least for n > 7). For details of 
the proof of Theorem 2.1, which utilizes Pade approximants to 1 - z (a la Siegel) 
together with an iterated gap principle, the reader is directed to [Evl] (note: the 
corresponding result in [Ev2] is significantly weaker if n = 3). 

Let us take c = 1 in the above theorem and assume, without loss of generality, 
that b > a > 1. By the aforementioned results of Delone, Nagell and Ljunggren, 
we may assume that n > 5 so that 

2n > n2 > /n 

in Theorem 2.1. In these cases, we therefore have at most one solution to (2) with 
max{lxl, y}, > 1. It follows that we may restrict our attention to equations with 
solution (x, y) = (1, 1), namely those of the form 

(5) laxn - (a1+ )ynl = 1 

where a and n are positive integers with n > 3 (and, from Darmon and Merel, 
a > 2). Suppose that (x, y) is a positive solution to (5). Then we have 

(6) 1+--[ < 1 
a y anyn 
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so that x/y is an exceptionally good rational approximation to 1 + a. To elimi- 
nate this possibility for x > y > 1, at least with a handful of exceptions, we appeal 
to the following special cases of two results of the first author (see [Be2]). Define 

An = pP-1. 

pln 

We have 

Theorem 2.2. For integer n, define the constant c(n) by 

[n c(n) | n c(n) [ n c(n) | n c(n) I n c(n)| 
3 2.03 11 1.67 23 1.53 41 1.45 59 1.40 
4 1.62 13 1.65 29 1.51 43 1.43 61 1.39 

5 1.84 17 1.58 31 1.51 47 1.44 67 1.38 

7 1.76 19 1.56 377 1.46 53 1.40 71 1.36 

Suppose that a, n, p and q are positive integers with n occurring in the above table. 
If, further, we have that 

(a + V i)2(n2)> (nm)u 

then we can conclude that 

- -P > a-1(1010 q)-'\ a q 

with 

A, = 1 + (c(n)n ( - a--)2) 

log ( (n) (a + V )2) 
log( a a-v ) 

And we have 

Theorem 2.3. If a, n, p and q are positive integers with n > 3 and 

(, a + a +1)2(n2) (nAn )n, 

then 

1+ - - > (8nrna)-lq- 2 
a q 

with 

log(mm( a-v a 1)2) 
A2 = I I 

log( a -v )2 

Both of these results follow from consideration of Pade approximants to the bi- 
nomial function and differ, in essense, in that the former includes information about 
the p-adic valuations of binomial coefficients appearing in the approximating poly- 
nomials (see also [Bal], [Ba2] and [Ch] for a detailed discussion of this approach). 
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If we combine these two theorems with (6), we derive bounds upon solutions (x, y) 
to (5), of the form 

(7) y < (101oa1/n) n -X 

provided Al < n, or 

(8) y < (8An) nA- 2 

if A2 < n. We use these inequalities to prove the following two lemmas which 
summarize our refinements of Theorem 2.1 in the situation related to equation (5). 

Lemma 2.4. If a and n are positive integers with n > 3 such that equation (5) has 
more than a single positive solution, then a < 0.3n. 

Lemma 2.5. If a and n are positive integers with 3 < n < 16, then the only 
solution to equation (5) in positive integers is given by x = y = 1. 

To obtain these results, we further require: 

Lemma 2.6. If (x, y) is a positive solution to equation (5), then either x = y = 1 
or min{x, y} > an. 

Proof of Lemma 2.6. If x < y and y > 1, then 

lax n - (a + l)yn| > yn > 1 

so that if at least one of x or y exceeds 1, we may suppose that x > y + 1, whereby 

ax - (a + l)yn > a(y + 1)' - (a + I)yn. 

By the binomial theorem, this equals 

amyn- n (n) k 

and since a :n2 (n)yk > 1, we require that anyn-l < yn, whence y min{x, y} > 
an. O 

Noting that, if n = 3 or 4, Lemma 2.5 follows from the work of Delone, Nagell 
and Ljunggren, it is clearly sufficient to prove Lemmas 2.4 and 2.5 for prime values 
of n > 5. First, let us suppose that n > 79 is prime. Then if a > 0.3n and (x, y) is 
a positive solution to (5), we have from Theorem 2.3 and (8) that 

y < (8nm/(n-1)) /(nA 2) 

where 

log (m n/(n-1)(1.2m)) 
A2< + <l6logm + 3Kmn- 6. 

log (n-n/(n-1) (1.2n)) 

Thus, y < 91/6 < 2, so that x =y - 1. Now, if n = 59,61,67,71 or 73, we 
apply Theorem 2.3 and (8) to deduce that y < an for a > 18,19,20,21 and 22 
respectively. Together with Lemma 2.6 this implies that x = y =1 for a > 0.3n in 
these cases as well. For smaller primes, we apply (7) and (8) to find bounds upon 
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solutions (x, y) to (5) of the form y < co or better (where (?) indicates which of 
inequalities (7) or (8) is used), as in the following table. 

n a co (?) ] n a co (?) [a n co (?) 
5 3 < a < 6 1059 (7) 17 a > 8 17a (8) 37 a = 12 106 (7) 
5 a > 7 5a (8) 19 6 < a < 7 1014 (7) 37 a > 13 37a (8) 
7 3 < a < 5 1043 (7) 19 a > 8 19a (8) 41 a= 13 106 (7) 
7 a > 6 7a (8) 23 7 < a < 8 1012 (7) 41 a > 14 41a (8) 
113 < a < 6 10158 (7) 23 a > 9 23a (8) 43 a = 13 106 (7) 
11 a > 7 Ila (8) 29 9 < a < 10 108 (7) 43 a > 14 43a (8) 
13 4 < a < 6 1027 (7) 29 a> 11 29a (8) 47 a > 15 47a (8) 
13 a > 7 13a (8) 31 a= 10 107 (7) 53 a = 16 105 (7) 
17 6<a<7 1012 (7) 31 a> 11 31a (8) 53 a> 17 53a (8) 

By virtue of Lemma 2.6 and the above table, to complete the proofs of Lemmas 
2.4 and 2.5 we need only consider the 27 cases above where we fail to obtain an 
upper bound of the form y < an upon possible solutions to (5), as well as the pairs 
(a,n) satisfying a = 2 (for n = 5,7 and 11) or 2 < a < 3 (for n = 13). These 
latter cases will be dealt with in detail in Section 3. In the former situation, we 
observe from (6) that a positive solution to (5) corresponds to a convergent in the 

continued fraction expansion to 1 + For such a convergent pi/qi, we have (see 
e.g. [Le]) 

a qi (a,i+ + 2)qi 

where aj+j is the (i + 1)st partial quotient in the aforementioned continued fraction 
expansion. It therefore follows from (6) that a solution (x, y) to (5) (with x/y = 

pi/qi) induces a partial quotient aj+j satisfying 

(9) a.+, > anq-2 - 1. 

For each of the 27 pairs (a, n) under consideration, we compute the initial terms 

in the continued fraction expansion to 1+ and verify in each case that none of 

the first five convergents yields a solution to (5) other than with x = y = 1. Since we 
always find that q5 > 151 (where equality is obtained for (a, n) = (3, 11)), inequality 
(9) implies that we require a partial quotient exceeding 107 in order to contradict 
Theorem 1.1. The previously derived upper bounds upon the denominators of the 
convergents allow us to further restrict our attention to, at most, the first 314 
partial quotients in each expansion (corresponding, again, to (a, n) (3, 11) where 
we find precisely 313 convergents with qi < 10158). Since the largest partial quotient 
we find in the ranges under consideration is a308 = 3397 (for (a, n) = (5, 11)), we 
conclude as stated. 

3. SOME HEAVIER COMPUTATIONS 

3.1. Introduction. In this section we complete the proof of Lemma 2.5 through 
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Theorem 3.1. The diophantine equation 

(10) axn - (a + 1)yn = 1 

with (n, a) = (5,2), (7,2), (11,2), (13,2) or (13,3) has only x y =-1 as solution 
in rational integers x, y. 

We obtain this result by the essentially routine method for solving Thue equa- 
tions, following Tzanakis and de Weger [TW] (see also [dW]), using the lower bound 
for linear forms in logarithms of algebraic numbers from Baker and Wiistholz [BW] 
and a new variant of the computational diophantine approximation method, com- 
bining ideas from Bilu and Hanrot [BH] and Mignotte and de Weger [MW]. 

3.2. The relevant field data. Using Pari 1.39.03 on a workstation and a Pentium 
75 personal computer we computed the following data on the relevant algebraic 
number fields. 

3.2.1. The case (n, a) = (5,2). Let 0 be a root of t5 -48, and put ]K Q(0). The 
discriminant is 243455, an integral basis is 

the class group is trivial, the regulator is 49.089947..., a system of fundamental 
units (both of norm 1) is '1, 62, where the following table gives their coefficients in 
terms of the integral basis: 

0 102 103 104 
1 0 2 4 8 

61 1 1 2 2 1 
62 1 -29 -17 15 23 

and the rational prime 2 ramifies as (2) (p)5, where 

p = 2 ++ _02 + _03 + 104 2 
2 4 8 0- 2 

is a prime of norm 2 (in fact, the only one up to multiplication by units). 

3.2.2. The case (n, a) = (7,2). Let 0 be a root of t7 -192, and put K = Q(0). The 
discriminant is -263677, an integral basis is 

{1012 403 80 1l60 326} 

the class group is trivial, the regulator is 765.90150..., a system of fundamental 
units (all of norm 1) is 61, 62, 63, where the following table gives their coefficients in 
terms of the integral basis: 

1 0 102 103 104 1 05 1L06 
2 4 8 16 3 

61 7 4 2 4 3 2 3 

62 -5 2 0 -2 2 -3 3 

63 7 0 -1 -1 1 3 3 

and the rational prime 2 ramifies as (2) = (p)7, where 

p=2 + 0+ 102 + 103 + 104 + 1 05 + 1 06 
2 

is 2 prime4 8 16 32 0 2 

is a prime of norm 2 (in fact, the only one up to multiplication by units). 
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3.2.3. The case (n, a) = (11, 2). Let 0 be a root of t1l - 3072, and put K = Q(0). 
The discriminant is -2131o01111, an integral basis is 

1 o 12 O0 14 O o5 V o61 7 1 o8 1 09 1 010} { 1,0 02,4 16 3 064 
~ 128 25 0 5120} 

the class group is trivial, the regulator is 410432.22..., a system of fundamental 
units (all of norm 1) is e1,I.. , e5, where the following table gives their coefficients 
in terms of the integral basis: 

1 0 102 103 104 1 05 1 06 1 07 1 08 1 09 1 0 

E1 -5 -1 2 2 0 -2 -1 1 2 1 -1 
E2 1 2 0 1 0 -1 -1 -1 0 -1 1 

E3 -17 -1 -9 1 15 -3 -4 -3 -7 10 6 
64 -5 -6 -5 0 2 2 4 5 2 -1 -1. 
E5 -35 -24 -21 -10 3 15 21 20 15 6 -4 

and the rational prime 2 ramifies as (2) = (p)11, where 

p= 2+0+ I02 + 103 + 104+ 1 05 + 1 06 + 1 07+ 1 08 
2 4 8 16 32 64 128 

1 
09-+ 1 01o 

= 2 

256 512 0 -2 

is a prime of norm 2 (in fact, the only one up to multiplication by units). 

3.2.4. The case (n, a) = (13,2). Let 0 be a root of t13 - 12288, and put 1K Q ?(0). 
The discriminant is 2123121313, an integral basis is 

o2 0 165 ' '6 27 0488 1 09 1 010 1 0 12 I 
'0' 2 ' j4 l 8 0 ' 128 '256 1 512 '1024 2048 

the class group is trivial, the regulator is 12465830...., a system of fundamental 
units (all of norm 1) is el,... , 66, where the following table gives their coefficients 
in terms of the integral basis: 

1 0 102 103 104 1 05 1 06 1 07 1 08 1 09 1 01o 1 011 1 0121 
2 4 8 16 32 64 128 256 512 1024 2048 

61 7 4 5 3 3 4 3 2 3 3 2 3 3 

62 1 -1 0 1 0 2 0 0 1 -1 0 -1 -1 

63 55 -8 -21 22 5 -24 12 15 -21 0 19 -13 -8 
64 13 22 0 -20-5 17 8 -15 -12 11 14 -7 -14 
65 -41 13 -6 14 -13 7 -2 4 -4 -4 8 -3 4 
66 -743 -970 122 941 105 -859 -300 737 454 -586 -563 419 627 

and the rational prime 2 ramifies as (2) = (p)13, where 

p = 2 + + + 03+ 04 05 106+107 1 
2 4 8 16 32 64 128 

+ 1 09 1 010? 1 011? 1 012 2 

256 512 1024 2048 02 - 

is a prime of norm 2 (in fact, the only one up to multiplication by units). 
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3.2.5. The case (n, a) = (13,3). Let 0 be a root of t13 - 1458, and put K Q(0). 
The discriminant is 21231 1313, an integral basis is 

{1,0,02 103 104 ,05 06 1 07 1 08 1 09 1 010 1 011, 23012 I I 
' '3 ' 3 '9 '9 '27 '27 '81 '81 ' 243 I 243 J' 

the class group is trivial, the regulator is 12555373...., a system of fundamental 
units (all of norm 1) is e,l... I, 6, where the following table gives their coefficients 
in terms of the integral basis: 

1 0- 0 2 103 10 105 I0 6 I M7 1 1o 0 9 10 100 1 ol 130121 

e1 1 1 0 1 0 1 0 1 0 1 0 1 0 

e2 -5 4 1 4 2 -2 4 5 1 4 0 6 2 
63 25 4 -11 3 4 -19 -2 15 -4 -5 11 2 -5 
64 13 -6 0 14 -8 4 6 -12 4 2 -2 4 -1 
C5 -53 71 -43 95 -63 101 -67 86 -49 53 -17 13 14 
e6 409 -316 -178 238 206 -148 -221 52 224 40 -212 -130 191 

and the rational prime 3 ramifies as (3) = (p)13, where 

p=3?20+02+ 20 104+ 205+ 106+ 2 07+1 08 2 09 
3 3 9 9 27 27 81 

1 010? 2 011 1 012 = 3 
81 243 243 02- 3 

is a prime of norm 3 (in fact, the only one up to multiplication by units). 

3.3. Upper bounds. Each of our five fields 1K has one real embedding and 2r = 

n - 1 non-real embeddings. Here r is the unit rank of the field K. We number the 
conjugates as follows: 

01 E R, 
j = 01 eO27rii/n for j = 2,3, ... ,r + 1, 

oj = Oj--r for j = r + 2, r + 3,... ,n 

and correspondingly for ei, p, etc. Here the bar denotes complex conjugation. In 
the cases with a = 2 we put 0 = 0 and in the cases with a = 3 we put ?b = 02, SO 

that in all six cases NK/Q(q$) = an-I(a + 1). 
For a solution x, y E Z of equation (10) we write 

13 ax - qy. 

Then by (10) we have 

(11) N/Q (3) = (ax) -(NQ/Q(0)) yn = an-l (ax n - (a + l)yn) = an-1 

hence there are nl, n2,... , n, E Z such that 

(12) f = ax - qy = pn le1ni 2n2 . . . E n, 

(Note that, a priori, d = pn-hl ni cn2 ... enr is also possible, but since all norms 
are positive, this case does not occur.) 
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By way of example, for the known solutions with x = y =-1 we have 

13 = -2 + 0 = 
p461 C2 in the case (n, a) = (5, 2), 

13 = -2 + 0 = p6C2C-1 in the case (n, a) = (7, 2), 
13 = -2 + 0 p ?C2C2 

I in the case (n, a) = (11, 2), 
- 2 0 p12E-1E5 2E 2Ec 1E6 in the case (n, a) = (13,2), 

1 - -3+ 2 p12Ec66E_2E_2E24E in the case (n,a) = (13,3). 

We start with showing that if IyI is large enough, then 1:11 is extremely small, 
whereas its conjugates 3j I with j = 2, 3, ... , n are relatively large. Put 

n 

bj= Imqjl for j = 2,3,... ,n, cl = anl fbj. 
j=2 

Lemma 3.2. We have 

113 <C1 ,IY-(n-1) 

3jl > bjlyl for j 2,3,... ,rn. 

Proof of Lemma 3.2. For j = 2, 3,.. n, n we have 

13 I = lax-$jyj > JIm (ax-$3-y) I = JIm jl IYI = bj Iy. 

Equation (11) now at once leads to 

n n 

131p 
= an-I ]/ 113 Il ' a n-l ]/ bj jyj = cl jyj-(n-1) . F- 

j=2 j=2 

Notice that bj = bj_r for j = r + 2, r + 3,.. n .,, because the jth and the 
(j + r)th conjugates are each others complex conjugates. It follows that we are only 
interested in the bj for j = 2, 3, .. ., r + 1. 

From the equation 3 = ax - qy we now take three conjugates, the real one and 
two complex conjugated ones, and eliminate x and y from these three equations. 
For each j = 2, 3,... , r + 1 we thus derive the so-called Siegel identity 

(qj - q$j)131 + (q$j - q$1)13j + (q$1 - bj)$3j = 0, 

which we write as 

13 - '3 /3j -1- - $j 13 
( ) 

(/)1~~~~O - o/j l3j Oi) - 03) l3j 

Lemma 3.2 implies that the right hand side of this equation is extremely small in 
absolute value. Notice that 0 _i 3is on the unit circle, so if we put 

~~~ /3j-oj13 

Aj =-iLog S - , 

then Aj E R. Here Log denotes the principal branch of the complex logarithm, 
with imaginary part in (-7r, 7r]. We find that 

eiAj = q- q$pipj 1 

01- 03j 133 
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is extremely close to zero by Lemma 3.2, hence so is A. for all j 2, 3,... , r + 1. 
To be precise, for j = 2, 3, . . ., r + 1 put 

dj = 2n+1 arcsin (2-(n+) q$ j X b3 ) 

Then we have the following result. 

Lemma 3.3. If IyI > 2 then for j = 2, 3,. ,r + 1 we have 

lAjl < dj IYI 

Proof of Lemma 3.3. Put i = >j bjc. Lemma 3.2 and equation (13) yield 

leiAj1 <3jyTh. By IyI > 2 we find eiAj-1 <2Th3j, hence by [dW, Lemma 
2.3] we find IA - < - I eiA-1, and the result follows. D 

We will now derive from equation (12) useful estimates relating jyI to the expo- 
nents ni. Define 

( log 61,21 * log I6r,21 

log |C1,r+1 log 6r,r?1 ) 

which, as a matrix with determinant 2r times the regulator, is necessarily invert- 
ible. We obtain by (12) that 

(fl1 \> ( log 3p2/pn 

(14) . =U-I 
(14 n% ) log /3r+?/Pn ), 

Let us further define 

( Ul,2 ... Ul,r+l 

ZUr,2 ... ur,r+l 

and for k 1, 2, . . . ,r,set 

k = Ekjlog U | 10 ni 

r+1 

Tlk = E Uk,j. 

j=2 

An interesting observation of Bilu and Hanrot [BH] is that nk is extremely close to 
(k + rik log IYI for k = 1, 2, ... , r. We make this precise in the following lemma. For 
k = 1,2, ... , r let 

ek : 2n log (I - 2- nil IUSLk,jI 
i j=2,3,... ,r + I j=2 

Lemma 3.4. If IyI > 2, then for k = 1, 2,... , r we have 

ink - (k + ?klog IYI)I < ekYI. 
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Proof of Lemma 3.4. Note that 3j is almost equal to y(q5 - O$), namely 

3j = ax-qjy = ax-qly + y(q$ -q$j) =,311 +-y(q$ -$j), 

where i13 is extremely small by Lemma 3.2. It follows that 

Ink-(k?+rklog IYI)I E Uk,j log i(3 - 0)L 
j=2 Ql-q) 

< EUik,JI log 1?+ I3 
j=2 y($-qj 

Put =2 -n m Cl ? - Then by Lemma 3.2 we have y(q $) < 

2n6lyl-n and by IyI > 2 it follows that this is at most 6. By [dW, Lemma 2.2] we 

find log 1 + 31 | < I log(1-6)1 i1 and the result follows at once. - 
yQki -kj) - 8 yQ0i-0g) 

We readily compute the following numerical values for the rlk and the (k. 

[(n, a) (5,2) [ (7,2) | (11,2) (13, 2) (13,3) 
= -0.58282108. -0.21603507 ... 0.15960187 ... -0.41401237 ... -1.3802655 .. 

'72 = 0.38913837 ... 0.52412775 ... 0.74643940 ... 1.1392655 ... -0.52417382 .. 
'73 = - -0.31443098 ... 0.48137366 ... 0.49790031 ... -0.44133730 .. 
4 = - - -0.097411241... -0.23147615 ... 0.082129902... 
'75 = - - -0.089777304. -0.029527061 ... 0.23665553 ... 

q6 = - - - -0.0067848669 ... 0.45157277 .. 
41 = -2.0228582. -0.0058037263 ... 0.0027937681... -1.0062166 ... -6.0149492 ... 

2= 1.0150570... 2.0146875 ... 2.0131235... 5.0171804 ... -2.0056462. .. 
3= - -1.0087836... 2.0086302 ... 2.0075213 ... -2.0047788 ... 

44 = - - -1.0018188 ... -2.0035830 ... 1.0009323... 
45 = - - -1.0017135 ... -1.0005334 ... 0.0025110131... 

46 = _ - - 1.0002169 ... 2.0048679 ... 

Note the remarkable fact that all (k are almost integers, and that these integers are 
just the exponents nri corresponding to the known solutions with x = y -1. 

Define N max Ink . An easy consequence of Lemma 3.4 is the following 
k=1,2,.., 

result, estimating IyI in terms of N. Choose ko such that Irk I is maximal for k ko 
and let 

fo n 

go exp (n (ko + 2 e-ko)) 

Further, define 

Yo = max {2,max exp (-k + ?2 k )] 

maxFexp( -ko Sk(k 2+2 (eko0+ ek)-1 \] 
max exp - Skl + 70-S7k ) 

k0ko 71ko - SkTk I|ko - SkTk I 

where Sk is the sign Of 7lko 71k- 

Lemma 3.5. If IyI > Yo, then we have 

log yj > -N--loggo. 
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Proof of Lemma 3.5. Since IyI > 2, Lemma 3.4 yields Ink - ((k + k log IYI) < 
2 ek for all k. Now the condition log y > y ? 2I7-kjl guarantees that nk 

and ik have the same sign, and the condition log Iy > - _ko-Skdk + 2-(ek0+ek)-1 - 
r1ko-Sk?lk ?nko -Sk7k I 

guarantees that inkoI > Ink , so that N -Inko . The result therefore follows easily 
from Lemma 3.4 applied with k = ko. D 

Note that in all our cases we found Yo = 2. 
Now we can combine Lemmas 3.3 and 3.5, to find an upper bound for IAjI in 

terms of N. Put 

f3 = d3go for j = 2, 3,... , r + 1. 

Lemma 3.6. If IyI > Yo, then for j = 2,3,... , r + 1 we have 

IA3-I < fj exp(-foN). 

Proof of Lemma 3.6. This is immediate from Lemmas 3.3 and 3.5. D 

On the other hand, using equation (12) we can write A3 as a linear form in 
logarithms of algebraic numbers, viz. 

Aj = -i (Log ao,? +nkLogak,j+no,jLog(-I) 

where 

aO3 l pj ak,j = 3 for k 1, 2, ... , r 
(P j P k,j 

and nO,j is an even integer, appearing because Log zlz2 = Log z1 +Log Z2 holds only 
modulo 27ri, and all -iLog's, including Aj itself, are in (-T,r]. Transcendence 
theory tells us that Aj cannot be too near to zero. Specifically, we apply the 
recent explicit and very sharp result of Baker and Wiistholz [BW]. The algebraic 
numbers ak,j occurring inside the logarithms of the linear forms Aj are all in the 
field Q(01, Oj, 0j), which is of degree at most (in fact, in our cases, equal to) d = 
n (n-1)(n - 2). The number of terms in the linear forms is r + 2, at least a priori. 
We can however win a little bit here, by noting that in fact there is a multiplicative 
relation between, on the one hand, ao0j and, on the other hand, a1j, a2j,3,.. , arj 
(we found this relation in the reduction step described below, when we observed that 
certain numbers occurring were very close to rational numbers with denominator 
2n). In fact, we found that in all three cases 

(k=1) 

where Vk is as in the table below (here v = max IvkI). 
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(n,a) 1(5, 2) (7,2) (11,2) [(13,2)1(13,3)] 

v 2 0 0 1 6 
V2 = -1 -2 -2 -5 2 

1 - 2 - 2 2 

/4~ - 2 - 1 

V5~ - 0 

- - -1 - 2 

v= 2 2 2 5 6 

Note the remarkable fact that these numbers Vk are exactly the negatives of the 
exponents nj occurring for the known solution x - y =-1. 

This shows that we can rewrite Aj as a form with one fewer term, considerably 
reducing the upper bound and permitting a somewhat simpler reduction procedure. 
Indeed, we write 

nAj - -i (Ein'Logakj +mi}Log(-1)) 

where we have n' - nnk + (n-l)vk, and mj an (odd) integer. With N' - 

max rn'I we have N' < nN + (n - 1>)v. Further we have to estimate Im' in 
k=,2,... ,rk 

terms of N. Note that 

1 
~~~r 

im - inAj - E n/Log ak,j < n + rN' < nrN + (n-1)rv + n. 
k=I 

As a result we have linear forms with only m - r + 1 terms. 
The result of Baker and Wiustholz, in our situation, implies the inequality 

(15) Aj I > exp (-C' log max{N', Im I 1}) , 

where 
r 

C' = C(m, d) rI h'(Ck,j)h'(-1) 
k=O 

for h' a certain height function and 

C(m, d) = 18(m + 1)!mm+l(32d)m+2 log(2md). 

It's mainly these numbers that determine the sizes of the upper bounds to be 
derived. 

We need to compute upper bounds for the heights of the algebraic numbers. We 
note that in our cases the height function h' (a) used by Baker and Wuistholz for 
our ak,j's happens to coincide with the absolute logarithmic Weil height h(a). For 
an algebraic integer a it is given by 

1 
h(a) [Q( ) log max{1, Ia(a) I, 

where a runs over the embeddings of Q(a) into C, and for a quotient of algebraic 
integers a/LI the logarithmic Weil height can be estimated by 

h(a/ 3) < h(a) + h(/3). 
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In this way we found upper bounds for h'(ak,j) (that are obviously independent 
from j) and C' (note that h(-1) = 0, but h'(-1) = plr). 

Now we can prove the main result of this section. Define 

1.7681627 x 1022 in the case (n,a) = (5,2), 
J 3.4856031 x 1030 in the case (n, a) = (7,2), 

No = 1.4191886 x 1048 in the case (n, a) = (11,2), 

1 4.1035085 x 1057 in the case (n, a) = (13, 2), 
8.6956453 x 1057 in the case (n, a) = (13,3). 

Lemma 3.7. We have Y < 1 or N < No. 

Proof of Lemma 3.7. Combining inequality (15) and Lemma 3.6, we find 

N < -log min fj +-log (nrN + r(n-l)v + n), 
fo i fo 

from which we derive at once the absolute upper bounds No for N given above, by 
working out all the constants bj, cl, dj, ej, koI fo, go, fj, h'(ak,j), C' for j = 2,3, .... 
r +lIand k = 1,2,... , r. F- 

3.4. Reduction of the upper bounds: classical method. In view of Lemma 
3.7 there remains only a finite computation to complete the proof of Theorem 
3.1. We describe four different techniques to carry out this task and compare their 
efficiency. Three of these methods have already been described in the literature and 
the fourth one, the only one that we'll present in full detail, is a variant combining 
ideas of the other methods. 

The classical method, described by Tzanakis and de Weger [TW], tries to solve 
the following problem. For a given j E {2, 3,. . ., r + 1}, and for k = 1, 2,... , r 
write 

0k,j = -iLog ak,j. 

These are known real numbers, that can be computed to the desired accuracy. We 
now have 

nAj En/Ok,j 
+ 

M/.7 { "$i Z 41J; k=1 

N' max |n/k 

and we want to determine the solutions nj, n,... ., nr, m in Z of 

JA3.1 < f3 exp(-foN), 

(16) J 
N < No, 

N' < rnN ? (n - Iv 
Hmtn < nrN+ (na-b)rv + n. 

Here the constants fo, fj and No are given above in Lemmas 3.5, 3.6 and 3.7. 
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The classical approach, as outlined in [TW], makes use of only one linear form at 
a time, i.e. a Aj for only one j. As Aj is a homogeneous linear form with r+ 1 terms, 
we define a lattice F of dimension r + 1, consisting of the E-linear combinations of 
the columns of the matrix 

'1 0 .. O'0 

0 1 ... O O 

O O ... I 0 

9 4) Ij 2,j iDr,j 4 

Here we take 

bk,j = [COk,j], P = [cOw, 

where C is a large positive number, somewhat larger than N0?l, and [] means 
rounding to an integer. This means that we have to compute the numbers qk,j and 
7r to somewhat more than (r + 1) log No/ log 10 decimal digits. 

By the LLL-algorithm [LLL] we can compute reduced bases of the lattices. In 
practice we use the functions lllintpartial and lllint of Pari-1.39.03. A reduced 
basis enables us to find a lower bound for the length of any vector pointing to a 
non-zero lattice point. By [LLL], this lower bound, denoted by d(F), is given by 
2 r/2 lbl, where b1 is the first basis vector of the reduced basis. Heuristically 
reasoning we expect that this length is of order (det F)1/ dim F, which, by our choice 
of C, should be somewhat larger than No. If this is not the case, the parameter C 
should be enlarged a bit. 

For a solution (n1, ni, ... , n4 m') of (16) we put x - (ni, n', . .. , n', m)T, and 
look at the lattice point Ax, since it can be expected to be near the origin. Namely, 
if we put 

r 

Aj = nS kk,j +m'P, 
k=1 

which is the last coordinate of Ax, then Aj is approximately CnAj, with a rounding 
error of the size of No. On the other hand, this number Aj cannot be very small, 
since we have an upper bound No for the other coordinates of Ax, and a lower 
bound d(F) for its length, which is a bit larger than No. So we obtain an explicit 
lower bound for IAjl , of the size of No/C, and thus by Lemma 3.6 a reduced upper 
bound N1 for N, that one expects to be of order size of ? log C/No r J log No. 

Subsequent reduction steps can be made, with No replaced by N1, and C adapted 
accordingly. 

3.5. Reduction of the upper bounds: using more linear forms simultane- 
ously. The main technique of the paper [MW], which was inspired by ideas of Yu. 
Bilu, is to use the linear forms Aj for j = 2,3,... r + 1 simultaneously to solve (14). 
This works as follows. 
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We now define a lattice F of dimension 2r, incorporating all linear forms, namely 
consisting of the E-linear combinations of the columns of the matrix 

/ 1 0 0 '0 

A:=: O -0 1 0 0 . 
P1,2 ... @ r,2 @ ... 0 

. l *- r,r+l 0 ... IF 

Here we take Dk,j and IF as above, but now it suffices to take a smaller value for 
C, namely somewhat larger than N . The reason is that (detr)1/dilri is of the 
same order as the expected minimal length of any non-zero vector pointing to a 
lattice point, and we wish this to be essentially the same size as the upper bound 
No. So this means that we have to compute the numbers kk,j and Xr this time only 
to somewhat more than 2 log No/ log 10 decimal digits. Of course we pay a price, 
namely we now have to do the LLL-algorithm for a lattice of dimension 2r instead 
of r + 1. 

For a solution (nU, n2 , ** , ml', m7n2 m mv+1) of (16) we put 

X = (n', n'2 ** n', rr2 Iv * I mrl T 

and look at the lattice point Ax, since it can be expected to be near to the origin. 
Namely, with 

r 

Aj = En 3kJkj + mI', 

k=1 

we have, just as before, that Aj is approximately CnAj and cannot be particularly 
small. As above we obtain a reduced upper bound N1 for N that one expects to 
be of the size of f1 log C/No, which this time is 1 log No. 

3.6. Reduction of the upper bounds: using only two-dimensional lattices. 
There is a third method of reducing the bound, introduced by Bilu and Hanrot in 
their ground-breaking paper [BH]. In their paper they give two examples of Thue 
equations of very high degree, with one of the corresponding algebraic number 
fields being totally real, and the other one, like in our situation, has only one real 
embedding and all other embeddings are non-real. Let's see how their method 
works in this setting. 

Bilu and Hanrot do not work with the linear forms Aj, but rather start directly 
from Lemma 3.4. Note that the linear forms Aj have not completely left the scene: 
they still have been used to derive the upper bounds No. They do not, however, 
figure in the reduction step. 

We now take kl, k2 c {1, 2, ... , r} with ki :& k2. Eliminating log jyj from the 
two inequalities given in Lemma 3.4 

Ink1 - ((k1? + kk1 log YI)I < ekl JYI , 
Unk2 - ((k2 + rk2 log I Y |) ? < ek2 lY |- 

and setting 

Ykl ,k2 = 1 k, nk2 - (k2nk1 gkl k,k2 = ek1 Ink2l + ek2 Ink1 I 
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and 

Ak1,k2 = nk2 nk, 
- 

nknk2 'k ,k2v 

we thus have 

(17) |Akj,k21 "- gkl,k2 lYln 

Now we can apply the good old Baker-Davenport Lemma [BD], or, equivalently, 
lattice base reduction in 2-dimensional lattices. This means that we do not have to 
use the full power of the LLL-algorithm, but only the simple euclidean algorithm, 
i.e. continued fraction expansions. For convenience we still use the Pari routine 
lllint, which in this 2-dimensional case is equivalent to the euclidean algorithm. 
Notice that the nice thing here is that the unknowns m[ play no role at all. 

We define a 2-dimensional lattice F, consisting of the E-linear combinations of 
the columns of the matrix 

Hk, Hkl, 

and we define the point 

V Kkl ,k2) 

where we take Hk= [Cnk] for k = k1, k2, and Kk1,k2 = [C'Ikl,k21. It suffices to take 
C somewhat larger than N02 to make sure that the distances in the lattice are of 
the size of the upper bound No. 

By the euclidean algorithm we can compute reduced bases of the lattices for 
the case (k1, k2) = (1, 2). From these bases it is easy to find the distance d(r, y) 
between the point y and the nearest lattice point. For a solution (nk1, nk2) of (17) 
we put x = (nk,,-nk2 )T and consider the lattice point Ax which we expect to be 
near y. As in the previous two subsections we obtain a reduced upper bound N1 
for N that one expects to be of the size of }1 log C/No, this time again }T log No. 

3.7. The fourth variant. We finish with a new variant, based on combining the 
ideas of the second and third methods, of Mignotte and de Weger [MW] and Bilu 
and Hanrot [BH]. This time we make use of as many inequalities of the type (17) 
as possible. Namely, we take k1 = 1 fixed, and let k2 run through {2, 3,.. ., r}. So 
this is better than the original method of Bilu and Hanrot only if r > 3, i.e. in our 
cases only if n > 7. For this variant we will present full details for our five Thue 
equations (10). 

This time we define a lattice F of dimension r, consisting of the 2-linear combi- 
nations of the columns of the matrix 

I i 0 0 o 

|H2 Hi 0 .. O 
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and we define the point 

K1,2 
y - 

where we take Hk and Kk,,k2 as above. Now it suffices to take C somewhat larger 
than No /(r1) only, to make sure that the distances in the lattice are of the size 
of the upper bound No. So with this variant the needed precision is smallest. 

In practice we took C as follows: 

C = 1050 in the cases with n = 5, 7, 

C = 1065 in the case with n 11, 

C = 1072 in the cases with n = 13. 

We give the values of fo, go, 91,k for k = 2, 3,.. , r below. 

(n, a) (5,2) (7,2) (11,2) (13,2) (13,3) J 
fo > 8.5789620 13.355522 14.736628 11.410859 9.4184775 

9o < 3.9739194 x 107 5.8915406 x 1011 1.0334327 x 1013 1.0394378 x 1025 4.0214207 x 1024 

91,2 < 0.41752317 1.0391846 19.907771 209.81907 1.8561913 
91,3 < - 0.62342017 12.838385 91.698532 1.5454583 

91,4 < - - 3.7738454 47.821515 0.54077517 

91,5 < - _ 3.2535583 20.563430 0.84497512 

91,6 < _ - - 14.006386 1.5813005 

By the LLL-algorithm (again using lllintpartial and lllint) we compute 
reduced bases for these lattices. From these bases it is easy to find the distance 
d(F, y) between the point y and the nearest lattice point. Here are the results of 
our computations. 

8.1456649 x 1024 in the case (n, a) = (5, 2), 
J 5.3812421 x 1032 in the case (n, a) = (7,2), 

d(F, y) > 1.1134613 x 1051 in the case (n, a) = (11, 2), 
1 3.2622236 x 1060 in the case (n, a) = (13,2), 

5.4466343 x 1059 in the case (n, a) = (13,3). 

The computation times for the LLL-algorithm were 

I ?1 sec. in the case (n, a) = (5, 2), 

<1 sec. in the case (n, a) = (7,2), 

3.02 sec. in the case (n, a) = (11,2), 
7.97 sec. in the case (n, a) = (13,2), 
7.41 sec. in the case (n,a) = (13,3). 

For a solution (ni, n2,... , Inr) of the inequalities (17) we put 

x = (ni, -n2, -n3, . .. , -nr) T 

and consider the lattice point Ax, which one anticipates will be near y. Setting 

A1,k = nuHk - nkHl - K1,k, 
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we have 

Al,k- CAl,ki < 1 + 2No. 

On the other hand, 

d(IF, y)2 ?14 
_ y2 - n2 + E A2 < No + (r -1) (k=maxr IA1-l) 

so we obtain 

jA1,kj 

> 

A 
( 

Vr 

d(F,y)2 - 1 
N2-(I + 2NO) 

Combined with (17) and Lemma 3.5 we thus find a reduced upper bound N1 for 
Nt viz. 

Cgo max 91,k 

f? -og ri d(Py r-1 N2-(1 + 2No)J 

This can in general, once again, be expected to be roughly J1 log C/No, which now 
is 1 1 log No. This is better than in any of the other three methods. In practice r-1 fo 

we find 

8 in the case (n, )-(5, 2), 
5 in the case (n, a) - (7,2), 

N, = 4 4 in the case (n,a) = (11,2), 

8 in the case (n, a) = (13, 2), 

9 in the case (n,a) = (13,3). 

3.8. Comparing the variants. Below we give for the case (n, a) = (13,3), with 
No = 8.6956453 x 1057 and r = 6, for the four reduction methods described above, 
the parameter C (controlling the size of the numbers to be dealt with), the reduced 
upper bound N1 reached in one reduction step, the dimension of the lattice and 
the computation time used by Pari-1.39.03 on a Pentium 75 personal computer for 
computing the reduced lattice bases. 

method ]_dim j theory practice reduction time 

Tzanakis & dW r + I No'+ rfo logNo 10430 96 15.20 sec. 

Mignotte & dW 2r No fJ log No 10125 22 14 min. 41.06 sec. 

Bilu & Hanrot 2 N f1o 21 < sec. 

1? 
I fIlog No 10125 1?1sc fourth variant r No r-1 

r logNo 1072 9 7.41 sec. 

So the fourth variant needs the smallest precision and obtains the best result in 
one reduction step, whereas the Bilu-Hanrot method shows the fastest lattice basis 
reduction. We believe that this is typical. 
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3.9. Finding the small solutions. This is trivial. A good idea is to use Lemma 
3.4, because it leaves really only small ranges to check, so that it is by no means 
necessary to try all the possible r-tuples (n1, n2,... , nr) with N < N1. In this way 
we find that in all three cases there are no solutions with IyI > 2. This completes 
the proof of Theorem 3.1. 

4. LINEAR FORMS IN TWO LOGARITHMS 

To show that equation (5) has precisely one positive solution for "large" n, we will 
refer to the following result of Laurent, Mignotte and Nesterenko [LMN] (where, as 
noted in [Mi], the conditions upon a1 and a2 may be relaxed to those stated here). 

Theorem 4.1. Let a, and a2 be two positive real algebraic numbers. Consider 

A = b2 log a2 - b log a, 

where b1 and b2 are positive rational integers. Put D = [Q(al, a2): Q] and suppose 
that log a1 and log a2 are linearly independent over Q. For any p > 1, take 

h > max { ,5A,D (log (bi + 2) + logA + 1.56)}, 

ai > (p - 1) Ilog ai + 2Dh(ai) (i = 1, 2), 

a, +a2 > 4max{1,A}, 
1 1 

+ < min{1, A`1}, 
a, a2 

where A = log p. Then 

-ala2A2 2 1632 log JAI > - A _- (a, +a2)A- 3/2a1a2B 
9A 3 3 

_-log a, a 2a2 3 3 

where 
4h A h 

A = p- 4 + - and B = 1 + -. 
A h A' 

Here, the height function h(a) is as defined in Section 3. 
Suppose that a and n are positive integers (a > 2 and n > 3) for which equation 

(5) possesses a positive solution (x, y) :& (1, 1). By Lemmas 2.4 and 2.6 we may 
assume that 

(18) a < 0.3n and min{x,y} > an. 

Further, to prove Theorem 1.1 for 2 < a < 83, it suffices to consider n > 349 while, 
if a > 84, careful application of Theorem 2.3 (and hence inequality (8)) along with 
Lemma 2.6 allows us to restrict our attention to n > 331. This implies, additionally, 
that we have 

(19) x > max{(a+ 1)2, 662}. 

We apply Theorem 4.1 with a1 = x/y, a2 =1 ? 1/a, b1 = n, b2 = 1, and (as in 
[Mi]) 

{ 5.8 if a= 2, 
P I + log(a+l) if a > 3. 
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We therefore have 

(20) JAI = log (I + n)-log () < 

so that 
x~~~~~~~~ 

(y ) ( a ) aXn 
Taking A = log p, we have, by calculus, 

(21) log(a + 1) < A < 1.365 log(a + 1), 

which, in conjunction with (18) and the fact that n > 331, implies 

(A - 1) log(x/y) + 2 log x < 2.002 log x. 

It follows that we may take 

a1 = 2.002 log x, 

4.15 if a>23 
a2 

= 
3 log(a + 1) if a > 3 

and verify that a1 + a2 > 4max{1, A} and a71 + a-1 < min{1, A-1} (using (19) 
and (21)). We further let 

h = max {5A, 1.2 log n} 

and note that this is justified, since the inequality 

log (i+-) + log A + 1.56 < 1.2 log n 
a2 a, 

is readily checked for a = 2 (using (19)) and follows from (19) and (21) for larger 
a. 

Suppose first that h = 1.2 log n > 5A so that we may apply (18), n > 331 and 
(21) to deduce the inequality 

(22) n > max {(a+ 1)4, 1500}. 

If a = 2, then (22) implies that we have (in the notation of Theorem 4.1) A < 
3.4 log n and B < A/4. Applying Theorem 4.1 yields 

log JAI > -6.1 log2 nlog x - 4.6 log n log x - 18.6 log32 n log12 x 

-11.9 log n- log(log2 n log x) -4.2. 

It follows, then, from x > 2n > 3000 that 

log AI > - (6.1 log2 n + 23.2 log n + 13.3) log x 

which, since n > 1500, contradicts 

(23) log JAI <-n log x. 

Similarly, if a > 3 and h > 5A, we have A < 5.81 log n/A, B < 1.44logn/A and 
thus (21) implies that 

log JAI > -22.6A-2 log2 n log x - 7.8A-1 log n log x - 14.4 log n 

-32OA-1 log3/2 nlog1/2 x - log(A-2 log2 nlogx) - 2.7. 
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Since A > 1.76, (18) and (22) therefore give 

log JAI - (7.3log2 n + 22.7 log n + 15.4) log x 

which again contradicts n > 1500 and (23). 
It follows that we may assume that h = 5A (so that A = 24.2 and B = 6) and 

apply Theorem 4.1 to deduce lower bounds upon A of the form 

(24) log JA > -c1 logx - c2 X- loglogx - C3 

for positive constants c1, c2 and C3 which depend only on a (i.e. not upon n). 
Applying (21) allows us to take 

ci = 423.2, c2 271.7N/log(a + 1) and C3 64.1 log(a + 1) + 5.6 

which, together with (20), implies 

log A I > -648.5 log x 

so that from (23) we may conclude that n < 649. This, with (18), implies that 
a < 194 and, arguing more precisely with Theorem 2.3 and (8), we may in fact 
assume that a < 166. 

We now show that (5) has no nontrivial solutions if 84 < a < 166. Computing 
c1, c2 and C3 in (24), we find that for each such a we have c1 < 328.68, c2 < 614.59 
and C3 < 330.58 (all obtained for a = 166). Combining (23) and (24), we find, for 
n > 557, that x < 84n, contradicting (18). Since there are no new solutions to (5) 
with a > 84 and n < 331, it follows that we need only consider prime values of 
n with 331 < n < 547. Applying Theorem 2.3 and (8) for each such n, we may 
restrict our attention to a with 84 < a < ao with ao given in the following table. 

rn ao 0 n ao 0 n ao 0 n ao J n ao 

331 86 373 97 419 108 457 118 499 129 

337 88 379 98 421 109 461 119 503 130 
347 90 383 99 431 112 463 120 509 131 

349 91 389 101 433 112 467 121 521 134 

353 92 397 103 439 113 479 124 523 135 

359 93 401 104 443 114 487 126 541 139 
367 95 409 106 449 116 491 127 547 141 

If 84 < a < 86, we may take c1 = 325.2,c2 = 574.2 and C3 = 290.0 in (24). 
Combining this with (18) and (23) allows us to deduce the following upper bounds 
upon a solution (x, y) to (5), for these values of a: 

n = 331 x < 104302 n = 353 x < 1O195 

n = 337 x < 101051 n = 359 x < 10133 

n= 347 x < 10314 367 < n < 523 x < 1088 
n = 349 x < 10264 541 < n < 547 x < 84n 

Similar arguments produce like bounds for the remaining a with 84 < a < 141. We 
remark that the values c1, c2 and C3 increase monotonically with a in this range 
and satisfy c1 < 327.81, c2 < 604.78 and C3 < 320.49. With this in mind, it is 
easy to see that the upper bounds obtained upon solutions to (5) for larger values 
of a are all rather smaller than the worst cases noted in the above table (i.e. of 
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the form x < 101093 or better). To show that equation (5) has exactly the one 
positive solution x = y = 1 for a > 84, then, it remains to check beneath these 
upper bounds, through examination of the relevant continued fraction expansions. 
We once again apply Pari GP to compute the initial terms in the expansions to 

? a, for the pairs (a,n) under consideration. Inequalities (9) and (18) imply 

that a solution (x, y) :4 (1, 1) to (5) yields a partial quotient aj with 

(25) aj > (an)n-1 > io1466 

and we find, after checking at most 8467 partial quotients (corresponding to (a, n) 
(86,331) where we have 8466 convergents with denominators smaller than 104302), 

that the largest one we encounter is a34 = 581420 (with (a, n) = (84,461)). 
The proof of Theorem 1.1 for 2 < a < 83 proceeds along similar lines, only with 

more possibilities for the values of the exponent n (since we can no longer assume 
that n is prime). We again compute c1, c2 and C3 in (24) for each choice of a and for 
349 < n < 649. Combining this with inequality (23) gives bounds upon solutions 
to (5) at least as strong as x < 10553 (obtained for (a,n) = (3,349)). Another 
convergent check yields no new solutions to (5) (since the largest partial quotient 
encountered is a31 942288 for (a, n) = (60,433), contradicting (9)). 

5. CONCLUSIONS 

As we have noted, the remaining cases of equation (2) with b = a + 1, 2 < 
a < min{0.3n, 83} and 17 < n < 347 may be "effectively" treated by arguments 
analogous to those in Section 3. The main computational difficulty, at present, 
appears to be the problem of finding fundamental units in the corresponding number 
fields. Improvements in the hypergeometric method discussed in Section 2 or in the 
theory of linear forms in logarithms (Sections 3 and 4) might enable one to the 
complete the proof that (2) has at most one positive solution in all cases, though 
it is not unlikely that a fundamentally new idea will be required. 
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