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IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT 
METHODS FOR NONLINEAR PARABOLIC PROBLEMS 

GEORGIOS AKRIVIS, MICHEL CROUZEIX, AND CHARALAMBOS MAKRIDAKIS 

ABSTRACT. We approximate the solution of initial boundary value problems 
for nonlinear parabolic equations. In space we discretize by finite element 
methods. The discretization in time is based on linear multistep schemes. 
One part of the equation is discretized implicitly and the other explicitly. 
The resulting schemes are stable, consistent and very efficient, since their im- 
plementation requires at each time step the solution of a linear system with 
the same matrix for all time levels. We derive optimal order error estimates. 
The abstract results are applied to the Kuramoto-Sivashinsky and the Cahn- 
Hilliard equations in one dimension, as well as to a class of reaction diffusion 
equations in Rt' v = 2,3. 

1. INTRODUCTION 

In this paper we construct and analyze implicit-explicit multistep schemes for 
the time discretization of a class of nonlinear parabolic problems of the form: Given 
T > 0 and uo E H, find u: [0, T] -* D(A) such that 

u'(t) + Au(t) = B(u(t)), 0 < t < T, 

(1.1) ~~~~u(0) = a0 

where A is a linear, selfadjoint, positive definite operator on a Hilbert space (H, (,.)) 
with domain D(A) dense in H, and B : D(A) -* H is a (possibly nonlinear) differen- 
tiable operator. Considering a finite dimensional subspace Vh of V, V := D(A1/2), 
we are led to a semidiscrete problem approximating (1.1): We seek a function Uh, 
Uh(t) E Vh, defined by 

i4t ? AhUh(t) = Bh(Uh(t)), 0< T 
(1.2) h(t) + Ah < t < T, 

0 

here uo E Vh is a given approximation to u?, and Ah, Bh are appropriate operators 
on Vh with Ah linear, selfadjoint and positive definite. 

Following an idea of Crouzeix, [3], for the time discretization of parabolic equa- 
tions with time dependent coefficients, we combine implicit and explicit multistep 
schemes to discretize (1.2) in time: Implicit schemes are used for discretizing the 
left-hand side of the o.d.e. in (1.2), and explicit schemes for the nonlinear right- 
hand side. Thus, letting k be a (constant) time step, tn = nk, n = O, ... , N, 
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T = Nk, we define a sequence of approximations un, Un E Vh, to un = u(tn), by 
q q q-1 

(1.3) ZOaiUn+i + k Z 3iAh Un+i = k EZiyiBh (Uni). 

i=O i=o i=O 

A scheme of this form is characterized by three polynomials a, ,3 and -y, 
q q q-1 

c(()=Ecej(', d(() =E/3j('j-a(() =E yj(' 
i=O i=O i=o 

We note that, when Bh vanishes, the scheme (1.3) reduces to the implicit linear 
multistep method (a, ,3) (or (p, o-) in the notation of Dahlquist) for the equation 
Ui4(t) + AhUh(t) = 0; similarly if Ah vanishes, the scheme (1.3) reduces to the 
linear multistep method (a, -y), which is explicit since Yq = 0, for the equation 
ui4(t) = Bh(uh(t)). The scheme (1.3) is a combination of the methods (a, /3) and 
(a, y); it is linearly implicit and nonlinearly explicit. We shall refer to it as the 
(a 1,3, -y) scheme. 

We shall assume in the sequel that the method (a, /3) is strongly A(O)-stable; 
this implies, in particular, that aq/3q is positive, which in turn ensures invertibility 
of the operator aqI + k/3qAh. Thus, given U?, .. ., Uq-1 in Vh, Uq,.. ., UN are well 
defined by the (a,/3, -y) scheme. We will assume in the sequel, without loss of 
generality, that both aq and /3q are positive. 

For the analysis of the scheme (1.3) we will need some additional assumptions for 
the operators A and B as well as for the finite dimensional spaces Vh; the operators 
Ah and Bh will then be appropriately defined. Let, thus, I 1 denote the norm of H, 
and introduce in V the norm 11 11 by llvll = (A1/2v, A1/2v)1/2. We identify H with 
its dual, and denote by V' the dual of V, again by (., ) the duality pairing on V' 
and V, and by 11 -11* the dual norm on V'. We assume that B can be extended to 
an operator from V into V', which is differentiable, and an estimate of the form 

(1.4) 1 (B'(v)w, w) < Aflwfllwll + AL-(v) lwl w Vv,w,w E V 

holds with a constant A < 1 and a functional ,l(v) which is bounded for v bounded 
in V. Indeed, depending on the particular (a, /3, -y) scheme, we shall need to assume 
that the constant A is appropriately small. Further, the assumption that ,l(V) 
is bounded for v bounded in V will suffice to derive our results under some mild 
meshconditions; these conditions can be weakened if [L(v) is bounded for v bounded 
in some appropriate weaker norms, and even avoided if ,l(v) is bounded for v 
bounded in H. 

We will assume in the sequel that (1.1) possesses a solution which is sufficiently 
regular for our results to hold. Uniqueness of smooth solutions follows easily in 
view of (1.4). 

For the space discretization we use a family Vh, 0 < h < 1, of finite dimensional 
subspaces of V. In the sequel the following discrete operators will play an essential 
role: Define Po : V' -, Vh, Rh: V -, Vh, Ah : V -, Vh, and the nonlinear operator 
Bh: V -* Vh by 

(PoV, X) = (V, X) VX E Vh, 

(ARhv, X) = (Av, X) VX E Vh;, 

(Ah , X) = (As, X) VX E Vh, 
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Then, obviously, AhRh= PoA and Bh= PoB. 
In the error analysis we shall use the approximation properties of the "elliptic 

projection" R1h. We assume that RhV is an approximation to v of order r, provided 
that v is sufficiently regular, 

(1.5) Iv-RhvI + hd/2Jlv-RhVII < M(v)h', 

where r and d are two integers, 2 < d < r, and M(v) is bounded if an appropriate 
norm of v is bounded. We further assume that 

(1.6) IB(v) - B(RhV) 11* < M(v)hr. 

We emphasize that the condition (1.6) serves consistency purposes only. It is 
needed to prove consistency of the (a, 3, -y) scheme and, in fact, already of the 
semidiscrete problem (1.2) for RhU of optimal order with respect to h. It is 
somehow restrictive though, since it essentially means that, if A is a differential 
operator of order d, then B may contain derivatives of up to order d/2 only. For 
some concrete differential equations, however, one can get by with a less stringent 
condition by taking into account in the definition of Rh the terms of B of order 
higher than d/2. 

The scheme (1.3) is very efficient since its implementation requires at every time 
step solving a linear system with the same matrix for all time levels. If the order of 
both the implicit and the explicit scheme is p, then under some mild meshconditions 
and for appropriately small A, and appropriate starting values U,..., Uq-1, we 
derive the optimal order error estimate 

Nmax Iu(t,)-UT U < c(kP + hr). 
O<n<N 

An outline of the paper is as follows: Section 2 is devoted to the analysis of a 
simple one step semiexplicit scheme of first order accuracy; its purpose is to motivate 
the analysis, in section 3, of more general multistep schemes of higher accuracy. 
Finally, in the last section, we apply our abstract results to three examples, namely 
the Kuramoto-Sivashinsky equation and the Cahn-Hilliard equation in one space 
dimension, and to a class of reaction diffusion equations in R', v = 2,3. 

2. AN IMPLICIT-EXPLICIT ONE STEP SCHEME 

As a motivation for the analysis of multistep schemes, we study in this section 
the simplest implicit-explicit scheme which is a combination of the backward Euler 
and the Euler method. 

Let U? E Vh be given. We define fully discrete approximations Un E Vh to u(t,), 
recursively by 

(2.1) k + AhUn+1 = Bh(Un), n=O, ..., N-1. 
k 

Our main concern in this section is to analyze the approximation properties of the 
sequence {Un}. As an intermediate step, we shall show consistency of the scheme 
(2.1) for the elliptic projection of the solution u of (1.1). Let 

W(t) = RhU(t), W(t) E Vh, O<t<T. 
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We note for later use that, in view of the definition of Rh, IIW(t)Ij is obviously 
bounded by IIu(t) I, and thus bounded uniformly in h and t, 

(2.2) sup sup 11 W(t) < C. 
h t 

Consistency. The consistency error En of the scheme (2.1) for W is given by 

(2.3) kE n = (Wn+l _ Wn) + kAhWn+l - kBh(Wn), n = 0,1, ..., N-1. 

Using the relation AhRh = PoA and the definition of Bh, we rewrite En as 

kE n = Rh (un+ 1 - un) + kPoAun+1 - kPoB(RhUn ), 

and thus, in view of (1.1), En = El + E2 , where 

(2.4) 
kElj =(Rh -P0) (un+1-o ) ? Po(Un+l_U-n -ku'(tn+l)) 

+ kPo(B(Un+l) -B(Un) 

and 

(2.5) E2n = Po(B(un) - B(Rhun)). 

Obviously 

(2.6) max IETn I< C(k + hr). 

Further, in view of (1.6), 

(2.7) max IE2I*< Chr. (2.7) 
~~~O<n<N-l1l 

l 

Next, we show optimal order rate of convergence of our approximations to the 
(sufficiently regular) solution of (1.1), provided that the initial approximation U? E 
Vh satisfies 

(2.8) |u? - U?l + hd/2 a u- OI < c(u)hr. 

We first introduce some more notation: For v E V and b > 0, let 

IJIV{llb := v2 + bkllv 121}/2 

and set Illvlll := Illvllll. Further, let 

(2.9) m := SUp{,l(V) : llvll < sup alu(t)fl + 1} 

with [L(v) as in (1.4). 
The main result in this section is given in the following theorem: 

Theorem 2.1. Assume that k and h2rk-l are sufficiently small. Then, we have 
the local stability estimate 

n-1 

1l n _ Un 111, <mt{ 1W?U 1A+kE El Wtm-U~~ ?emtn{IIIWo -Uo IIIA-+kZ1 lEi 

(2.10) 
j=0 

1 n1 
+ X g (k Z IIEj 12)1/2 

and the error estimate 

(2.11) 0< max IU(tn) - UnT < C(k + hr). 
0<ni<N 
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Proof. Let pn = un- W and tn = W - U, n = 0,... , N. Then, according to 
(1.5), 

(2.12) max |Pt ?< Ch . 
O<n<N 

Further, in view of (1.5) and (2.8), 

111W? III,\ < 1t? I + k1/2 1100 

< Chr + Ckl/2 hr-d/2 

i.e., since d < r, 

(2.13) 1110 III, < C(k + h r). 

Now, if we assume that (2.10) holds, using (2.13), (2.6) and (2.7), we obtain 

(2.14) max tY1< C(k + hr) 
O<n<N 

and then (2.11) follows in view of (2.12). Thus, it remains to prove (2.10). To this 
end, we proceed as follows: From (2.1) and (2.3) we obtain an error equation for 
tn 

T2n+l + kAh )n+1 =,n + k(Bh(Wn) - Bh(Un)) + kE n 

1 

=,On + k gh (Wn _Son) n ds + kEn n =n=0,...,N-1. h 

According to (2.13), (2.6) and (2.7), there exists a constant C* such that 
N-1 N-1 

(2.15) ~e {||W?UO||+kE |Ej|+ A (kE IIE2jll2)1/2} (2.15) III{ WO - UO III ? 1 E 
VF2 1( (kj=0 

l)1 
j=O ( A = 

< C*(k + hr) . 
Next, we split the error on as on = 

tn 

+ on. Here 
0t 

= 0?, 02 = 0, and P 

n = 1, ... . N, are recursively defined by 
1 

(2.16) n + kAhn = + kj B2 (WT-sdT)ids + kEi, i 1,2. 

We shall show inductively that, for n = 0, . . . , N, 
n-1 

(2.17) emtn{ II + k E Z E } 
j=O 

and 
n-1 

(2.18) (tkj I em 1 (kE IlEj l2)1/2. 
V2 (1 - ) j=O 

Obviously, (2.10) follows from (2.17) and (2.18). The estimates (2.17) and (2.18) 
are of course valid for n = 0. Assume that they hold for some n, 0 < n < N - 1. 
Then, according to (2.15) and to (2.10), which also holds for n, we have, for k and 
k-1h2r small enough, 

II,dnII < C* (k1/2 + k-1/2hr) < 1, 
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i.e., 

(2.19) sup ,u (Win - Sdn) < m. 
o<s<1 

Taking in (2.16) the inner product with on+ and using the definition of Ah and 
Bh, we obtain 

p1 

1|0in+ 1III2 = (,in ,n+ 1) + k ] (B' (Wn - sdn) ,p,dn+1) ds + k(Ein, dn+Y1) 

and thus, in view of (1.4) and (2.19), 

(2.20) 111 2?n+ III2< (1 + mk) Idn I lIn+1 I +k IIdnII 110n+ 111 + k(Ein, in+ 1), i 1, 2. 

Therefore, 

III,dn+ 1 III 2< (I + mnk) (1,ong I In+ 
1 

1+ \kIIdlnI 11 l0n+111) + klE n I ,on+l 

< (1 + mk)III,dn 111,\ 111,on+1 111,< +kEn I 111,0n+ 1 11 ?(1+mTk) 1~ t +~ +klEl tj 

i.e., 

(2.21) Iln 111 < (I + Tmk) Iln11 \+ klEl 1 

From (2.21) and the induction hypothesis, it easily follows that (2.17) holds also 
for n + 1. Similarly, 

1102n+l III 2 < 2 1 + )2 lId9n 12 + io t9n+1 i 2 + kIId9n iI2 + 1 A IoXn+ 1 11 2 2Y~ 2< (1 + mk)2 2 2?'k }n12 

1 122 21 2n2 
? k~~~ E +l ? 1 )kfl~1l 4(1 -A)kE2 2 

i.e., 

111,0n+ 1 III2 <(+ k2 Idn 12 + IldnII12 + I k1En 12 

and, therefore, 

(2.22) 111 ?n+1 (1II-2ik)2 IIId III 
1 

2 
2(1 - A)kfEfl 

FRom (2.22) and the induction hypothesis, it easily follows that (2.18) holds for 
n + 1 as well, and the proof is complete. D 

Remark 2.1. The weak meshcondition "k-lh2r small" is used in the proof of The- 
orem 2.1 only to show that I dntI < 1 which implies (2.19). If ,l(v) is bounded for 
v bounded in a weaker norm, one can get by with an even weaker meshcondition. 
Assume, for instance, that ,l(v) is bounded for v bounded in a norm 1 1, for which 
an inequality of the form 

(2.23) JIvH1* < ?VI + I VI-alI Vla E V 

holds for some constant a, 0 < a < 1. Then, assuming that (2.17) and (2.18) hold 
for some n, O < n < N - 1, according to (2.15) and (2.10), which is also valid for 
n, we have 

I,dnII* < Idn ? + IdnI1-aII}inIIa 

? C*(k + hr) + C*A -a/2k-a/2 (k + hr) 

and thus a condition of the form "k and k-ah2, sufficiently small" guarantees that 

IIdnII* is small, bounded by 1 say, and this in turn implies that (2.19) is satisfied 
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for an appropriately defined constant m. In particular, if ,u(v) is bounded for v 
bounded in H, no meshcondition is required for the results of Theorem 2.1 to hold; 
we only have to assume th,at k and h are sufficiently small. These remarks apply 
equally well to the more general multistep schemes which will be investigated in 
the next section. 

In the applications in Section 4, in the case of the Kuramoto-Sivashinsky equation 
,t(v) will be bounded for v bounded in H, and no meshcondition will be needed; for 
the Cahn-Hilliard equation, ,t(v) will be bounded for v bounded in a norm 1l IlI* for 
which (2.23) holds with a =, and thus we only have to assume that k and k-lh4r 
are sufficiently small. 

Similarly, the same idea can be applied also when ,t(v) is bounded for v bounded 
in a stronger norm. Then, in special cases, the convergence result of Theorem 2.1 
is still valid but under a stronger meshcondition. A particular example, where this 
can be done, is analyzed in section 4. 

Remark 2.2. The assumption Vh C V is not essential in our analysis. One can 
treat the case Vh $ V by redefining the discrete operator Bh and appropriately 
modifying the assumptions (1.4) and (1.6). We shall not dwell on this. 

3. MULTISTEP SCHEMES 

In this section we shall analyze implicit-explicit multistep schemes of higher order 
accuracy. 

Let (a, s3) be an implicit multistep scheme and a(.), i3(.) be the corresponding 
polynomials introduced in section 1. We order the roots (j (x), 1 < j < q (resp. 
(j(oc) ) of the polynomial Qx( ) = al(.) + xi3(.) (resp. iQ( ) ) in such a way that the 
functions (j) are continuous on [0, +oo] and that the roots (j := (j(0), j = 1, . . ., s, 
satisfy lIj I 1; these unimodular roots are called the principal roots of a(.) and 
the complex numbers Aj - 3(6) are called the growth factors of (j . We assume 
that the method (a, /3) is strongly A(0) -stable, that means, 

(i) for all 0 < x < oo and for all j = 1,..., q, there holds Ij(x)I < 1, 

and 

(ii) the principal roots of a are simple and satisfy: Re Aj > 0, j = 1,. . ., s. 

We also consider an explicit multistep scheme (a, -y) and we assume that both 
methods (a, /3) and (a, -y) are of order p, i.e., (with the convention 00 = 1) 

q q q-1 

(iii) Ziela= Zil 
= 

q-= 1...p 
i=o i=o i=o 

An example of a class of (a, /3, -y) methods satisfying the above assumptions with 
the order p = q is given by the polynomials 

q 

a(()=Z x,j(q-J( l)j = (q, and _y(() = (q( 1)q. 
j=1 

The corresponding implicit (a,/) schemes are the well-known B.D.F. methods 
which are strongly A(0) -stable for 1 < q < 6. 



464 GEORGIOS AKRIVIS, MICHEL CROUZEIX, AND CHARALAMBOS MAKRIDAKIS 

Remark 3.1. The hypothesis (iii) may be written in the equivalent form 

a(ex) = x/3(ex) + O(xP+l) = x-y(ex) + O(xP+l), as x - - 0, 

which implies 

(3.1) /3(y) - -y(y) = O((y -)P), as y 1. 

Since ,- y is a polynomial of degree q, we necessarily have p < q; recall that, cf. 
Cryer [5], the strong A(0)-stability of the (a, /3) scheme implies also that p < q. In 
the same paper Cryer (see also Grigorieff and Schroll [8]) shows that for any q there 
exists an (a, ,3) q-step A(0)-stable method of order q. Following the proof given in 
Hairer and Wanner, [9, Thm. 2.2, p. 270], it can be seen that these methods can 
be chosen to be strongly A(O)-stable. On the other hand, given an (a, /) method 
of order p = q, and since the degree of -y is < q - 1, we deduce from (3.1) that the 
(ae, y) scheme will be of order q if and only if -Y(() = 0(() - Oq(( -l)q. 

In the sequel assume that we are given approximations Uh, U1,... , E 
to u?,.0 . , Uq-1 such that 

q-1 
(3.2) Z (lwi-_Uil ? k12 Wj -Ujll) < c(kP + hr). 

j=0 

We define Un E Vh, n = q,... , N, recursively by the (a, /, -y) scheme (1.3). We shall 
prove in this section that the method (1.3) is stable, and we shall show convergence 
of the approximations Un to u(tn), as h and k tend to zero. In particular, under a 
mild meshcondition and for A sufficiently small, we derive the optimal order error 
estimate 

max Ju(tn) - Unl < c(kP + hr). 
0<ni<N 

As in the previous section, we shall first show consistency of the scheme (1.3) for 
the projection W, W(t) = RhU(t), 0 < t < T. 

Consistency. The consistency error En of the scheme (1.3) for W is given by 

q q q-1 

kEn = Ze Wn+i + k E Z iAh Wn+i -k -yiBh( 

33) ~~i=0 i=0 kZyjh(n?) 
n = 0, ... , N-q. 

Using the relations AhRh = PoA and Bh = POB, we can rewrite (3.3) as 

q q q-1 

kE n = Rh , a?un+i + kPo 3 - kPo E -yiB(Rhun+i), 
i=o i=o i=o 

and thus, in view of (1.1), we split En as E= El + E2, where 

q q 

kE 
n 

=(Rh - Po) iun+i + Po E (eiun+i - kiU'(tn+i)) 

(3.4i) i=0 i=0 

+ kPo (SE iB(Un+i) -q iB(Un+i)1 

i=O i=O 
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and 
q-1 

(3 .4ii) E2 = Po E Zi (B (un+i) - B(Rhun?2)) 
i=O 

First, we will estimate El{. Using (1.5) and the fact that a,1 + ?al 0, we easily 
see that 

q 

(3.5i) (Rh -P0) aiun+i < Ckhr 
i=O 

Further, in view of the consistency properties of (ae, 13), 

(3.5ii) E (iu n+i - kOiu'(tn+i)) < CkP+. 
i=o 

Moreover, 

q q-1 

j:i B (Un+i )- v B (Un+i 9 

i=o i=O 

Z 

P- 
(i k) e q1 

p 
(Ik)~ O 

= ,Bi Y ! Wte B(u)(tn) +1 -%B(z W u)(tn) 
i=O ~=o i=O t=o 

p1 q q-1 

-E Z -(Z/ i i - Z ii-)0 i B(u)(tn) + ?On 
t=O * i=O i=O 

n 

where the last equality holds in view of the consistency properties of (a,/3) and 
(a, -y), and, obviously, Ionp < ckW. This relation and (3.5i,ii) yield 

(3.6) max En C(kP + hr). 

Finally, using (1.6), we obtain 

(3. 7) max E2n < Ch', (37) ~~~O<n<N-q E~Cr 

which completes the estimate of En. 

Convergence of the multistep scheme. Let on W - Un,n O,...,N. 
Then (3.3) and (1.3) yield the error equation for on 

q q q-1 

(3.8) Zi d+ + 1 kZESn /3iAhi n+i - kZ1i{Bh(Wn+) -Bh(Un+')} A kEn. 
i=O i=o i=O 

According to the splitting of En, we introduce t3 and 03, cf. section 2, by 
q 1 21 

q q q-1 I 

(3 9) E ?i,on+i k 3Aljni= t B(Wn+z _ So9n+i, ds n+i /3khtY? -k * - ytY +I ds t?+ 
(3.9) i=O i=O 

+ kEn, j= 1,2, n =O,...,N-q 

with initial values Oj = 3j and Oj = 0 for j = O, . . . q-1. Then, obviously, 
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In the sequel we shall use the notation 

(~fn+q=4) (En 
~ 

/~ 

i (kAh), F0 = j j BajW-+i - stY+ ) d s, 

A=A(kAh> q- (AP A-2 *-- AO) (F%;1 ... Fr) 

and 

((aq + k:qAh )?).+q? 1l 

(3 q + k/3qAh) en (=O X 
\ 6q+k/qAh)?) 

Equation (3.9) can then be written in the form 

(3.10) (axq + k/3h(2+l=(x qAh)eh) A(2+kr(3 n j =1, 2. 

We quote the following result from Crouzeix, [31: 

Lemma 3.1. There exist a constant il, with 0 ? r1 < 1, and a continuous map 
N : -+ (C1>(q such that for all x > 0 the matrix 'H(x) is invertible and the 
Euclidean norm 11*12 of the matrix L2(x), 

L2(x) - aq + /3qX -1()H 

is less or equal to one for all x > 0. 

Let 

= h(kAh), L2 - L(kAh), 

and 

yj = H 1<,J rn = H-lr (n = ]pqg l 

then, we can rewrite (3.10) as 

(3.11) ( ? k/3Ah)Yf+1 (aq ? kT//3qAh) IY ? kFnNYf ? kS, j 1,2. 

In view of the fact that Nl(x) l2, Nl(x>-1 2 are uniformly bounded, see relations 
(3.27) and (3.28) in [31, it suffices to estimate yn.* We adjust in this section the 
definition of 1 11to the scheme under consideration by setting 
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Further, for V = (v, ...,vq)T and W =(w1,. ..,wq)T in Hq or in Vq we shall use 
the notation 

q ,q 1/2 
(V,W) :E(vi,Wi), VI := (S vi 2) 

i=l i=l 

q v 2)1/2 qv2 12)1/2 qV 1* v 2)1/ 

IIIVIII=l E llit i=lii = ll 

and, for a linear operator M: H' -+ H , we set IMI := SUPVCzHq V70 lvi 
The main result in this paper is given in the following theorem: 

Theorem 3.1. Assume that the constant A in (1.4) is appropriately small (depend- 
ing on the particular scheme) and that k and h2rk-1 are sufficiently small. Then, 
we have the local stability estimate 

q-1 n-q 

I,on I 
+ k1/2 iion II < CecmT{ E Oj I + k1/2 1Ioj II + kE jE 

(3.12) j j 
n-q 

( IlE 2112)1}/2v 
j=0 

and the error estimate 

(3.13) mna<x JU(tn) _Unl < C(kP + hV). 

Proof. Let pn = Un- Wn n = O,.. , N. Then, according to (1.5), 
(3.14) max lpl ? Ch <. 

Now, if we assume that (3.12) holds, using (3.2), (3.6) and (3.7), we obtain 

(3.15) max I<nI < C(kP + hr) 

and (3.13) follows immediately from (3.14) and (3.15). Thus, it remains to prove 
(3.12). According to (3.2), (3.6) and (3.7), there exists a constant C* such that the 
right-hand side of (3.12) can be estimated by C*(kP + hr), 

q-1 n-q N-q 

( 3. 16) CecmT{ 1i l + k2 + k E El I + (k E E2)1/2} 
__0 j=O j=O 

0 

C* 
(kP+hr). 

We will estimate on by estimating Yn. In fact, we shall show that for some ? 

E(A, (a ,-y) ),0 < ? < (I _ q2 )q with q as in Lemma 3.1, 

kn-I 
(3.17) D+{l ?ecmtn{YiDlF + S1} 

VCq j=O 

and 
n-I 

(3 .18) 111 Y2n ?il < ecmtn j1 ~(kZE g< e 1 2) 1/2 

j=O 

Then, (3.12) follows, and the proof will be complete. We shall use induction: The 
estimates (3.17) and (3.18) are valid for n = 0. Assume that they hold for 0, ... n, 
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O < n < N -q. Then, according to (3.16) and (3.12), which is then valid for 
O ... , n + q-1, we have, for k and k-lh2r small enough, 

max | S *(kP- 12+ k- 12hr ) < 1, 
O<j<nt+q-1 ?~?~kl2k/h)1 

i.e., 

(3.19) sup max -I (WJ - sd) < m. 
O<s<l1<<+- 

Taking in (3.11) the inner product with yfl+l. we have 

(3.20) 17l y.n+ 1 2 A( ( q + kI7/q h) Y n+1 ) + k(FnN Y ! y + 1) 

+ 
k(&'7n,13 j = 1,2. 

First, we shall estimate the second term on the right-hand side of (3.20). Let 

Xi Y C Vq and X' = 'H-1X Y' = 7HT Y, and recall that Fn = 7H-&1n. Then, if 
xi, y. are the components of X and Y, respectively, we have 

q-1 I 

(FnX, Y') = (FnX, Y) = -Y i (BW ' s,Yn+)xi, yl) ds. 
i=O? 

Using here the induction hypothesis, which ensures (3.19), the assumption (1.4) 
and the fact that II((x))I2 and II-((x)-1 I2 are uniformly bounded, we see that 
there exists a constant M1 such that 

I(YnXiY/)I < MI(AIIXIIIIIYII +mIX/I IYI). 

Therefore, 

(3.21) l(nyn Y!n+') I < M, (AIIYjn 1IliYjn+l 1 + mlYjn I Yjn+'I) j = 1, 2. 

Next, we shall estimate the first term on the right-hand side of (3.20). Lemma 3.1 
implies that 

(3.22) ILI < 1. 

We also have 

((aq ) kj7/qAh>Cyj , Yj9 +) = aq (yjn,Yjn+l) + k7qO ( (A 1/2yn) Alj/2yn+1 

i.e., in view of (3.22), 

(3.23) 1 ((aq + k'17qAh) Cyjn Yjn+ 1) Y < ? IYjn I IYn+ 1 + /l3qk yn l j Yjn+ 
j = 1,2. 

From (3.20), (3.21) and (3.23), we obtain 
(3.24) ?alYn+1lll2 Yf IYjIIl n+l + (AM1 +? T/3q)kllYjn7 ||Yjn+l 1 

+ M, mk I Yjl 3 Ij+ +k(.En,Yjn+- j=112. 

Therefore, with A = (17)3q and c - ml 

IIY1n1 <(1 + cmk)aqlylnj jYn+11 +?/qkIIY1nII IIY1n+1II +?kjgnS IYn+l1 

<(1 + mk)(aqynl jyn+1 + /3qkIIYgnII IY1n+lll) + kj{n |Y1n+1I, 
i.e., 

k ~ (3.25) YII Yn+1 ?11 < (1 + cmk) III Yln II + II. 
aCq 
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From (3.25) and the induction hypothesis, it easily follows that (3.17) holds also for 
n+1. Similarly, with A 1 {[!3qQ3q -6)11/2 - rif3q} for some 6, 0 < ? (1_rn2)3Oq, 

and c = 

n+lyn112 11(1 ncrk)oq Y2 l lY2n+l + [3(qq -_ )]1/2k Yn2l HY n+'1 

+ 2 I 1.*n+ 2 kIIY2n+ 1112 

Thus, 

IIY2n+1112 <(1 + cm Iy)a n12 + 1 12 + 1 q II112 

+ I/3qkllY2n+l12 +1 2 12 
.e.,q 

(3.26) Ily+ l2< (1 + cmk) IY2 12+ E1 1'62 1l* 

From (3.26) and the induction hypothesis, it easily follows that (3.18) holds for 

n + 1 as well, and the proof is complete. LI 

Remark 3.2. Initial approximations. Assume that the data of the problem are 
smooth enough such that one can compute the time derivatives uj) (0), j -1,..., 

p - 1, of the exact solution at t = 0. Then, it is easily seen that U? = W? and 

Um = RhTPmu(0), m = 1, .. , q - 1, with 

TPu(O) =u + mku(')(0) + . +(mk)P-1 u(P-l)(O), m = l, . q-1, 
(p-i) 

satisfy (3.2). 

4. APPLICATIONS 

In this section we shall apply our abstract results to two examples in one space 

dimension, namely the periodic initial value problems for the Kuramoto-Sivashinsky 

equation and the Cahn-Hilliard equation, and to a class of reaction diffusion equa- 

tions in Rl, v = 2,3. 

4.1 The Kuramoto-Sivashinsky equation. We consider the periodic initial 

value problem for the Kuramoto-Sivashinsky (KS) equation: For T, v > 0 we seek 

a real-valued function u defined on IR x [0, T], 1-periodic in the space variable and 

satisfying 

(4.1) Ut + uux + Uxx + vuxxxx = 0 in R x [O, T] 

and 

(4.2) U(., 0) = uo in XR 

where u? is a given, smooth 1-periodic function. 

The periodic initial value problem (4.1)-(4.2) is well-posed, cf. [13], [17]. For 

numerical methods to this problem see, e.g., [1] and the references therein. The 

KS equation is related to turbulence phenomena in chemistry and combustion, and 

arises also in plasma physics and in two-phase flows in cylindrical geometries, see 

[18] and [14]. 
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For s E No, let H'er denote the periodic Sobolev space of order s, consisting 
of the 1-periodic elements of H51Oc (R), and let 11 f|HS be the norm over a period 
in Hper. The inner product in H Lper = Hoer is denoted by (,.), and the 
induced norm by I 1. Let A: H4er H be defined by Av = (vxzzx + v). Then 
V := D(A1/2) = H2er, and the norm in V is given by llvll = v1/2(lvxxl2 + Iv12)1/2. 
Let B: V -+ H be given by B(v) =-Vxx- vvx + vv. Then, 

B'(v)w -wxx- (vw)x + vw, 

and thus by periodicity 

(B'(v)w,w) = (wx,wx) + (v,wwx) + vz(w, w). 

Therefore, in view of the inequality IIWIIL- _< IW? + 4w'J, w C HIer, 

I(B'(v)w,w) IwWxI lxI + IVI IIWIILOO lWxI + VlWl 1Wa 

<(1 + lvl)lwxl lwgX + vlwl 4-1 + lvl lwl lwxl, 

and thus, using the inequality lux 2 < ui luxx I, u E V, we easily see that the 
condition (1.4) is satisfied for any A > 0, 

(4.3) l(B'(v)w,w)l < llwllll (v)w , v,w, WE V, 

with [l(v) I2A [+1 + 2AV2 + 2 v v(1 (+ v) ] . We note that, since A can be taken 
arbitrarily small, our results hold for this problem for all implicit-explicit schemes 
satisfying our stability and consistency assumptions; further, since A is bounded for 
v bounded in H, the meshcondition of Theorems 2.1 and 3.1 is not needed here, cf. 
Remark 2.1. 

For the space discretization, we let 0 = xo < x1 < ... < xJ = 1 be a partition of 
[0, 1], and h := maxj(xj+l - xj). Setting XjJ+5 := j + x5, j E Z, S = 0, .. ., J - 1, 
this partition is periodically extended to a partition of R. For integer r > 4, let 
Vh denote a space of at least once continuously differentiable, 1-periodic splines 
of degree r - 1, in which approximations to the solution u(., t) of (4.1)-(4.2) will 
be sought for 0 < t < T. The following approximation property of the family 
{Vh}o<h<I is well known, cf., e.g., [16], 

2 

(4.4) inf Ehjllv- XI|H < chs lVIIHs v _EHper, 2 < s < r_ 
XCZVh V-.j?h ES 2sr 

3=0 

We define the elliptic projection operator Rh: V -+ Vh by 

(4.5) ((v-Rhv)",X") 4- (v-Rhv,X) =- VX E Vh. 

It is easily seen that 
2 

(4.6) Zhillv-Rhvflj _ 
chs lVIIHs, v E Hs 2 < s < r; 

j=O 

thus, in particular, the estimate (1.5) holds in this case with d 4. Next, we will 
verify (1.6). For v,w e V, and w := Rhv, we have 

(B(v) - B(w),w) -(v - w,w") + -((v + w)(v - w),w') + Z(V -ww), 2 
and, by (4.6), 

I(B(v) - B(w),w) < C(1 + llVllH2)llVllHrhrllwll, 
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i.e., 

(4.7) fIB(v) - B(Rhv)l1* < 0(1 -1+ 1lVH2)fljVlHrhr, 

and thus (1.6) holds. Let W(t) := RhU(t), and assume that we are given approxi- 
mations U?,..., U h1 to u?,..., Uq-1 such that 

q-1 
(4.8) E: lWj-Ujl +k k121IW3' 

_ ll) c(kP + hr). 
j=o0 

Then, we define U' E Vh, n = q, . . . , N, recursively by the (a, /3, -y) scheme 
q q 

E ai(U+i, X) + kv Ei { (Uxi , X") + (Un+, X)} 
i=O i=O 

(4.9) q-1 
k E V { (x + X')(Un+i Uxn+i v X) + 1V,(Un+i ,X)} 
i=o 

VX Vh, n =O,..., N -q, 

where (a, /) and (a, -y) are multistep schemes of order p, and (a, /) is strongly 
A(0)-stable. Then, Theorem 3.1 yields, for sufficiently small k and h, the error 
estimate 

(4.10) max jun-Un I < c(kP + hr). 
n 

As already mentioned, (4.10) holds for all (a, /, -y) schemes satisfying our stability 
and consistency properties. 

Remark 4. 1. It is not difficult to verify that the estimate (4.10) remains valid if the 
approximations Un E VhC n = q, ... , N, are defined by 

q q 

Z ai (Un+i vX) 
+ kv E p i (Uxnq+ , X 

i=O i=O 

(4.9') q-1 
= k7 {(Un+i X')(Un+i Un+i ,X)} - k -yi { (Uxn+', X) - 

i=O 

VX C Vh, n = ,0,..., N-q. 

4.2 The Cahn-Hilliard equation. We consider the periodic initial value problem 
for the Cahn-Hilliard (CH) equation: For T > 0 we seek a real-valued function u 
defined on R x [0, T], 1-periodic in the space variable and satisfying 

(4.11) Ut +Uxzx-(U3_u)xx = O in R x [0,T] 

and 

(4.12) u(., 0) = uo in R, 

where uo is a given, smooth 1-periodic function. 
The problem (4.11)-(4.12) is well-posed, see Temam [18] and the references 

therein. For numerical methods for this problem we refer to, e.g., [6], [12]. The CH 
equation describes the dynamics of pattern formation through phase transition, cf., 
e. g., [18]. 

We shall use the same Hilbert spaces, and approximating spaces as in subsection 
4.1. We let A: H4er -+ H be defined by Av = vxxxx + v. Thus, the norm in V, 
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V: D(A') Her, is given by lvll : 1(v 2 + J12)1/2 .Let B V Hb 
given by B(v) (v3 -V)XX + v. Then, 

B'(v)w = 3(v2w)XX - wxx + w. 

In this case we can show that 

(4.13) 1(B'(v)w,w) I Allwll llll +w 4(v)lwl lwl, Vv,w,w E V, 

with p(v) := 1 + 42 {(1+31v 112 _+611VIILcOIVXI)2 +36 JV112. IVX12}. Wenotethat 

p is bounded for v bounded in H'per. Further, since 

(4.14) ||V||H1 ? v 4 | v1/2 VvEV, 

we conclude that a condition of the form (2.23) holds in this case with a = 
The projection Rh is also in this case defined by (4.5). In particular, in view of 

(4.6) the condition (1.5) is satisfied. Moreover, it is easily seen that 

(4.15) IB(v) - B(RhV)11* < C(1 + IIv1 l2) JV JHrh', 

and thus (1.6) holds in this case. Let W(t) := RhU(t) and assume that we are given 
approximations U?, U1, ... , Uq-1 C Vh satisfying (4.8). Then we define U' E Vh, 
n = q, ... , N, recursively by the (a, 13, -y) scheme 

q q 

E (Un+i ,x) + kEpi {x(Uxn+i, X) + (Un , X)} 
i=O i=o 

(4.16) q-1 

=kZ'yi {( (Un+i)3 - Un+iX//) + (Un+i X) 
i=O 

VXCVh, n=O,...,N-q, 

where (a, 3) and (a, -y) are multistep schemes of order p, and (a, /) is strongly 
A(O)-stable. Then, taking into account (4.14) and Remark 2.1, an application of 
Theorem 3.1 yields, for k and h4rk-l sufficiently small, the error estimate 

(4.17) max jUn-U_n < c(kP + hr). 
n 

4.3 A reaction diffusion equation. In this subsection we shall apply our results 
to a class of reaction diffusion equations: Let Q C R' , v = 2, 3, be a bounded 
domain with smooth boundary 9Q. For T > 0 we seek a real-valued function u, 
defined on Q x [0, T], satisfying 

ut- Au f(u) inQx[0,T], 

(4.18) u=0 on &Qx[0,T], 

u(-,O0) =u? 0 in Q 

where uo is a given smooth function and f : -R R is a smooth function. We are 
interested in approximating smooth solutions of this problem, and assume therefore 
that the data are smooth and compatible such that (4.18) gives rise to sufficiently 
regular solutions. 

We shall distinguish two cases. Assuming that f satisfies a polynomial growth 
condition of order at most p, see (4.19) below, and provided that p < 4 for v = 3, 
we show that the abstract theory of sections 2 and 3 is directly applicable and 
yields, without any additional assumptions on the discretization spaces, optimal 
order error estimates for all (a, /, -y) schemes considered in this paper. For general 
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f our results apply as well, provided that meshconditions stronger than those of 
Theorem 3.1 are fulfilled. 

Reaction diffusion equations model various physical phenomena related, for in- 
stance, to phase transitions, chemical reactions, pattern formation, cf., e.g., [2], 
[7], [10] and their references. The Allen-Cahn model (p = 3), which in the limit 
describes evolution by mean curvature, [2], [7], and generalized Ginzburg-Landau 
equations, [10], are reaction diffusion equations of particular interest with polyno- 
mial nonlinearity. 

Let Hs = HS(Q) be the usual Sobolev space of order s, and 11 |IH8 be the norm 
of Hs. The inner product in H := L2(Q) is denoted by (., .), and the induced norm 
by 1 1; the norm of LS(Q), 1 < s < o, is denoted by 11 . fILs(Q) and simply by 11 HILS 
for Q = Q. Obviously, V = Ho1(Q) = Ho' and the norm in V is equivalent to the 
H1 norm. 

We now consider the case that f satisfies the following growth condition: there 
exists L E R such that 

(4.19) jf'(')j < L(1 + J(JP-1) V, E R. 

In the sequel, we shall use the Sobolev inequality 

(4.20) IIVIILS ?0 QVIIH1, 1<s<oofor v= 2, and 1<s<6forv=3, 

as well as its consequence 

(4.21) ||V||L4 < C||V|J'< /j||v|14 v = 2,3. 

Let B: V -+ V', B(v) f(v). First, we note that B is well defined. Indeed, for 
v,w C V, 

1 

(f(v), w) (j f'(sv)v ds, w) + (f(0), w), 

and, therefore, by (4.19) and Holder's inequality, 

(4.22) v(f(v),w)| ? C[ (J IvP/5dx) IWIIL6 + (1 + --VH|L2) flWflL2]v 

and thus, in view of (4.20), we see that f(v) E V', provided p < 5 for v 3. 
Further, by (4.19), for v,w,w e V, 

I(f'(v)w,w)I < cf IvP llwllHldx + CHIWHIL2HWH IL2 

< c( IV2(p-1)dx)/2 ||WL4 IWH|^L4?+ C jW L2 IIWIIL2 

i.e., in view of (4.21), 

(4.23) I(f'(v)w,w)I < CVfll(P-1) | 4-v 4v l 4 4 + ClWl |w. 

Thus, B is differentiable. Furthermore, (4.23) and Young's inequality (ab < 'aq + 
q~~~~~~~~~~~~~~~~~~~~~~~ s q,l bql + I,= ) yield 

I(B'(v)w,w)I < C ?lwIl flwfl 
(4.24) 4(-c(i A-1' - (HvHL21 ) 

I l l IW . 
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Therefore, by Sobolev's inequality, we see that, for p < 4 when v = 3 (and for any 
p when v = 2), the assumption (1.4) is satisfied with A = C l, 

4(p-1) 

u(V) = C + C 4 'V 4-v (flVflL2(P-1)) 4-v 

and ,u(v) is bounded for v bounded in V. Again, A can be taken arbitrarily small 
and thus our theory applies to all (a,3, y) schemes satisfying our stability and 
consistency assumptions. 

We further analyze the case that f satisfies the growth condition (4.19), with 
p < 4 for v = 3, by introducing the discretization spaces Vh; the case of general f 
shall be discussed at the end of this section. For simplicity, let Vh be the subspace 
of V defined on a finite element partition Th of Q, and consisting of piecewise 
polynomial functions of degree at most r - 1, r > 2. Let hK denote the diameter 
of an element K E Th, and h = maxKCTh hK. We define the elliptic projection 
operator Rh, Rh V -+ Vh, by 

(VRhV, VX) = (VV, VX) VX E Vh- 

We assume that (we do not attempt here to deal with problems that may arise in 
the case of a curved boundary &Q concerning the requirement Vh c V, cf. Remark 
2.2) 

(4.25) v-RhVI + hIIv-RhvI < Ch IVHr vEHr H; 

then, in particular, the estimate (1.5) will hold in this case with d = 2. Next, we 
will verify (1.6). We shall further assume that 

(4.26) sup{ JRhV JLc : O < h <1} <- CIIVIHr, v E Hr n Ho. 

For v C Hr n Ho, we have 

B(v) - B(RhV) f'(v - T(v - Rhv))dr (v - Rhv); 

using here the Sobolev inequality lVflL-O <? CHIVHIHr (r > 2) and (4.26), we conclude, 
in view of (4.25), 

(4.27) IB(v) - B(Rhv) ?< ChrM(v) HIVHIHr, 

with M(v) bounded for v E Hr n Ho' bounded in Hr. Thus, (1.6) is satisfied. 
Now, let W(t) := Rhu(t), and assume that we are given approximations UO,..., 

Uq-1 E Vh to Uo,... , uq-1 such that 

q-1 

(4.28) j(vvWJ-UJ+?k1/21Wj_Uj1) <?c(kP+hr). 
j=0 

Then, we define Un E Vh, n = q,... , N, recursively by the (a, 13, -y) scheme 

q q 

a,i (Un+i X) + k p3i (VUn+i?,Vx) 
(4.29) i=O i=O (4.29) 

~~~q-1 
=k O _i(f (Un+i), X) VX E Vh, n=O, ... N-q, 

i=:o 
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where (a, 3) and (a, y) are multistep schemes of order p, and (a, 3) is strongly 
A(0)-stable. Then, Theorem 3.1 yields, for sufficiently small k and k-lh2r, the 
error estimate 

(4.30) max lu'- UI < c(kP + hr). 
n 

Remark 4.2. By (4.24), we see that (1.4) holds for any A > 0 with ,u(v) bounded 
for v bounded in L2( -1). Using this fact, Sobolev's inequality 

IVHLS < CIvIl-a|Vlla, 

a = s-2 , V = 2,3, (with s < 6, of course, for v = 3) and Remark 2.1, it is 
easily seen that the meshcondition k-lh2r < c, under which (4.30) holds, can be 
weakened. We shall not dwell on this. 

We close this subsection by briefly considering the case of a general smooth 
function f, as well as the case that f satisfies (4.19) for v = 3 but with p > 4. 
First, we note that in our analysis it suffices to assume that B is well defined and 
differentiable on a subspace V of V n L? containing Vh, for all h. By tracing back 
the proof of (4.24) we see that in this case ,u(v) is bounded, provided that 

Jf'(v(x))12dx 

is bounded. Note that the assumption k-lh2, < c, for appropriate c, of The- 
orem 3.1 is only used to show that I?9nII < 1, which implies (3.19), i.e., that 
u(W3 - st9i), s c (0,1), is bounded by a constant. In the case under investigation, 

by using appropriate inverse inequalities, we show that if stronger meshconditions 
are satisfied, then supo<,<i fS f'(Wi -S9) 2 dx is bounded by a constant inde- 
pendent of h and k, and thus [t(Wi - st9) will be bounded by an appropriately 
defined constant m, i.e., (3.19)-and, consequently, the error estimate of Theorem 
3.1 will remain valid. We will distinguish the following cases: v = 2 and general 
f, v = 3 and f satisfies (4.19) with p > 4, and v = 3 and general f. 
i. v= 2 and general f. First, we note that 

IIXIIL ?0 log(h) II/ XIIH1 VX C Vh, 

with h = minKETh hK, cf. [19, p. 67]. Obviously, If I '(X))12 dx is bounded if 

1Xl L?- is bounded. Now, 

max I I 1 Ld <Cl log (h) 1/2 0< <max - i 11 
O<j<n+q-1 O<j<n+q-1 

and thus, according to (3.16), 

max ?93IIL K C*C log(h)1l/2(kP-l/2 + k_1/2hr) 
O<j<?n+q-1I13IL 

C j 1 0 

Therefore, if k and h are chosen such that Ilog(h) k2P-1 and Ilog(h)Ik-1h2' are 
sufficiently small, then ,u(Wi - st9i) will be bounded, and the convergence results 
hold. 
ii. v = 3 and f satisfies (4.19) with p > 4. If s > 6, we have 

s-6 

(4.31) IIXIILs(Q) < Ch 2s IXIIH1(Q) VX C Vh. 
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Indeed, employing standard homogeneity arguments, one can show that for an 
arbritrary element K E Th, 

s-6 

||X||Ls(K) < Chy 2s (1VTXIL2(K) + IIXIIL6(K)) 

and (4.31) follows in view of (4.20). Hence, 
_p-4 

max 1101L2(P-1) < Ch 2(p-1) max ||0111. 
O<j<n+q-1 O<j<n+q-1 

p-4 p-4 

Therefore, if k and h are such that h P- 1 k2p- 1 and k-1h P-1 h2r are sufficiently 
small, then, as before, 

max 11'i I1L2(p-1) < C*h- 2(p-1) (kP-1/2 + k-1/2hr) < 1, 
O<j<n+q-1 

,u(W- - st9) will be bounded in view of (4.24) and (4.26), and our convergence 
results hold. 
iii. v = 3 and general f. In this case, 

||XIIL? < Chh/ IXIIH1 VX E Vh, 
as one can see by modifying the proof of the two dimensional case. By the same 
arguments as for v = 2, the convergence results of this paper hold, provided that 
h-1 k2p- 1 and k-lh-lh2r are sufficiently small. 
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