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A CONVERGENCE THEOREM 
FOR THE FAST MULTIPOLE METHOD 

FOR 2 DIMENSIONAL SCATTERING PROBLEMS 

CHRISTOPHE LABREUCHE 

ABSTRACT. The Fast Multipole Method (FMM) designed by V. Rokhlin rap- 
idly computes the field scattered from an obstacle. This computation consists 
of solving an integral equation on the boundary of the obstacle. The main 
result of this paper shows the convergence of the FMM for the two dimensional 
Helmholtz equation. Before giving the theorem, we give an overview of the 
main ideas of the FMM. This is done following the papers of V. Rokhlin. 
Nevertheless, the way we present the FMM is slightly different. The FMM is 
finally applied to an acoustic problem with an impedance boundary condition. 
The moment method is used to discretize this continuous problem. 

1. INTRODUCTION 

Many different numerical methods are available for the resolution of acoustic or 
electromagnetic equations outside a bounded obstacle. The first class of numerical 
methods can be called "volume methods" [10]. The open space outside the obstacle 
is bounded by an artificial surface. The domain inside the artificial surface is meshed 
and a proper boundary condition on the artificial surface must be introduced. The 
main drawback of this approach is that it leads to a huge number of unknowns. If 
the obstacle is impenetrable, an alternative method can be used based on integral 
equations over the boundary of the obstacle [5]. The number of unknowns n arising 
when discretizing such equations is relatively small, since only the boundary of the 
obstacle is meshed. But, in return, since the kernels of the integral operators are 
non-local, the discretization leads to a dense matrix Z. When the wave number k 
times the size of the obstacle is large, the number of unknowns n necessary to get 
good accuracy can be very large. For such large scale problems, the inversion of the 
dense matrix Z is very tedious. Inverting a dense nxn matrix with a direct solver, 
such as the LU decomposition, is an order n3 procedure. On the other hand, the 
inversion can be performed by the mean of an iterative method, such as a conjugate 
gradient type algorithm. Each iteration typically requires the computation of a 
couple of scalar products and at least one multiplication of a vector by the matrix 
Z. The number of operations for this is proportional to n2, since the matrix Z is 
dense. Thus the overall cost of an iterative method is proportional to nA times the 
number of iterations. 
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Using second kind integral equations and an appropriate preconditioner, the 
number of iterations can be controlled. But the major task in order to get an 
efficient acoustic or electromagnetic solver consists in writing a fast matrix-vector 
multiplication routine. Methods that perform the matrix-vector multiplication in 
an order nr operations, with r significantly lower than 2, are called "fast methods". 
In the literature, three main methods are designed to be fast in the previous sense. 
The Fast Multipole Method (FMM) [14, 15, 16, 17, 18], which is the main focus of 
this article, is the most popular one. The two others are the wavelet-based method 
[8, 9, 4] and the Impedance Matrix Localization method [2, 3]. The idea of these 
two latter methods is similar and has nothing to do with the FMM: The dense 
matrix Z is approximated by a sparse matrix after an appropriate change of basis 
elements. 

The main reference to the FMM in two dimension is the original paper of V. 
Rokhlin [14]. The convergence analysis of this method does not seem to appear 
in the literature so far. This has actually been the main criticism of this method. 
The purpose of this paper is to provide a rigorous proof for the acoustic problem 
(Helmholtz equation) in two dimension. The proof is quite long and technical. This 
emphasizes the subtleties and the complexity of the FMM. 

In fact, there exists several FMM corresponding to different physical problems. 
For instance, there is one FMM designed for the computation of long-range inter- 
actions in particle systems (molecular dynamics simulations), which is described 
in [6]. A proof of the convergence of the FMM in this case has been done by H. 
Petersen et al. [12]. But this work cannot be used for the Helmholtz equation. 

The FMM presented here is the basic version, leading to a matrix-vector mul- 
tiplication in O(n 3/2) operations. We would like to point out that more elaborate 
versions of the FMM reduce the cost to O (n4/3) [14], or even O(n log n) [13] in its 
multistep version. 

To be consistent with the convergence proof given here, the FMM is presented in 
its mathematical form. Most articles on this method insist on the physical basis of 
this method which is the well-known "multipole method" designed to solve multiple 
obstacle problems [11]. We rather dwell on the mathematical trickery of the FMM 
which is the matrix-vector multiplication. Accordingly, the main feature of the 
FMM is a special approximation of the fundamental solution to the Helmholtz 
equation. The rest of the FMM is quite straightforward. 

The layout of this paper is as follows. In Section 2, the necessary notation is 
introduced and we give the main ideas of the FMM. In Section 3, the approxi- 
mate form of the fundamental solution to the Helmholtz equation is derived. But 
the convergence analysis and the justification of all the calculations done in Sec- 
tion 3, is performed in Section 4. In this approximate form, an integral appears. 
Numerically, this integral must be discretized. The convergence analysis of the dis- 
cretized approximate form is thoroughly investigated in Section 5. In Section 6, the 
convergence of the derivatives of the kernel is proved, and then we show that the 
approximate matrix (defined with the approximate kernel) converges to the exact 
matrix Z. Finally, the fast matrix-vector multiplication is explained in Section 7. 
Three appendices can be found at the end of the paper (respectively Sections 9, 10 
and 11). In Section 9, some formulae on Bessel and Hankel functions are recalled. 
The basic form of the multipole formula is given in Section 10. The last section 
gives some further results which are very useful in the convergence analysis. The 
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Appendix to this paper contains equations (35) through (47), and Propositions 8 
through 14. 

2. MAIN IDEAS OF THE FMM 

Let us begin with some notation: N* is the set of all strictly positive integers, N is 
the set of all non-negative integers, Z is the set of all integers, R1 is the set of all real 
numbers, and C is the set of all complex numbers. Throughout this paper, matrices, 
vectors and points will be typed in bold characters, whereas scalar numbers will be 
typed with standard letters. If x and y are two points of the plane R2, the vector 
x - y is defined by its norm Ix - yl and by arg(x - y) which represents the angle 
between the horizontal axis and the vector x - y. The scalar product between two 
vectors u and v of R 2 is denoted by u v. The purely imaginary number -1 is 
denoted by t. The empty set is denoted by 0. The wave number denoted by k will 
be assumed to belong to the complex upper half plane W?(k) > 0. Let us define now 
the Bessel and the Hankel functions [1]: Jm(z) is the Bessel function of order m 
and argument z; H(9)(z) is the Hankel function of the first kind and order m; and 
Km(Z) := (z)mH(1) (Z) is the modified Hankel function of order m. 

Let us consider an open bounded domain Qi of R2 and denote its complement 
by Q :-= l2\Q-. F is the boundary of Qi. We denote by n the outer unit normal of 
aQi, that is the normal going from Qi to Q. Let us introduce the following system 

r Au+k2U= 0 in Q, 
(1) q ~~~au +_t(u = g on IF, 
(1lim) j j: jlxl u(x) - zku(x)) 0. 

The wave number is assumed to satisfy W(k) > 0, so that the outgoing Sommerfeld 
condition makes sense. The boundary condition considered here is the impedance 
one (characterized by the impedance function ( depending on k c C and x cE F). 
The analysis below can be extended with no difficulty to any classical boundary 
condition. With some assumptions on ( (namely, RJ(k() > 0 for all k such that 
W(k) > 0) the above exterior problem has a unique solution ([5]). Moreover, u can 
be given as the solution of an integral equation over the boundary F. The field u 
can be written as a combination of single layer and the double layer potentials 

(2) u(x) =-zV((v) (x) - k(v) (x), for x E Q, 

where the potential v defined on F is to be determined. The operators 

V(v) (x) [G(x, x') v(x') dci(x'), K(v) (x) f | G(x, x') v(x') dry(x') Ja n(x') 

are defined for x , F. The fundamental solution to the Helmholtz equation is 
G(x, x') = H()(klx - x'l). The advantage of integral representations is that 
the Helmholtz equation and the outgoing Sommerfeld condition are automatically 
satisfied. Then the potential v is determined by requiring that the impedance 
boundary condition is satisfied, leading to [5] 

(3) D(v) + z((K(v) + Kt((v)) - (V((v) =-g 
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where the singular operators 

V(w) (x) j G(x, x') w(x') d-y(x'), 

K(v) (x) 
J aG(x, x') 

v(x/) dy(x'), 

K(w) (x) an ( x') w(x') day(x'), 

D(v) (x) fa' (x)a(X) ,)v(x ) d-y(x') 

are defined for x C F. Notice that (2) is only one possible representation of u. 
The reason for taking (2), is that the four singular operators V, K, Kt and D are 
present in the integral equation (3). Hence the convergence analysis for all four 
integral operators will be performed in this paper. 

The pseudo-differential operator D has a hypersingular kernel and thus must be 
viewed in the sense of finite-parts ([7]). The discretization of (3) with any numerical 
method (moment method, collocation, finite differences) leads to a dense matrix Z. 
In Section 6, the moment method will be considered. 

Now we describe the FMM. As said earlier, the cost of a matrix-vector multipli- 
cation is O(nr2), where n is the size of the dense matrix. But for some special forms 
of matrices, this cost can be decreased a lot. Let us consider an n x n matrix A 
whose elements take the form Aij = aifj, for some complex numbers a1,., C?n) 

and f1, on, ,3. Then the multiplication of the matrix A by any vector 

can be done in a fast manner since 

A . = . ,[where y = 3ixi. 
Xn LnY i=J 

Hence it requires only 2n operations by using the following method: the calculation 
of y is done only once and is used n times. So the first idea to perform a fast matrix- 
vector multiplication can be stated as follows: some preliminary calculations 
are done only once, then stored and used many times. The example of the 
matrix A also motivates the second idea of the FMM: The terms Zij of the matrix 
Z must be written as aifj. Whatever the discretization may be, this means that 
the kernel G(x, x') must be written as (or approximated by) a function 
of x times a function of x', for all x, x' E F. Unfortunately, such a global 
representation (or approximation) cannot be found. But we will show that G(x, x') 
can be locally approximated by a function of x times a function of x'. More 
precisely, if Ai and Ai are two different subsets of the boundary F, an approximate 
form of G(x, x') will be given for all x E Ai and x' E Aj. But the expression of the 
approximation will be different for different sets Ai and Aj. 

Let us now introduce some notation in order to give the approximate expression 
of the kernel G. F is split into a cluster of say, p subsets A1 ... Ap: F UP Ai) 
with Ai n Aj 0 if i 5 j. These subsets are referred to as "aggregates ". For the 
aggregate Ai, a reference point zi is introduced. It is located roughly at the center 
of the curve Ai. The point zi may or not be on the boundary F (see Figure 1). 
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FIGURE 1. Location of the center Zi of Ai. 

Let U(O) be the vector of R2 equal to ( 0 ) Then for xE Ai and x' E AC, 

the kernel is approximated by the formula 

G(x, x') G%(X, X) :42 J exp(zk (x-zi) U(0)) exp(-tk (x'-zj) U(0)) 

N 

(4) [E exp (zm (- arg(zi-zj))) K1m1 (-zk Wi- Zl ) dO 
-m=-N 

for a suitable choice of N E N* and i, j. The approximate kernel Gc is referred 
to as the continuous approximated kernel. Obviously, Gc is well defined as 
soon as i 5 j. Some quick numerical simulations can persuade the reader that the 
approximation in (4) is very accurate, for a suitable choice of N c N* and i, j. The 
purpose of Theorem 2 in Section 4 is to give the values of i and j for which formula 
(4) holds, and to give in this case an estimate of the error. Theorem 2 also explains 
the meaning of the sign in (4). 

The term in brackets in the right hand side of (4) does not converge absolutely 
as N -, oc. Thus the limit of the right hand side of (4) when N -, oc must be 
taken in Cesaro's sense. This means that the right hand side of (4) converges but 
the limit is not equal to the value 

I 27r 

47r2 1 exp (zk (x-zi) -U(0)) exp(-zk (x'-zj) -U(0)) 

[ exp(fm (0- arg(zi-z))) Klm (-zk ii-zjl) dO 
-mEZ 

since this last term is not defined. 
Let us notice that the approximate kernel in (4) takes roughly the following 

form: a function of x times a function of x'. In fact, we also have an integration 
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over [0, 21r]. We take care of this integration right now. Obviously, for numerical 
considerations, the integral must be discretized. For this, we use the trapezoidal 
rule: for any function F, we write 

27r 1 NT 

(0) dO T E F(OnT) 

where OnT T2 

(5) NT = 2N+ . 

This reason of this choice will become clear in Section 5. Hence we also have 

1 NT 

G(X,X x) GD (x, x) := 2 exp (zk (x -Zi) U (OnT)) 

nT=l 

(6) exp(-zk (x'-zj) U(OnT)) 
N 

.E exp(nZM (OnT -arg(zi-zj))) K1,1(-&k Ii-ZilD 
[m=-N 

GD is referred to as the discretized approximated kernel. (6) will be proved 
to hold under the same sense as (4). Actually the proof of convergence of (6) is 
not done just by combining (4) and a theorem of convergence of the summation 
formula. The fact that NT is fixed at 2N + 1 makes the convergence analysis a 
little more subtle. 

3. INTEGRAL APPROXIMATION OF THE HANKEL FUNCTION 

The purpose of this section is to give a quick justification of (4). But the sense 
of the sign " " will remain indefinite at the end of this section. The calculation of 
the limit value of the right hand side of (4) is postponed to the next section (see 
Lemma 1, Theorem 2 and Corollary 3). 

Let us consider two different subsets Ai and Aj of F. Basically, we are interested 
in deriving an approximated form of G(x, x') for all x C Ai and x' E Aj. In 
this section let us fix x' E Ai and let Dzi, Dxy, DZj be three balls with centers 
respectively zi, x' and zj (see Figure 1) chosen so that Dx' C DZj and DZi nD7j = 0. 

With the help of the two Propositions 9 and 10 (see Section 10 in the Appendix), 
we are able to give another form of the kernel. At this point, the exact hypothesis 
on i and j remains indefinite. As noticed before, we must at least assume that 
i 7& j. Let us compute for x E D72 the function 

G(x,x')= 4HO1)(kIxxO)m= ( 5 (k x'l) exp(nzarg(x- x)) 
m7Z 

with 1o = I and Om = 0 if m 74 0. 
In order to use part (i) of Proposition 9, we have to verify the two assumptions 

given in Proposition 9. First, fm (defined in Proposition 9) equals 

(7) /3m =exp(-zm arg(x'-zj)) Jm(k c'-z-J) 
In addition, thanks to (36) and (37), one may write for Iml large enough 

3mHm (k-z ) | < fMJMH (_k-ZJ _ 

ml 
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Since x' C Dzj and x , Dzj, we have < 1. Consequently, 

E4mm)(k lXzjl)4 
mZ H 

converges. Therefore by part (i) of Proposition 9, one can write 

G(x,x') 4 H3mH 4)(kx-zjl)expQtmarg(x-zj)) 
m4 

Let us now use part (ii) of Proposition 9. The convergence of 

Sf3mjH1(1) (k Wj-z3l) 

will be shown in Lemma 1. Hence one can define 

nYm 5 exp(-l( arg(zi-zj)--r)) fmiHf(1) (k ki-zjl) 
lEz 

Moreover, by Corollary 3, the expansion EmC2 LymJm(k -Zil)I converges. Then 
using Proposition 9, part (ii), we get 

G(x,x') 4 5-ym Jm(k z-zi)expQtmzarg(x-zi)) 
mCZ 

Now we want to use Proposition 10. To satisfy the condition of Proposition 10, 
the expansion in the definition of am must be truncated. Consequently let us define 

(for N C N*) 
N 

(8) <mN) := S exp(-z1(arg(z -zj)-7r)) mf3H1H)(k Wzjl) 
1=-N 

One can indeed show that Em aym exp(zm(O - 7r/2)) does not converge absolutely 

whereas the expansion Em YmN) exp(zm(O - 7r/2)) converges absolutely. The proof 
of this latter result is also postponed to Lemma 1. Thus 

G(x, x') Gc%(x, x') :=4 E _YN) Jm(k~ -zj)exp(zmarg(x-zi)) 
mEZ 

As a consequence of Proposition 10, we have 

t 27 

Gc%(x, x') - j exp(zk x-zjj cos(O - arg(x-zi))) 

[z (y>N) exp(zmO) exp(-zm7r/2)1 dO. 
meI 

Let us focus on the term in brackets, 

E ) exp(zmO) exp(-zm7r/2) 
mEZ 

N 

- 5 5 exp(-1(arg(zj-zj)-7r))f1m-jHf) (k j-zjj)exp(zT (0-7r/2)) 
mEZ 1=-N 
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By setting t =m - I and s = 1, we have 

(N) exp(zm0) exp(-zm7r/2) 
( 3t exp(tt (0- r/2))) 

mEZ tEz 

/N 

*E Hs1) (k -i-Ozl) exp(-ts(7r/2-0 + arg(zi-zj)- )) 
S=-N 

The first expansion in the right hand side converges and is equal to 

ES t exp(tt (0 -r/2)) = exp(tt (-7r/2 +0 - arg(x'-zj))) Jt(k '--zjj) 
tEz tEz 

With (45), it follows that 

5 ft exp(tt (0 - 7r/2)) = exp(zk ~'-zjj sin(--r/2 + 0 - arg(x'-zj))) 
tEz 

= exp(-zk c'-zjj cos(0 -arg(x'-zj))) 

Finally 

G(X, X') Gc (x, X') 

= 4 21 jt exp(zk c-zjj cos(O - arg(x-zi))) 

*exp(-zk c'-zjj cos(0 - arg(x'-zj))) 
N 

L Hs()H(k Ij -zjl) exp(-zs(-7r/2 -0 + arg(zi-zj))) dO. 
-s=-N 

A straightforward calculation shows that 

G(x, x') GCN(x, x') 

(9) 1 2 exp(zk(x-zi).U(0)) exp(-tk(x'-zj).U(0)) T(f)(0)dO 

where 

N 
( (0) 5 exp(-zm (-7r/2 - 0 + arg(zi - zj))) (-z)m Km(-zk ki -zjl) 

m=-N 

By using both the definition of the modified Hankel function and the formula (35), 
we have 

K m( _Zz) =7 t- l mlH(1 ) (Z) r(_l)m() Hl ml (Z) = Kjml (-zz) 

Hence 

N 

(10) Tf)(O) = 5 exp(zm(O- arg(zi-zj)))Kjmj(-zk zi--ZjD) 
m=-N 

By putting together (9) and (10), we get (4). 
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4. CONVERGENCE ANALYSIS OF THE CONTINUOUS APPROXIMATED KERNEL 

This section is devoted to proving the convergence of the approximation (4) as 
N -> oc, i.e. the error 

G(x, x') - G(x, x') = 
Z 

E (-ym - -y$()) Jm (k z-zil) exp(zmarg(x-zj)) 
mEZ 

when N -> oc. More generally, all the calculations of the previous section are 
justified here. 

The next lemma proves the convergence of the expansion -ym and gives an upper 

bound of the term -ym - ) |. In this section we assume that x E Ai and x' c Aj, 
with i, j so chosen that Ai C D,, and Aj C D,j (where the balls Dz,, D,j satisfy 
the requirement of the previous section). Moreover, in the rest of this paper, we 
will use the estimates (36) and (37) with the choice R = IkI maxi,j i -zjl and 
R' = Ik Imini,j zi - zjl. 

Lemma 1. Let A be the smallest integer greater than the following four num- 
bers: 

Clkl2max zi_-zjI2 , 2 k| IMax iz--zj ij 2 71- 

12 _Zi2 e 
CIk max max k-zil -Xkl maxmax k-zil 

ixEAi 2 i xc:Ai 

where C is given in Proposition 8. We assume that -Ym, is given by (8) and /3m 

by (7). Let Ai and Aj be two aggregates of F such that i 78 j. We consider x E Ai 

and x' C Ai such that < l and < . Then 
~i-zji ~i-zjI Ve 

* limNoo ymN) exists (we have convergence in norm) and the limit is equal to 

'Yin 
The expansion (N) 

*The expanson exp(zm( -7r/2)) converges absolutely for all 0 c 
R. 

* Assume now that N > A. If Iml < N-A, we have 

(ll) ~ ~ |Y -XT <c( (k 4Nz ) I z i )I 

and, iflml > N - A, then 

|'Ym-JN) | < C(+) 

lkl ~~1-zjl ~Im I+ 
/ ~~~I eizj 

(12) + m 4~m~ ~ -zjC(+) 2T m l , 

w, a aelkl someicostantszhichlol 

where C(-, C(+) and C(+) are some constants which only depend on A. 
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Proof. With (7) and (36), fr satisfies for Iml > Clk12 j'-zjl2, the inequality 

Mi (elkl x'-zjj\In (13) /3rn< ? rml 
(e|k ) 

Thanks to the definition of A, this relation holds in particular when Iml > A. 

Let us set A/rn) exp -zl ( arg(zi-zj) - 7r)) fr-iIf1) (k Wj-zjl). This is the 

general term in the expansion of -yrm or N)m 

In order to study the convergence of y N) as N - oc, let us fix m e N and 

assume that N > m + A. We have -ym) = Z[=-N Ar(m). Consider first the 
case when 1 > m + A. By (37) and (13), we have 

KM e lkl j-zjl V27r(1-m)( 2(1-r) 

which leads to 

A/'' < MJMH 2 Am ll /k-zl 
- 7r e I? k'-zjl (I - m)'-m i-zjl 

Using the relation < 1 and Proposition 11 part (i), we get 

(14) A(r') MJIVI (< 2 ) m (rk(Zj) if 1 > m + A. 

Since < 1, the expansion Ellm 1rnj( is convergent, which proves 

that the expansion ZI?rn+A A\(m) converges absolutely. 
Now, for 1 < -(m + A), we arrive at 

A,,(m)l < MJMH (elkl k'-zjjglll+m 2111 mll 

Ir VI gIF( 1 +m) 2 gll?m) Ja telkl \j-zjlm 

< MJMH relkl k'-zjl ll Kkzj 
- 7rl V ll 1 O1~+ ~m) 2 y (ll + 7n)lll+m Vi -zijl 

By Proposition 11 part (ii), we have "' < e-mjjlKm. Therefore 
Og+m111rnihi? - 

(15) Ar(m) < MMH l(k Zj) (I -z ) if 
I 

(+A) 

Thus by using the same arguments as above, we can infer that ZI<m++A) AI(m) 

converges absolutely. Hence, limN,O (mN) exists and is equal to ElE A\) - 

* We now want to study the convergence of Emzn y N) exp(zm(O - 7r/2)) for 

N fixed. To this end, let us consider m > N + A. We set 

XHN := max N| H (kl z-zj ) -N<1<N 

Hence 
N 

| N) | < f r- I IH(1)(k - zjl) < (2N + 1)>HN max N3rn-l 
1=-N =N,. N 
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m 

-N 0 N m- A m+A 
m-1>>0 m-1>>0 m-l 0 1-m>>0 

. ........... 

4 12 3 

FIGURE 2. Location of the four sets, for m C Z fixed. 

Setting 1' = m - 1, relation (13) yields 

1= N....IN 
< 2 

imN<1<m+NN2 21-N ? 

We apply Proposition 12 part (i) to x = 1', a =e I kIx'-zjI and y = m-N. 
Since x > y = m - N > A > e I k Ix'-zjI = a, we have 

M (e lklIkx'-zji r-N 
max (mi? 2mN 

1=-N... N VI2-74 / m-N 

Hence 

M 2 | <) e lk( IIkx'-zj rn-N 

(N) <Mj2 (-) 

Since N is fixed, we conclude that E | < oo. Similarly, the conver- 

gence for the negative values of m can be shown. Therefore, 

( 
VN) exp(zm(O - 7r/2)) 

mEZ 

converges uniformly for any 0. 
* It remains to show the inequalities (11) and (12). Without loss of generality, 

we assume that m is a nonnegative integer. The case m < 0 can be deduced 
from the case m > 0, thanks to formula (35). We now assume that N > A. 

First, one notes that the truncation error is 

aYm -iy) = E exp(-zl(arg(zi-zj))- m-Ij ) (k iZj) - 5/ A(m) 
1I>N 1I>N 

In the last sum, the term H1) (k zi -zjl) is considered for I11 > N > A, 
so that it can always be bounded with the help of inequality (37). Formula 
(13) enables one to bound (3mj when m - 11 > A. Finally, the two cases 
1 > 0 and 1 < 0 must be taken into account. Due to these remarks, the set 

{ := fl C Z, Ill > N} is split into four sets, as depicted in Figure 2: El: 
{l C Z, N < I < m - A} n , 2 := {I E mZ, m-A<<m + A} n , 3 
{1 c Z, 1 > m + A} n E, and E4 :={l C Z, 1 < -N}. 

WhenO < m < N-A, the sets El and E2 are empty. When N-A < 
m < N + A, El = 0. Finally, for m > N + A, the four sets have at least one 
element. 

Let us first consider the case m > N + A. We now give an upper bound of 
A(m) on each of the four sets. 



564 CHRISTOPHE LABREUCHE 

(i) For 1 E , we have, thanks to (37) and (13), 

I (~~~21N)I Mj(e lkl '-zjj Ai(m) |< MH1t 
2 J te||k-j 

| 1|f 7rl telkl Fj-zjj J 27r(m -1) t 2(m -1)J 

We apply Proposition 12 part (ii) to x = 1, y = m - A and a = 
e Ikl Ij-zjl. Since N < l < m-A, we have y > x > N > A > 
e Ikl Ij-zjl = a, which implies that 

1 21 1t 1 2(m _A) m A 

X(e I k FIj-zjl ) - e lkl ?j(-zjlr 

Since A < m - < m - N and by the definition of A, we get 

e lkl k'-zj < e lkl k'-zjj e |k|I maxj maxx CAj k'-zjl 
2(mr-1) - 2A 2A 

Therefore 

I (e lkl k/-zjjA - 
t-j 2(m-1) \J A 

Since the set El has m - A - N terms, we arrive at 

S I\(m) 4 < MJMH rn-A-N ( 2(Tn-A) -A 

1E1 -7r A N Ve lkl Wj-zjJ 

(ii) For 1 e 2) the relation (42) is used to bound /3m-l uniformly /3r-i < 

C~. The constant C~ depends only on A and R. Thus 

A/() < C MH (k ) 
- ~~7rel\ekl zj-zjj 

As in the previous item, one can show that the greatest term of (kI21 ) 

for 1 E 2 is obtained at 1 = m + A. Since 2 is composed of 2A terms, 
one may write 

A(m) < 2ACMH 
2 (2(rn?A)-z\rn) 1~2~ ir(r - A) W I-j 

(iii) Let us consider the case when 1 E3 . Since 1 > m + A, (14) implies that 

5A(rn) < MJMH 2)m l 1 | 7r (kl k zjl) t-A (i Zj) 

By Proposition 13 with M = m, L = m + A and x < we get 

Kk'zjl Ve 

A S rnm) S < CgMJMH _ 2 ) rn+A 
(m)MH(Ik<,zI(2(mrn?A)) __ r+ 
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(iv) We want to bound the sum ,1,E A(m) by ,1,1 | A(m) for any m N. 

To this end, we define a function Lm which maps E4 onto E3. The 
smallest element of the set 3 is equal to m + A when m + A > N and is 
equal to N when m +A < N. The mapping Lm is thus defined as follows: 

Lm :E4=]-o00 -N[ n Z E3 = ]m+ A, oo[ n7Z if m+A> N 
1 e* m+A-N+ll 

and 

LmE4 = ]-oo,-N[nZ E S3=]N,oo[n Zifm+A<N. 

When m + A > N, we apply Proposition 12 part (i) to x = l1 + m, 
y = Ill-N+A anda= kl Ix'-zjI. For I fE4, we have x > y > A > a, 
so that by (13) 

< -_ IMJ e (kl Ix'-zjIll+m 

/2mi7r 
? 

1-lI+ m)~ 2 gll + m)) 

< M J (r e ekl Ix'-zjI NIl-N+A 

V/2lr11-N+A)2g11l-N+A) J 

MJ e lkl kx'-zjI 
L 

m(l)-m 

27r (IJm(l) - m) 2(2 m(L) -m) J 
Hence by (36) 

| | m |~L3m(l)- m| 'mj 
Now if m + A < N, we directly have 

_______(e lkl _x'-zIII1-m __ 

&:-l <- 
MJ (ell I < m 

3 
|m(l)-ml 

/3m 
F2i ol - m) 2 Ol - m)J mj /L( 

Let us now consider H(1) (k l - zjl). To bound this term, we apply Propo- 
sition 12 part (ii) to x = 11, y = LJm(l) and a = e 

IkI lzi-zjl. For 1 C E4 

and in both cases m + A > N and m + A < N, we have y > x > N > a, 
so that with (37) 

I-I1 (k lz zjl) |< M H ( k2111> 

<IMH(l)\ 2 ( 212m,(l) ) Z1m(I) 
K MH Hl e lk(l)zi ezjI i-zj- 

When m + A < N, Lm(l) = 111. When m + A > N, we have 

Lm(l) _ m+A-N+ lI < m+A < m+A 

I -__ 1 N 
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Therefore, in both cases m > N - A and m < N - A, one may write 
?(41) < max(1, m+A), and thus 

A(m) | ffj(l)(k j-zjD 

< MJMH max( +) /3m-mI HL'(j) (k j-zjl) 

_MJMH( m+AA A(m) 
mJmH N] (m(I) 

Finally 

A'm < mJmH, max(1 
\ A(m 

MJMH N +A z nj 

< MJMH max mA) z i(m) 
MJMH /-.a 

At this point, we have a bound of the sums E11 A(m) over the four sets Ei, 

E2, E3 and 4. Let us use them to bound -ym- (N) . The leading behavior. 
of the bounds of the sums on El, 2 are nearly the same. More precisely, the 
sum on 2 is greater than that on El, i.e. 

A | < E |\A(m) 

1Ej 1ES2 

Let us first consider the case when m > N + A. The truncation error 
becomes 

7(m N) |< 2 SA \(m) + ( + MJMH max(1, m A 
A 

Am 

2 4( 2(m+A) m+A 
? 4AC~M1H ir(m -A) ~ejkj i-zjj 

m+A 

+ (+ MJMH) m+A CMj 4(m + A) 
m 

em (t 
-Zj 

MJMH N 7r e lkl k'-zjj (1- ijl 

Since m > N+A > A, we get mZ+ < . Then, the relation(m + A)m < 

eAmm yields 

tym-mN) <?4AC1MH m)(e k i-z m+A 

( 1\m+A 

+(1+MJMH CgMJMH _ 4m 7m ie k mj 1 
m Tm+ M H r N elIk1 Ix-zjI / xI0m+l 
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Thus, when m > N + A, (12) holds for some constants C(+) and C(+) which 
can be chosen independent of m and N. 

When N - A < rn < N + A, the set El is empty and the sum on 2 iS 

not "full" in the sense that it is only composed of m + A - N terms instead 
of 2A as in the previous case. More precisely, 2 = {l E Z , N < 1 < m + A}. 
Since m + A - N < 2A, the same bound is attained 

m+A ~ ~ ~ ~ 2 2(mn+A) m+AA 
Afi(m) < 2AC-M <(2tt+A Z.. A(m K2AC H ir(M - A) ~ejkj ~j-zjK) 

1=N?l 

Thus, since N+ < I < ?v3, (12) is also satisfied for N-A < m < 
N+A, i.e. 

(m-y<N)? < 2ACMH m A)( 2(m+A) ) + 

+ (+ MJMH) C9MJMH 
MJMH 7T 

K XIM+A 

4m m ye izjl) 
Ve lkl k'-zjj I 1 _- + 

Finally for 0 < m < N - A, the sum on 3 can be bounded as in part (iii) 

of this proof (actually we only have to replace L = m + A by N when using 
Proposition 13) 

mJTH E i(m) < E A(m)i < CgMJMH 4N Am (ki)jN 
MJMHZAI 

- ?ZA < rYikiIx -zji) _ __n? 
l2EE4 lYEE3 Vi- ) 

Therefore when 0 < m < N - A, we have 

(M) J MH1 CgMJMH ( 4N ) t k-zJI 

<\+ MJMH 7ry lkl ~1-zj) (i _ 

which proves (11) for some constant C(-). D 

In (11) and (12), the term k'-zjj can be removed from the denominators, so 
that (11) and (12) hold for all x C Dz, and x' E Dzj (even for x' = zj). 

The following theorem plays a central role in this paper since it proves the 
convergence of the FMM. 

Theorem 2. Let A be the smallest integer greater than the following four num- 
bers 

Clk12 max zi_zjI2 , -ikrmnax i-zj 
,j 2 , 

Clk1 max max k-zil, 
e 

max maxk-zi 
i (A 2 i x(EAi 
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where C is given in Proposition 8. Let Ai and Aj be two different aggregates. We 
consider x e Ai and x' c Aj such that 

(16) WP Z;<1, eI Zi <1, -Zjl+2e -Zjl< 

Then for all N > 2A, we have that 

G(x, x')-G%(x, x') < C,N' (e kZj N- + C2NA (z )-Zi N 

N-A 
2e ~~Zi 

(17) + N ( ____ +C3 ~ 
--I-jl ki-z3I 

where Cl, C2 and C3 are independent of N. In particular, Gc (x,x') converges 
uniformly to G(x,x') under the condition (16). We can give another condition 
which is only sufficient, but which is symmetric in i and j 

k'Zj 1 
(18) { 2-z1 1+2e- 

|zjij < 1+2e- 

Proof. We only have to show (17). The rest of the theorem is straightforward. The 
error of the FMM is 

G(x, x') - Gc(x, x')< N E |Ym- m JmCkl k-ziW 
mE7Z 

With the help of Lemma 1, the sum in the right hand side is split into two terms 

|G(x,x') - Gc%(x,x') < + - 
N ~~4 4 

where by Lemma 1 

S)= E |Ym -r n ) j Jm(IkI k-zij)j 
m I<N-A 

N 

< E C( )(kliZ ) ( -jji), jJm(IkI k-zij)j ImI<N-A Ki-zjI} 

and 

S(+)= ( +YmJ jJm(IkI k-zij)j 
m >N-A 

? C(?)(~2OTml+ A))1 JmmI +Az 

Im>N-A ( iZ 

+ 5 cj~m(~kf'~~ ) ml e ~2J ImI?A 

2mI>N-A (l -l__zj mlJ - 
Iml>N-A IeA k zj ) t k 
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Let us begin with S(-). By (36), we split S(-) into two sums, one when (36) 
cannot be used (namely for 0 < m < A), and the other when (36) can be used 
(namely for A + 1 < m < N - A). By symmetry, only positive values of m 
have to be considered. Thus 

K(_) < 2CC-) (k *j z) N Z( 4N m) Jm kj '-zj) 
M=O ~ Z I/1 - 

____j 

+2C(-)MJ( z) E ( -) ' 
~i-Zl m=A+l v2i7r-m (i- 

____j 

For 0 < m < A, the Bessel function satisfies Jm(lkl k-zil) < C, by (42). 
Moreover, since lkl Fj-zj] < 2A, we have 

4N 4N 2eN 

Ikl k'-zjI(1- *il-zI\ kl'-zj - A - 1 

Hence, the sequence 

4N 

l kl k'-zjl I - wi << ~i-zjI < A 

is maximal when m = A. 
In order to study the general term in the sum over A + 1 < m < N-A, 

let us set 

2e [/ 11 
Y- 1 

-__jl 

Wi-zjl 

Then 

SC ) < 2C(-)(A+1)( 4 )A 

+ 2C(-)MJ ( 1 ( m ) \\ -ZjJ m=A+l v'2q7r\mJ 

Now we want to give an upper bound for the function p(m) = (yN)m for 
A K m < N-A. By setting y = -, it is sufficient to find an upper bound 

for the function q(y) = (y) for 0 < -y < 1, since maXA<m< N-Ap(m) < 

[max,]o,1[ q(y)] N. The maximum of q(y) is given by Proposition 12. For 
this, we must distinguish the following alternative: 
(i) If Y < 1, then by Proposition 12 part (iv) with a = y, x = -y and A = 1, 

we get maxE]O,1[q(y) < e. Hence EM 1(yN)m < (N-2A)eN so 
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that 

A 

S(-) < 2C(-)C-(A+1)( _ ) NA ( ] ) N 

2C(-) Mj _____N 

(19) + (N-2A) (e-kJ) 

(ii) If Y > 1, then by Proposition 12 part (iii) with a = y, x = -y and A = 1, 
we get maxc]0,1[ q(y) = q(1) = y. Thus IN-AA+ (yN)m < (N-2A)yN, 
and 

4 
A 

K 2C~C~ (A?1( k~i-zai) N __ 
zj N-A 

2C(-)MJ(N - 2A) (k-N ( 2e [7Jj) 
(20) + 2irk`-31//'j\ 

~i-zjI 

* The sum S(+) is bounded in the same way. By (36) 

s < 2C1 z E (2(m + A) m+A MZ (e lk ic-zjI S 
(+m>NA ekz2)Cirm 2m 

1~~~~~~~~ k>- il ell8-j /2,m m+A 

S _______m 
m ye 7i)z + 2C( eIlk-Zl ' - 

2~~~~~~~M ee lkl Wi -zj m 

2irM 2m J 

Since m > N -A > 0, we have m > 1. Hence by Proposition 11 part (iii) 

(m?A)m+A ?A(A?1)A+1 

which proves that 

S 2C1 MJ (A + 1)A+1 __(_2m _A I _ )m 

S (+) (?) A (2ej' 
+ 2C2M ~ A (e c' ) IZZJ 

v/27 e 
M>N-Akjzjjm>N-A Z- Vz /M 

+2C(+) M Ke -zjl )A 2e r 2cil 
2 i lzi-zjl N-1 zi) 
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and by using Proposition 13 with L = N - A, M = A and x = < 
ki-zjI %/Fe 

we attain to Zm>Nf-A mAxm < C9(2(N - A))A (lXNA+1. Therefore 
we atain t 

emN 

A 

(,_X)AA 2<(CSM,jCg (A + j)A+1 (k2 / ( ( A+1 

(2e IN-A 

_ _ _ _ _ _ _ _ _ _ _ _ _ k~ ~~~i--zjl 

(21) + 2 31 (e 
k)-zl 

v~~2-7r ~~~i - Zjl 

2-zj 
ki-zjl 

In putting together the upper bounds (19), (20) and (21), one automatically 
shows (17) for some constants Cl, C2 and C3 independent of N. We also notice 
that neither k-Zij nor k'-zjj appear in a denominator of Cl, C2 or C3. Thus the 
cases x = zi and x' = Zj are also included. D 

Corollary 3. The expansions Em7 amY)nJm (k k-zil) and Zmcz -ym Jm (k k-zil) 
converge uniformly, under the conditions of Theorem 2. 

Proof. From Lemma 1, the expansion EmcZ Ny(N) converges. Combining this with 

(36), it is clear that Em7Z )y$NJm (k z-Zil) converges uniformly. 
On the other hand, from the proof of Theorem 2, the factor 

|(Ym -y ) )Jm(k k-zil) 
mE7Z 

converges. Hence Emez y/m Jm (k z-Zil) converges uniformly. D 

From Theorem 2, we see that the exact kernel cannot be replaced by an approxi- 
mate one for all x and x'. Roughly speaking, convergence occurs when x is not too 
close to x'. So let us investigate what the condition (18) means exactly. We assume 
for the sake of simplicity and brevity that the boundary F of the obstacle is locally 
planar (see Figure 3.a). We also assume that the length D of the aggregates Aj is 
the same for all j. Then -Zil < D2 for all x E Ai and Izi -Zi+41 = 4D. Hence 

K-Zi4 < I < 1 for all x E Ai. Thanks to Theorem 2, the approximate kernel 
ZiZ4i- 8- 1?2eaprxmt 

converges to the exact one when N -* oc. Therefore, the FMM approximation 
converges for all x E Ai and x' E Aj, when Ai and Aj satisfy Ii-jI > 4. 

This is again true when the curve F has a mild curvature. For the circle (see 
Figure 3.b), if D is now referred to as the angle which covers one whole aggregate 

Aj, 
then k il < -2() for all x E Ai. This number is lower than 1 if 

IZi-Zi?41 - 1-CO~4D) 1?2e 

0 < D < 32.2-. This condition on the size of the aggregates is not restrictive at 
all. 

Therefore, for a smooth obstacle, if the aggregate Ai is fixed, then all except 7 
aggregates Aj generally satisfy the condition (18). For these 7 "nearby aggregates" 
the classical kernel must be used, and for the p - 7 remaining aggregates (i.e. the 
"remote aggregates") the approximate kernel is used. 
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Ai Ai+4 / X~~~~~~~~~~~~~~~~~~~~~A+ Ai~~~~~~~~A~ 

Ai+4z 

D/2> 3D D/2 - D/ Ai 

fig. a 

fig. b 

FIGURE 3. a: When F is locally a straight line. b: When F is 
a circle of radius 1 [then we have k-Zi,2 < 2(1 - cos(D)) and 

Zi- Zi+412= 2(1 - cos(4D)) ]. 

5. CONVERGENCE ANALYSIS OF THE DISCRETIZED APPROXIMATED KERNEL 

Theorem 4. Let A be the smallest integer greater than the following four num- 
bers 

Ckl2 rax zi_zj2 , ek xmaxi -zjl 
2,j 2 i,i3 

Clk 1 2max max k-Zi,2 k ekmaxmax k-zil 
i xc:Ai 2 i xC:Ai 

where C is given in Proposition 8. Let Ai and Aj be two different aggregates, and 
let us consider x e Ai and x' e Ai. Then for N > A, we have 

G5 (x,x') -GG(x,x') < C4 ejkj(k zi + 
k -zjl)N 

(22) 5 N(2 zil + zjl ) 

where C4 and C5 are independent of N. 
Combining this with Theorem 2, GD(x, x') converges uniformly to G(x, x') under 

the condition (18). 

Proof. Let us set r = (x-zi) -(x'-zj) 1, a = arg((x-zi) -(x'-zj)) and z = tkr. 
Then tk ((x-zi) -(x'-zj)) )U (0) = z cos(O - a). Hence by (9) 

G5 (X, X') = 42 j exp(z cos(O-a)) (4)j(0)dO 

Setting 

1 2r 
fm:=je exp(z cos(O-a)) exp(tmo) do 

the continuous approximated kernel takes the form, thanks to (10), 
N 

GC (x, x') = - exp(-zmarg(zi-zj))Klml(-zk i-zjl)ITm 
m=-N 
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By introducing 

1 NT ( c 27rnT ( 7 27rnT 
m NT exp Kz cos a N - Jexp zm NJ 

the discretized approximated kernel can also be written as 

N 

GN(x, x') = - >, exp(-zmarg(zi-zj)) Klm, (-zk Ii -zj) m 
m=-N 

Consequently 

N 

G(x, x) - GD(x,x') = E exp(-zmarg(zi-zj)) 
m=-N 

(23) Kjmj(k iZjl)(I7m-im) 

We notice that 

(24) r = I(x-zi) -(x'-zj)l ? k-Zil + k'-zil 

For reasons of symmetry, we only consider positive values of m. 

* One may write 

IC 1 j527r 
00 

Z1 cos'(0 - a) zm%j() Z IC 

where 

1 27r 07 zOa '0a 
c = cos'(O - ce)e%modO = 1 [e( 2e etmodO 

1 2 E 2lOl exp(2(lf-2211)a) exp(z(m -1 + 211)0) dO - 7 zZ 21 ep~l- la 
11=0 

where C1 = l!(ll )! We remark that 1 O27 etml dO is equal to 1 if ml = 0 
and vanishes for all other integer values of ml. Let us then consider the 
following three cases: 
(i) 1 < m: Then m - 1i+ 21, never vanishes for 11 C {, ,1 }. Thus IC = 0. 

(ii) 1 > m and 1 - m is odd: There is no integer 11 such that 21, = 1 - m. 
Hence IC = 0. 

(iii) 1 > m and 1 - m is even: Then m - I + 21, vanishes if and only if 11 = 

12m C{0 .o. , 1}. Hence IC =c4 e2 e 

Consequently 

(25) T = em 
0 

Zc C(l-m)/2 (1+ 1)Im) 
l=m 

We also conclude that when 1 is odd IC = 0, and otherwise IIF < C 21 
E1 

1 1 

11=0 1 -= 1. Thus for all I 
P 

N 2( 

(26) lIc <1. 



574 CHRISTOPHE LABREUCHE 

Proceeding as in last step, one can show that 
00 z 

1D S 'D 

1=0 

where 
l Oll 

iE = jl exp(z(l - 211)oa) Sm1+211 
11=0 

and Sm1 
N 

1 exp tml 27T ). Let us then consider the four follow- 
ing cases 
(i) I < m: Thanks to (5), we get m-I + 21, < m + I < 2m < 2N = NT-1. 

Moreover m - I + 21i > 21i > 0 for 11 E {O, ,1}. Hence by Proposition 
14, ID = I. 

(ii) i > m, I-m is odd and I < NT-m: We have m-I + 21, < m+ I < NT 
and m-I? + 21 > m-I > 2m-NT ?-NT (for 11 E {O, ,i}) since 
m is supposed to be positive. Hence Im - i + 211 < NT- 1. Moreover 
there is no integer 11 such that 21i = I - m. Therefore by Proposition 14, 
II = 0. 

(iii) i > m, I - m is even and I < NT- m: As in the last step, [m-1 +2111 < 

NT- 1. In addition, m - I + 21, vanishes if and only if 11 = I-r mE 

{O, , 1}. Hence by Proposition 14, ID - 1 ern(. 
(iv) I > m, and I > NT- m: We cannot give an explicit value of ID in this 

case. Anyway, since ISm1 < 1 for any m1 E Z, we have 

ZJI < 11=0 C, 
|II? I<E'2' =1. 

Hence 
NT-rn-1i (1-m/2I +(i\- m\ 00 z 

(27) I~=e2tm' 5 Z C(m/(+>1 mE 211! ( 2 
l=m l=NT-M 

We also notice that for all I E N 

(28) I'I < 1. 

Combining (25) and (27), we have 
00 

1C 1D~~~z ') f-fmC T = E 1! (I, _ I, 
1=NT-M 

and with (26) and (28) 
00 

l l 

I--Em f < 2 E | ' 
l=NT-m 

But for I > NT - m, we have 

4l _ZjNT-m Zjl-NT+m < ZJNT-m Zl-NT+m 

1! (NT-m)!1(i-1) (NT-m+1)-(NT-m)! (I-NT+m)! 
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Hence setting 11 = 1 - NT + m, we get 

<2 S < 
11=0 

and 
(29) j-TC 1D -T < 2 e z, ZiNT-M 

(29) rn| < 2e(NT-m)!. 

By symmetry only positive values of m have to be considered. Hence the error 
between Gc (x, x') and GD(x, x') is N 

N~~~~ 
|G (x,X x) - GE(x,x/) I < - 2 : |Hlml)(k ji- zjl) 1ZC-'Tm l 

mr=0 

When 0 < m < A, formula (43) enables us to bound Hml) (k Wi - zjl) Otherwise 
(37) is used, leading to 

IG G(X, X) )-GE(x, X ) I < elzl E CR (Z\NT)! 

MH 2;(2m~\ 
) 

Z_NT_ 
N N ~ ~~~na?1NT rmk\)! -zK NTr) 

Moreover, by (38), we have NT - m > A, 

(NT -m)! > Cmin 2r(NT m) (NT ) 

Hence since z = zkr, 

+ MHelZl E gC e1zm 
A 

elklr NT-rM T 
Gc (x, x') -GE(x, x') < aIIA 1 ( ~~ Tr 

N min N+ Cminm 2: Vr(NT z-m) J\NT- m) 

Let us apply Proposition 12 part (ii) to x = m, y = N and a elkjj-zjj. If 2 
m > A + 1, then we verify that y > x > a, and thus 

2m Am 2N AN 

e lkl j-zij -e (kl jI>-zjl) 

We now apply Proposition 12 part (i) to x = NT - m, y = N and a = eIklr, which 
satisfy x > y > a, since n < N and NT = 2N + 1. Hence 

( elklr NT-M elklr N 

NT -rn NN 

so that 

|Gc (xx) 
- GD G(x, X ) |< C (A + 1)(II) 

NMH eN NN 

? C N(N ~A)(e lkk~j-zjl) 
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Consequently, thanks to (24), the theorem is proved. L 

The rest of the FMM only consists in linear steps. Consequently, the convergence 
of the matrix-vector multiplication will also be exponential. 

Remark 5. The last theorem proves the convergence of the discretized approxi- 
mated kernel which is used numerically. Unfortunately, because of roundoff errors, 
this convergence is not numerically attained. The main argument we give here is 
that Proposition 14 becomes numerically So 1 and Sm is roughly equal to the 
precision c of the computer (say c = 10-16) for 1 < {ml < NT- 1. Using this in 
the proof of last theorem, we now get instead of (27) 

rn-i NT-rn-i 2(?(1ff+\ 00 

[TD= Z -e+ma Z 21 C(1-m)/2 iD N -) 

1=0 1m1N - 

Hence there exists Cm such that 

D =,eC +tma ZNT-r- (1-m)/2 
(1? 

+ (1)1 
00 

) iD 
mT> cC ? e2m - 2l' ? 

I=m l=NT -m 

and 
00 Z1 

(30) j mC 
E 

Cm + S IC _D 
1=NT-M 

We recall that 
N 

GC (x, x')-GD(x, x') ? < 2 H1) (k i-z) - zj - 
m=0 

The convergence of the second term in the right hand side of (30) has been shown 
in the last theorem. Since Cm does not tend to zero when m tends to infinity, and e 

is fixed, one concludes that EM=OHm9 (k Fi -zjl) EICm I tends to infinity when N 

tends to infinity. This proves that Ic -IZ does not numerically converge uniformly. 
This quantity actually diverges. This is what one can in fact observe numerically 
when taking N very large. 

6. MOMENT METHOD MATRIX OF THE FMM 

Let us first define a mesh on r. As mentioned in Section 2, F is split into p 
aggregates: F = U Ai with Ai n A 0 ifi #j. Each aggregate Ai is itself 
divided into q elements: Ai = Uq=l F(i7,) with F(i,j) n F(j7,1) = 0 if i /r j or 1 #& 1'. 
Thus there are n = pq elements F(i,j) of F. This is the mesh. The two extremities 
of the element F(i,l) are denoted by X(i,,-,) and X(j,i). Here we use the moment 

method with the PF finite element basis. Let {f(ij1) }l<i<p<il<q be the triangular 

PF finite element basis defined on F: f(i,i) is affine on each element F(j,1,), and 

f(i7) (x(i,l)) = 1) f(i,j)(X(j,7/)) = 0 for j 78 i or 1' -& i. The support of f(i,i) is 
exactly F(i,j) U F(i,l?i), with the notation F(i,q+l) = F(i+i,i) and F(p+1,1) = F(iji) 
by periodicity. Let us set Ai := Ai U F(i,q+1), so that the support of f(iij) belongs 
to Ai for all 1 < 1 < q. For i fixed, we also denote by Wi the set of all the "remote 
aggregates", i.e. all Aj such that (18) holds for all x E Ai, x' E Aj. Wi := F\Wi is 
the complementary set (composed of the "nearby aggregates"). 
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Let Y be a function defined on F that belongs to the P1 finite element space 
described earlier. If Y(i,j) := Y(x(i7,)), then 

p q 

Y(x) = E E Y(ij1) f(.,i) (X) 
i=1 1=1 

Then Y is associated with the vector Y := {Y(j,i) }i71 defined by the double index 
(i, 1). In the same way, the elements A(i,1),(y,) of any matrix A are defined by the 
two double indexes (i, 1) and (j, 1'). The matrix-vector multiplication of the matrix 
A by the vector Y is defined by 

p q 

(A . Y)(i,1) = E )(j,,')Y(j,,') 
j=1 1/=1 

The exact matrix Z which comes from the moment method discretization of (8) 
is defined by its components Z(l,i)(i,/j): 

Z(i)(1/7j)= 
j [D (f(i,1)) + iKK(f(i,l)) 

(31) +iK ((f(i,l)) +?(V((f(i,l))](x) f(j,1i)(x) d'y(x) 

When Ai St Wi, the approximate kernel G' cannot be used and thus the exact 
kernel is still employed. The FMM matrix is then 

(32) 

Z(N) -f formula (31) with the approximate kernel G' if Aj c Wi, 
(1Ii)Q(1/,J) l Z(,,i),(,,j) otherwise. 

In order to prove the convergence of Z(N), let us begin with the following theo- 
rem: 

Theorem 6. Let i and j be such that Ai c Wi. Then 

GN(x,x') N(X,X ),_ 

&n(x)GD(x, x ) G (x, ), & D 1N--*oo 

GN (X X') G(x, x'), 
On(x') nx 

GDx N--co a 

&nx)n(x') Nn ,X) 

On(x)On(x/) 
GN (X), x ) 

On(x)On(xl) 
G (x, X'). 

All the left hand sides converge absolutely and uniformly with respect to x E Ai and 
x' E Aj, whenN - oo. 

Proof. From Theorems 2 and 4, GID(x, x') converges absolutely to G(x, x'). The 
uniform convergence comes from the construction of Wi 

~ - zil 1 f-zj 1 
max < 

,max 
< 

XEaAi 
kj 

Zjl 1 +2e XICmEAxj Fi zjl 1 +2e 

The expression of n(x) GD(x, x'), ' GD(X, x') and n(x)n(x') GN(x x) is quite 
similar to that of GE (x, x'). Consequently, the proof of Lemma 1, Theorem 2 and 
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Theorem 4 can be carried over almost unchanged to the case of normal derivatives. 
The last three convergence results of this theorem follow. LI 

Assume thati Ai c Wi. From the above theorem, we automatically have 

J [G(x, x') - GD(X, X')] ((x) f(i,i) (x) (x') f(j,u) (x') d'y(x) dy(x') 
rx 

< [ max G(x,x') - GND(x,x') 1 

I- -4(x)f(i,1)f(x) (x')f(j,l )(x') d'-y(x) dy(x ) 

since the support of f(i,i) belongs to Ai and that of f(j,p) belongs to Aj. Thanks 
to the uniform convergence in Theorem 6, we have 

max G(x,x') -GG(x,x | ? . 
xcAj,x 7/cAjN 

Thus 

JGE (X, X ) ((x) f(i, 1) (X) ((X/) f(j, 1/) (X/) d-y(x) d-y(x') 

NO 
f VQf(f(i,l))(x')((x')f(j X) (x')d-y(x 

We have the same convergence for the derivatives a a and a . In an(x)' & n(x') &n(x)&n(x') I 
this latter case the integral for N = oc must be taken in the finite part sense ([7]). 
From these convergence results, we can infer that 

Z(N) N-0oo 
(1Now A(1 t) Zh(1eN(1) -) 

Now if Aj c )Wi, then Z(i) i),(l',j) from formula (32). Therefore we have 
proved the next theorem. 

Theorem 7. We have Z(N) N , Z in any norm. 

We conclude this section by giving the explicit form of ZjlI ( ) when j is such 
that Aj C Wi. By setting 

V?+)0 exp(?zk (zi-x) U(O)) f(i,i)(x) ((x) d-y(x), 
Wi 1 (0) =j 

W?il() ? zkn(x) U(O)exp(?zk (zi-x) U(O))f(i,l)(x) d-7(x), 

we obtain with 0nT NThT 

NT 

Z.(N) 1 wt 1f W7(0nT 1) W7(0nT) 
"'(17t71007i) 2,7NTE{ 71) (7 T 

nT=l 

?i(w(U O/)(OnT) V(Y7|)(OnT) (I1/) (OnT) (7jl)( OnT) 
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7. MATRIX-VECTOR MULTIPLICATION 

The multiplication of Z by a vector Y = (Y(ii)) 1<i<P,<1< is done as follows: 

q q 

( -)(17i) (Z-( )E E Z(17i)7(1/7j)Y(1'7;) + E EZ(17i)7(17j)Y(1'7j)- 
Ajc:-i I=1 Aj I =1 

"nearby" aggregates "remote" aggregates 

The first part of the right hand side of above equation can be viewed as the multi- 
plication of a sparse matrix S by Y. The matrix S is sparse since the number of 
nearby aggregates is equal to about 7, provided the shape of Qi is convex. If Qi 
is not convex, there might be a few more nearby aggregates. The components of 
S are computed in the standard way since Rokhlin's formula (6) does not hold for 
nearby aggregates. To examine the second part of the formula, let us first set 

q 

V (OnT) 
- ZV?v)(O nT) Y(7j), 

1' =1 

q 

S(O nT) Z(Ij) 
1' =1 

T~(On) = Z Ti~1(N) TS3(fl) 
Tv (OnT) Tij (OnTf) )SV(OnT ). 

Tv (OnT ) E Tij (OnT ) SW (OnT ) 

Then a straightforward calculation shows that 

(Z.Y)(1) (S.Y~1~ - 
I NT 

(Z Y)(1,i) (S Y)(1,i) 27rNT {WJ l)(OiT)TW(OrT) 
nT=1 

?( (vJ,j) OnT) TW (OnT) + W7|) 
(OnTT) 

Tv (OrT)) 

(34) -V(7)(OnT)Tv (OnT)} 

The main difficulty we face in studying Rokhlin's method lies in the fact that, 
even if from a theoretical point of view (see Theorems 2, 4, 6 and 7) the greater N 
the more accurate the approximation, N must (in numerical simulations) belong to 
a fixed range of integers. If N is too small, the overall accuracy is not good, which 
is quite logical. But if N is too large, then (6) is not numerically accurate. We 
refer here to Remark 5. Hopefully, there is a range of integer values N such that 
the accuracy of Rokhlin's formula (6) is quite good (double precision is reached). 

Theorems 2 and 4 are not used numerically to compute the best N since these 
theorems assume that N > CIkl2 maxij Wi _zjI2. Numerically the integer N such 
that (6) provides the best accuracy is always bracketed between the two following 
values: 

Ik Imax min '-zil, Ik Imax j--zj 
i x'/AjCWi t7% 

To end this section, let us explain briefly why (34) leads to an 0(n 3/2) matrix- 
vector multiplication, as stated in the Introduction. To do so, we shall give the link 
between all the quantities that have been introduced before. If L is the length of the 
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obstacle Qi, then the number n of mesh intervals used to discretize r satisfies n= 
O( k L). Here we have assumed that the number of mesh interval per wavelength is 
fixed (usually between 6 and 10). We recall that p is the number of aggregates and 
q is the numbet of mesh intervals in each aggregate, with n = pq. If one chooses 
p, q so that p _ q, then p _ q = 0(i). If n is large (say 1, 000), the optimal 
number N is approximately N kI maxi minX'CAjCWi k'-zil = 0(q) = ?(qn 
And finally NT= 2N + 1 = O( ). The calculation can be split into parts 

* The first calculation does not depend on the vector Y, and thus need be 
performed only once. This consists in computing Vll) (OnT) and W(I) (OnT) 

(for 1 < i < p, 1 < 1 < q and 1 < nT < NT), which requires pqNT= 0(n3/2) 

operations. Next i%jN)(OnT) (for 1 < i, j < p and 1 < nT < NT) leads to 
p2NTN = 0(n2) operations. In fact, this number can be reduced by using 
the Fast Fourier Transform, leading to 0(n 3/2 log n) operations. 

* The second calculation is the matrix-vector multiplication step itself. First, 
one has to compute Sv (OnT ), SW (OnT) (for 1 < j < p and 1 < nT <?NT) 

and TV(OnT), TW(OnT) (for 1 < i < p and 1 < nT < NT), which both 
require 0 (n3/2) operations. Thanks to the remark at the end of Section 4, 
the average number of nonzero elements in each row of the matrix S is about 
7q = 0(/nj). Thus S has only 0 (n3/2) nonzero elements, which proves that 
S is sparse. We conclude that the matrix-vector multiplication S Y requires' 
0(n 3/2) operations. The remaining term of formula (34) clearly leads to 
0(n 3/2) operations. 

Let us conclude this section by giving the cost of the FMM in terms of the 
size of the obstacle as measured in wavelengths. We noticed earlier that n = 

O(IkIL). Hence n = 0Q(), where A is the wavelength, so that the matrix-vector 

multiplication requires 0 Q) 3/2) operations. 

8. CONCLUSION 

In this paper, we have shown the convergence of the FMM in two dimensions 
(Theorems 2, 4 and 6). We assert that the same kind of theorem can be proved 
in 1R3. In order to explain how to implement the FMM, we considered a specific 
problem. We took it as general as possible (namely the impedance boundary condi- 
tion) with the moment method for the discretization. The FMM can obviously be 
applied to other boundary conditions and to other numerical methods (collocation 
method, ...). Here the convergence of the FMM with moment method has been 
proved (Theorem 7). 

The domain of validity of the approximation (6) for x E Ai and x' E Aj, as 
stated in Theorems 2 and 4, is roughly i - j > 4. This condition does not appear 
to be optimal since in numerical simulations we have noticed the convergence of 
(6) as soon as Ii- j> 2 (for smooth obstacles). 

As far as numerical issues are concerned, some preliminary computations can be 
done first. They consist in constructing the sparse matrix S and then computing 
some numbers (V(+I)(OnT), W(I)(OnT) and <7j(O T)). The CPU cost is much lower 
than the construction of the dense matrix Z, as done fior the classical inversion of 
Z. Next the number of operations required for each matrix-vector multiplication is 

0(n3/2) or 0(()3/ ), which is much lower than 0(n2) or 0(()) ) 
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In this paper, we also showed that the choice of N is crucial in the FMM. First, 
the accuracy of (4) depends on N. Secondly, the CPU cost is linearly related to 
N. Thus before starting the FMM in a Helmholtz solver, one should compute the 
best value for N. 

9. APPENDIX A: USEFUL FORMULAE ON HANKEL FUNCTIONS 

We only recall here the formulae for Bessel and Hankel functions that are nec- 
essary to understand the FMM. 

* To begin, let us give two important relations [1, formulae 9.1.5 and 9.1.6] 

(35) HI1) (z) = (-1)mH(1)(z) , J-m(z) = (-1)mJm(z) 

* For the convergence analysis we need some uniform bounds on the Bessel and 
Hankel functions. 

Proposition 8. Let R and R' be two positive constants with R > R'. Then 
there exists a constant C depending only on R and R' such that 

(36) mj (ez IJ( Ml (ez 

for all lzl < R, Inj > CIz12, and 

(37) mH < (Z) < MH 2 ) 

for all R' < Izj < Rand Inj > 
CIZ12. 

The choices of R and R' are given in the beginning of Section 4. 

Proof. Thanks to (35), we only have to consider the case when n is positive. 
-From [1, formula 9.1.10], the Bessel function has the following expansion 

Jn (Z) =i()En! 2 m! (n + m)! ()2m 
m=O 

Hence 

J ( ) ?? n! KIzl2m 
hwrZi < Sz 
|n!(2) | m 

'ml (n +m)! 2J 
The Stirling formula enables us to write 

n --noo (2~ n) 

Thus, there exist two constants Cmin and C0,ax such that for all n E N* 

(38) Cmin 2i(-) < n! < Cmax e27Tj) 

Since m > 0, we conclude that 

n! Cmax nnem Cmax nnem 

(n + m)! 
< 

Cmin n m (n + m)n+m 
< 

Cmin (n +?m)?+m 

From Proposition 11 part (ii), we obtain 

n! < Cmax 1 

(n + m)! - Cmin nm 
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and 

__ _ ( lzl 2m Cmax 1 ( iz 2 m 

f m!(n + m)! 2 J Cmin =m! 4n 

If n > z 2 then '< which implies that 

J(Z- ) < 0max 
I 
Z | 

2 1 < Cmax IZ12 

1 Cmin 4n __ 2 Cmin 2n 

Let C = max(I Cmax so that for n > CIZ12 we have Cmax Z12 < 2 \2 ~C.fjfl 0mnin 2n 2' 

Hence, using (38), we have shown (36) with mj = 2La and MJ 3 

-From [1, formula 9.1.11], on can write 

H(1) (z) = (1 ?-(y + log( ))) Jn (z) +- ?T1) (z) +? Tn2)(z) 

where -y is the Euler constant (-y = 0.5772157 ... ), and 

T ( (n n-( (n-r-1)!(z)2m 

+?? (_lAm{Z)n+2m 

wih)m l+2+*-+m frmEN) n ()=O Thus 

Ht( 1l)(z) -1 < 1?-(y?log(2))l irJn(z)n 

+ T, 1 z(z) - 1 T(2n (z) 

n z M~~-(-1 ! (zn - 1) (n1!2z) 

Let us assume that 2 > C z 2* Then, (36) provides an upper bound of 
the Bessel function 

nJ (z)z < MJ (e+zn 

Henceforth, from (38) 

- (n _ 12<<J (2 2 

Next, we have 

H l T(Z) 1 < 1+ 2z1 n-m-) + log( 
z 2mJn(Z 

1|-(2-)!)n (2 m(-1!n 
T~~~1~ ~+(nz) -1-1+ 

In order to bound this term, wefrtn tiethat 

(n - 1 -n2)! < Cmax (n -1 m)n 12mem 

(n- 1)! - Z min (<-1)n1 
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Doing as in the proof of Proposition 11, one can show that 

(n-1 -m)n-l-m 1 
K 

(n - )n 1 <- (n- 1)m 

Consequently 

Tn (z) -1 < Cmax E 
1 e2lzl2 m 

|-(n -1)! (2) n 1-Cmin m m! t4(n -1) 
Since R' < Kz < R, there exists a constant again denoted by C such that 

for n > Clzl2, we have ej < 2. Thus 
4(n-1) 2 

Tn (z) < Cmax 2 E 1 C 22 
(40) - I) -< 

|-(n1),(2 n | Cmin 4(n -1m 2m - cmin2n1 

Since 4(p) < p for p cE N, one may write 

q (2) (z) l zl 2n +oo) (2+n) 1 2m 

n_____ 1 )f+O (2m?r) kl2 2 
|(n -1)! (z) |-(n- 1)! 2 J m! (m+ n)! 2J 

Clearly we have 2m + n < 2(m + n), and 

T (2) (Z) 
n 

+m2 () l S r!?) 

22 (Z I EzV2 _ 2 lzl 2n +oo 
lz 

2 

((n- 1)!)2 K2je m 

From (38), we have (n-1)! = n ? m . Thus 

T(2)(z) < r ejzj 2n I1 

(41)~ ~ ~~( -1 1 )! ( - RCmin (2n) 

Combining (39), (40) and (41), we see that there exists a constant again 

denoted by C such that for all n > C Z 2 we have 

Hn(lz) -1 < 1 

-2 2 7- (n 1!z) -2 

Consequently, (37) holds with mH = 2CFax and MH = 
2Cmi. 

* Let us now consider the Bessel function when IzI < R and In <C nz2 Jn(z) iS 

well defined everywhere in this set. In addition, the mapping (n, z) H-* Jn (Z) iS 

continuous. Hence, since the set of all (n, z) such that Izl < R and Inr 
< 

Cfz12 
is compact, we conclude that there exists Cp depending only on R and C such 

that 

(42) lJn(z)l < CP Vlzl < R, Vlnl < CIz12. 
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A 

A 
w 

FIGURE 4. Link between vU, IIw and a, 3. 

In the same way, one can show that there exists a constant C& such that 

(43) 
I- I)(z) <?C6 VR'<Izl<R VInl <CIzf2 

* The Bessel function Jm can be put into an integral form. From formula 

(9.1.21) in [1], one can easily show that 

1 27r 

(44) Jm(z) = 2 f exp(zz cos 0) exp(zm0) exp(-zm7r/2) dO. 

* The two formulae (9.1.42) and (9.1.43) in ([1]) yield 

(45) exp(zz sin 0) = E Jm(z) exp(Zm0) 
mC7 

* The Graf formula is at the root of all the multipole methods. It reads for 

u, v, w E (C [1, formula 9.1.79] 

00 

(46) H((w) exp(tp,) = E 
pi?(qi (u)Jq, (v) exp(zql a) if Iv< 

qi=-oo 

If u = k'i, v = kv, w = kw' where u, IvIw are positive numbers and k c C, 
then a and 3 are positive numbers. Moreover, they represent some angles, as 

depicted in Figure 4. By (36) and (37), the condition lvl < Jul in (46) implies 

the convergence of the expansion in the right hand side of (46). 

10. APPENDIX B: SOME MULTIPOLE FORMULAE 

Let D,iI DxI, Dz3 be three balls with centers respectively zi, x' and zj (see 

Figure 1) chosen so that Dx/ C Dzj and Dz, n Dzj = 0. 

Proposition 9. (i) Let @ be a function defined outside Dxy. We assume that 
(D can be expanded as 

(x= E Om Hm) (k k-xl) exp(zm arg(x-xt) 
mc7Z 

Moreover assume that the expansion 

E exp(-zl arg(x'-zj)) Om-Ji(k k'xzil) := j m 
IEc 
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converges for all m c 2, and that Emez!3mHm')(k bc-z3j) converges for all 
x outside Dz3. Then outside Dzj, ) can be written as 

@ (x) = S mHY1) (k c-zjl) exp(zmarg(x-zzj)) 
mC7 

(ii) Let @ be a function defined outside Dz3. We assume that (D can be expanded 
as 

= (x) = YmH 1) (k c-zjl) exp (tmarg (x-z z)) 
mC7 

Moreover assume that the expansion 

5 exp(-zl( arg(zi -zj) - ir)) am -H(1) (k fj -zjl) =?m 
1cE 

converges for all m c Z, and that ZEiZ n 3~mJm(k X -zj) converges for all 
x c DzI Then inside Dzi ) can be written as 

@ (x) = 5 m Jm (k c-zil) exp (zmarg (x-zi)) 
mC7 

Proof. The two items are proved in a similar way based on the Graf formula (46). 
We only give details of the proof of the second item. Thanks to the assumptions 
on the sequences am and dm, the following function 

T11(x) 5 dmJm(k W--zij) exp(zmarg(x-z%)) 
mEC 

= S exp(-zl( arg(zi-zj)-ir)) amu 
m,l 7L 

H1) (k fj-zji) Jm(k -zil) exp(zmarg(x-zi)) 

is well defined for x cE Dzi With the change of indexes P1 = m - I and q1 1, we 
have 

11(x) = 5ap1 [5I1)(k i-zjj)Jp1+vq(kx-zij) 

*exp(-zql (arg(zi-zj)-7r )) exp( (p1+ql)arg(x-zi)) 

On the other hand, let us use formula (46) with u = k i -zjl, v = k k-zil and 
w = k F-zjl. The condition IvI < IuI holds since x lies inside Dz, whereas zj 
lies outside Dz, (because Dz Dzj = 0). By Figure 5, the two angles a and 3 
arising in formula (46) and Figure 4 satisfy a = arg(zi-zj) + ir - arg(x-zi) and 
/ = arg(x-zj) - arg(zi-zj). 

Hence by Graf's formula (46) 

H 1) (k c-zjl) exp(zpi (arg(x-zj) - arg(zi-zj))) 

- d HP) +qi (kki-zjl) Jq(kc-zi|)exp(ql(arg(zi-zj)+ r-arg(x-zi))) 
q, EZ 
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AX-Z il 

/ ZH(1) (k4zj)Jgp1 (kXi)-Zi) 

/e p ? q2)(arg(z -- a( i))). 
...... 

1X-zq( / a/ ? 

a rg5 )x Aex( r - a 
.... 

. ....... ......... ... .. ..... 

FIGURE 5. Link between ii, v, w and ae, 0. 

With the new index q2 = -pi - q,, and thanks to (35), we arrange the above 
formula as 

H$1 ) (k zj-Zlf) exp (zpl (arg (x-zj) - arg (zi-zj)k )) 

= H(1q) (k Wi -Zjl) J-Pl1-q2 (k k-zil) - 
qq 

*exp(-z(p, + q2 ) ( arg (zi -zj) -7r -arg (x- zi)) ) 
H(1l) (k lj - zjl) Jp, +q2 (k k-zil) exp(zq2 (7- arg (zi -zj) + arg (x- Zi))) 

q2EZ 

*exp(zpi (arg(x-zj - arg(zi-zj)) ) 

Then 

H (1) (k kZjl) exp (zp Iarg (x- zj)) H (1q2) (k i - Zjl) Jp I+ q2 (k k-zil) Pi 
q2~~~~~~qE 

*exp(-zq2( arg(zi-zj) - 7r)) exp( (pi + q2)arg(x-z%)) 

By putting this into the expression for 1J, we obtain 

xF (x) = a,?e H ( l ) ( k kZjl ) exp (zmarg (x -zj;) )-4 (x) . 1 
mC7/ 

Proposition 10. Let (D be a function defined in Dzi and having the following ex- 
panszon 

1(x) = am Jm(k z-Zil) exp(zmarg(x-zi)) 
mC/ 
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and moreover assume that the expansion EmCEam exp(zmO) exp(-zm7r/2) con- 
verges absolutely for all 0 c [0, 2ir]. Then for x cE DZ 

1(x) = exp(zk c-zjj cos(0 - arg(x-zi))) 

(E m exp(zmO) exp(-zm7r/2)) do 
mEZ 

Proof. The integral formula (44) enables us to write 

1(x) = am exp(zmarg(x-zi)) 

mEZ 
2ir 

j exp(zk c-zjj cos O) exp(zmO) exp(-zm7r/2) dcb. 

Under the assumption that the expansion EmC ?am exp(zmO) exp(-zm7r/2) con- 
verges absolutely, we can perform the interchange of summation and integration to 
arrive at 

1(x) = 2 exp(zk I-zjj cosO) 

(z am exp(zmarg(x-zi)) exp(zmO) exp(-zm7r/2)) dO. 
mEZ 

To conclude the proof, it only remains to do the change of variable 0 = O+arg (x - zi). 

11. APPENDIX C: SOME ANALYTIC RESULTS. 

We give here some results that are very useful in Sections 4 and 5. 

Proposition 11. (i) For any m > 0 and any 1 > m 

(ii) For any m > 0 and anyl1 > 0 11 < I-me-m 

(l?+ m)l+m- 

(iii) For any m > 0 and any 1 > 1 

(? + m)+m < lm(m + 1)m+1 
ji 

Proof. (i) One may write 

log ( l -)l ,,) = m log l-(I-m)log (l- 1 

Let us define h(l) = -(l - m) log(1 - For 1 > m > 0, h is a positive and 
increasing function of 1, since 

h'(l) =-log(l - _- _ _logil_ m 
1 1 - = 12 o 1 - 7 0 
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Here we have used the fact that -log(1 - a) > u for 0 < u < 1. Hence 
0 < h(l) < liml1, h(l) = m. Consequently (i) isproved. 

(ii) If we now define h(l) = (1 + m) log(1 + i!), then we have 

log((l )I Fm)=-mlogl-h(l) 

For m > 0 and 1 > 0, h is a positive function and 

h'(1) =log 1 + Z -l 2=log(l + I - < <O 
1 1 

Hence h(l) > limjO h(l) = m, so that (ii) is proved. 
(iii) With the previous definition of h(l), h can be bounded by 

lo 
1 1 =) 

nlg1+hl 

Since the function h(l) is decreasing and 1 > 1, we get 

h(l) < h(l) = (1 + m) log(l + m) 

This concludes the proof. C] 

Proposition 12. Let a and A be two positive numbers. Then 

(i) If x > y > a, then (_)x < av) 

(ii) If y > x > a, then (x)x < (y)Y. 

(iii) If A < a, then maxo<x<A (a)x (a)A 

(iv) If A 
> 

a then maxo<x<A (a)x = exp(a) < exp(A). 

Proof. As far as the first point (i) is concerned, since a < a < 1, we have directly x - Y 

(a)X (a)Y(a)x-Y (a)Y (a)Y 

The second point can be derived in the same way. 

Let f (x) = ( ) x. Its derivative is f '(x) = ( )x log(a ). Hence, f is an increasing 
function for 0 < x < e, and is a decreasing function for x > a. The two points 

(iii), (iv) follow directly from this. We also notice that the maximum of f is 

f (a) = exp(a) []I 

Proposition 13. Let x be a real number satisfying 0 < x < +li Then for all 
integers L and M, with L > M, we have 

E l0x0 < C (2L)MxL 

1=L 
where Cg: - I 

Proof. Let us introduce, for L > M, the two functions f(x) = Z?ZLlMxl and 
g(x) = Xj?L Xl which are linked by the relation 

(x+) g(x)=f(x) 
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Moreover, g(x) = L From this relation for g, one can easily see that there exists 
M ? 1 coefficients PoM .P.PM such that 

( d )M XL + PM XL+I ? ? PjxL+M (dx Mox - _______________ 

A straightforward calculation shows the recursive relations 

{ pM+1 = LpM 0 ~~~0' 
PM+l = (L + m) PM +(M + 2-L-m) PM1 l, 1 < m < M, 
PM+1 = (1-L) pM 

with PO = 1. We claim that 

(47) |PM I < (2L +?m)M , O <m < M. 

The proof of this inequality is recursive. First we notice that (47) is obvious when 
M = 0. Then we assume that (47) is satisfied at the level M. For 1 < m < M, we 
have 

|pM+1l < (L+m)(2L+m)M?+(L+m-M-2)(2L+m-1)M 

< (L+m)(2L+m)M +L(2L+m)M=(2L+m)M+l 

When m= M+1, IPJM+JiI <?(L-1)(2L+M)M <(2L+M +1)M+l. Andfinally, 

when m = 0, we have IPRM+1I < L (2L)M < (2L)M+l. Hence (47) holds for all 
M c N. Now the function f can be bounded by 

ZM p L+m Z$( ?m M xL+M 
f ( ) < Em= |m I _ _I__ < Em _o (2L + m)___ f(x) - (1 -x)M - (1 x)M? 

From the relation (which holds since L > M) 

log (2L ?m) Mlog 1 + 2L < M 2L <rn lg 
(2L)Mj2 2 2 

and since the exponential is an increasing function, we obtain 

(2L +m)M < (2L) Mexp () 

Hence 

ML MM= VX 
m 

f (x) < (2L)M xL 
(lx)M+l 

Since x < 1, Em=0(Vex)m < Cg 1_x* Hence the proposition is proved. D 

Proposition 14. The sequence Sm = 
I 

jNT= exp (zm 2NT) satisfies for m E 

S0=1 Sm = 0 for 1 < Iml < NT-1. 
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Proof. The first equality is obvious. The complex numbers XnT exp (2zTT) are 

the zeros of the polynomial 
NT 

P(X) = X NT PmX NT--m 

m=O 

where Po = 1, PNT = -1, and Pm = 0 form E {1,. , NT- 1}. The moments of 
XnT , defined by 

NT 

(7m := (XnT)m = NTSm, 
nT=l 

are linked to the coefficients Pm by the Newton formula 
m-1 

-mpm = E Plmr-1 rnm 

1=0 

We conclude that am = 0 and hence Sm = 0 for 1 < m < NT- 1. The previous 

analysis can still be done with the sequence YnT = exp (- 2 _jT) instead of XnT. 

We remark that a positive integer m with YnT corresponds to -m with XnT. Thus, 
the previous analysis is still valid for negative values of m. C 
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