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MULTIGRID AND MULTILEVEL METHODS FOR 
NONCONFORMING Qi ELEMENTS 

ZHANGXIN CHEN AND PETER OSWALD 

ABSTRACT. In this paper we study theoretical properties of multigrid algo- 
rithms and multilevel preconditioners for cliscretizations of second-order elliptic 
problemns using nonconforming 7-otated Ql finite elements in two space dimen- 
sions. In particular, for the case of square partitions and the Laplacian we 
derive properties of the associated intergrid transfer operators which allow us 
to prove convergence of the W-cycle with any number of smoothing steps and 
close-to-optimal condition number estimates for V-cycle preconditioners. This 
is in contrast to most of the other nonconforming finite element discretizations 
where only results for W-cycles with a, sufficiently large number of smoothing 
steps and variable V-cycle multigrid preconditioners are ava,ilable. Some nu- 
merical tests, including a,lso a com-parison with a preconditioner obtained by 
switching from the nonconforming rotated Qi discretization to a, discretization 
by con-forming bilinear elements on the same partition, illustrate the theory. 

1. INTRODUCTION 

In recent years there have been analyses and applications of the nonconforming 
rotated (NR) Qi finite elements for the numerical solution of partial differential 
problems. These nonconforming elements were first proposed and analyzed in [24] 
for numerically solving the Stokes problem; they provide the simplest example of 
discretely divergence-free nonconforming elements on quadrilaterals. More results 
on these Stokes elements can be found in [26]. There also exist n-dimensional 
counterparts of these elements, with analogous properties [25]. Then the NR Qi 
elements were used to simulate the deformation of martensitic crystals with mi- 
crostructure [18] due to their simplicity. Conforming finite element methods can be 
used to approximate the microstructure with layers which are oriented with respect 
to meshes, while nonconforming finite element methods allow the microstructure 
to be approximated on meshes which are not aligned with the microstructure (see, 
e.g., [18] for the references). 

Independently, the NR Qi elements have been derived within the framework 
of mixed finite element methods [11, 1]. It has been shown that the nonconform- 
ing method using these elements is equivalent to the mixed method utilizing the 
lowest-order Raviart-Thomas mixed elements on rectangles (respectively, rectangu- 
lar parallelepipeds) [25J. Based on this equivalence theory, both the NR Qi and the 
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Raviart-Thomas mixed methods have been applied to model semiconductor devices 
[11]; they have been effectively employed to compute the electric potential equation 
with a doping profile which has a sharp junction. 

Error estimates of the NR Qi elements can be derived by the classical finite 
element analysis [24, 17]. They can also be obtained from the known results on 
the mixed method based on the equivalence between these two methods [1]. It 
has been shown that the so-called "nonparametric" rotated Qi elements produce 
optimal-order error estimates. As a special case of the nonparametric families, the 
optimal-order error estimates can be obtained for partitions into rectangles (re- 
spectively, rectangular parallelepipeds) oriented along the coordinate axes. Finally, 
superconvergence results have been obtained in [1, 17]. 

Unlike the simplest triangular nonconforming elements, i.e., the nonconforming 
PI elements, the NR Qi elements do not have any reasonable conforming subspace. 
Consequently, there are differences between these two types of nonconforming el- 
ements. The NR Qi elements can be defined on quadrilaterals with degrees of 
freedom given by the values at the midpoints of edges of the quadrilaterals, or by 
the averages over the edges of the quadrilaterals. While these two versions lead 
to the same definition for the nonconforming P1 elements, they produce different 
results in terms of implementation for the NR Qi elements. With the second ver- 
sion of the NR Qi elements, we are able to prove all the theoretical results for the 
multigrid algorithms and multilevel additive and multiplicative Schwarz methods 
considered in this paper. However, we are unable to obtain these results with their 
first version. In particular, as numerical tests in [23] indicate, the energy norm of 
the iterates of the usual intergrid transfer operators, which enters both upper and 
lower bounds for the condition number of preconditioned systems, deteriorates with 
the number of grid levels for the first version. But it is bounded independently of 
the number of grid levels for the second version, as shown here for square partitions. 

Since the nonconforming PI finite element space contains the conforming PI 
elements (with respect to the same triangulation), the convergence of the standard 
V-cycle algorithm for the nonconforming PI elements can be shown when the coarse- 
grid correction steps of this algorithm are established on the conforming P1 spaces 
[29, 19, 12]. Such an approach to establishing V-cycle results fails for the NR Qi 
elements. On the other hand, within the context of the nonconforming methods, 
i.e., when the coarse-grid correction steps are defined on the nonconforming PI 
spaces themselves, the convergence of the V-cycle algorithm has not been shown, 
and the W-cycle algorithm has been proven to converge only under the assumption 
that the number of smoothing steps is sufficiently large [7, 8, 3, 4, 27, 1, 12, 15]. 

Multigrid algorithms for the NR Qi discretizations of a second-order elliptic 
boundary value problem were first developed and analyzed in [1], and further dis- 
cussed in [12J and [9J. The second version of these elements was used in [1] and 
[12], while their first version was exploited in [9J. Moreover, the analysis in [9] 
was given for elliptic boundary value problems which are not required to have full 
elliptic regularity. However, in all these three papers, only the W-cycle algorithm 
with a sufficiently large number of smoothing steps was shown to converge using 
the standard proof of convergence of multigrid algorithms for conforming finite el- 
ement methods [2]. We finally mention that the study of the NR Qi ele'ments in 
the context of domain decomposition methods has been given in [13, 14]. 

This paper should be viewed mainly as a contribution to the theory of multigrid 
methods for nonconforming finite element discretizations. In Section 2, we derive 
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some new properties of intergrid transfer operators associated with the second ver- 
sion of the NR Qi elements. The crucial estimates (2.13) (second inequality) and 
(2.15) are shown for the Laplace operator with Dirichlet boundary conditions on 
the unit square in R2R, and for sequences of uniform square partitions for (2.15). 
Consequently, most of the new results on multigrid methods and multilevel pre- 
conditioners proved in the subsequent sections are restricted to this model case. 
Throughout the paper, we make some comments on extending the results to more 
general elliptic problems, domains, and partition types. 

In Section 3, we show optimal, level-independent convergence rates for the )/V- 
cycle algorithm to hold with any number of smoothing steps. The NR Qi elements 
have so far been the first type of nonconforming elements which are shown to possess 
this feature. The question of establishing level-independent convergence rates for 
the standard V-cycle still remains open. 

Multilevel preconditioners of hierarchical basis and BPX type for the NR Qi 
elements are studied in Section 4. Following [23], we develop a convergence theory 
for the multilevel additive Schwarz methods and their related multiplicative V-cycle 
algorithms. A key ingredient in the analysis is to control the energy norm growth 
of the iterated coarse-to-fine grid operators, which enters both upper and lower 
bounds for the condition number of preconditioned systems. So far, the energy 
norm of the iterated intergrid transfer operators has been shown to be bounded 
independently of grid levels solely for the nonconforming P1 elements [20]. In this 
paper, we prove this property for the NR Qi elements (see Lemma 2.4). As a 
consequence, we obtain a suboptimality result for the multilevel preconditioners of 
hierarchical basis and BPX type for the NR Qi elements. 

In Section 5, we apply ideas of [22] and study the problem of switching the NR 
Q1 discretization to a spectrally equivalent discretization for which optimal precon- 
ditioners are already available. For square partitions, the conforming bilinear finite 
element space is a suitable candidate. The switching approach leads to optimal 
preconditioning results for the NR Qi elements. 

Thanks to the equivalence between the rotated Qi nonconforming method and 
the lowest-order Raviart-Thomas mixed rectangular method, all the results derived 
here carry over directly to the latter method [1, 12]. An extension to the cor- 
responding discretely divergence-free NR Qi Stokes discretization is not straight- 
forward since the standard intergrid transfer operators for the scalar case do not 
preserve the solenoidality constraint (see [26] for intergrid transfer operators for the 
Stokes case and related multigrid results). 

Finally, in Section 6 we present some numerical results on convergence rates and 
condition numbers which confirm the theoretical findings. 

2. PRELIMINARY RESULTS 

Let HS(Q) and L2 (Q) = HO (Q) be the usual Sobolev spaces with the norm 

/ ~~~~~1/2 

-lvls (f E [D'v%2dx 
j al<s 

where s is a nonnegative integer, and Q is a two-dimensional domain. Also, let (,.) 
denote the L2(Q) or (L2(Q))2 inner product, as appropriate. The L2(Q) norm is 
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indicated by Finally, 

Ho (Q) = {v c H1(Q) : v r = ?}, 

where F = &Q. 
From now on, let Q be the unit square (0, 1)2 (extensions will be mentioned 

separately). Let h1 and 8h1 = 61 be given, where Sh1 is a partition of Q into 
uniform squares with length h1 and oriented along the coordinate axes (in the 
simplest dyadic case, one would take h1 = 1/2). For each integer 2 < k < K, let 
hk= 21-kh1 and h, = Sk be constructed by connecting the midpoints of the edges 
of the squares in 8k-1, and let Sh =K be the finest grid. Also, let &86k be the set 
of all interior edges in 8k. In this and the following sections, we replace subscript 
hk simply by subscript k. 

For each k, we introduce the NR Qi space 

Vk= V L ():VIE=aE +aE x+aEy + aE y2) IaE CR, VE E S; 

if E1 and E2 share an edge e, then j(I0E, ds jIiE2 ds; 

and foEnr Iir ds = 0}. 

Note that Vk , Ho'(Q) and Vk-l St Vk, k > 2. We introduce the space 

k 

Vk = Vl D Vk, 
1=1 

the discrete energy scalar product on VD Ho (Q) by 

(V: W)I,k = S (VV, VW)E, V, w VkD Ho (Q), 
EeCSk 

and the discrete norm on V, D Ho (Q) by 

||VHs?,k = (V,v),k, V E Vk 0 Ho(Q). 

We introduce two sets of intergrid transfer operators Ik: Vk-l - Vk and Pk-l 

Vk -* Vkl- as follows. Following [1, 12], if v E Vk-l and e is an edge of a square in 
8k,, then I,kv E Vk is defined by 

O if e C aQ, 

v v ds if e is initerior to some E C 8k-1, 

ei d { 
2J(VIE, + VE2 ) ds if e C E1 n E2 

for some E1, E2 C Sk-1I 

If v E Vk and e is an edge of an element in &8Sk1, then Pk1lv E Vk-1 is given by 

v Pklivds 
= 

{ 
vds + ~ 2vds} I e- 1 2 l e,| J1 e21 J2 } 

where e1 and e2 in &8Sk form the edge e E ask-1. Note that the definition of Pk-l 
automatically preserves the zero average values on boundary edges. Also, it can be 
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seen that 

(2.1) Pk-lIIk-V = vI v E Vk-l, k > 1. 

That is, Pk-l'k is the identity operator IdklI on Vk_l. This relation is not satisfied 
when the NR Qi elements are defined with degrees of freedom given by the values 
at the midpoints of edges of elements. 

For future use, note that Ik (as well as Pk-,) can be extended to the larger 
spaces 1k in a natural way. For example, the definition of Ikv E Vk by 

( 0 if e c &Q, 

ViIkVds{ 2j(vIE, +ivE2)ds if e=&E OEnE2 
for some E1, E2 C Sk, 

is meaningful for any v E Vk, and satisfies IkfVk1 =k as well as Ik Idkv 
We also define the iterates of Ik and Pk-1 by 

R> = IK Ik+1 :Vk - VK, 

QK=Pk ... PK-1: VK _ Vk. 

Finally, the discrete energy scalar product on the space VK is defined by restriction: 

(v,W)g = (V,W)S,K, V, W C VK. 

Obviously, we have the inverse inequality 

(2.2) ||v||g < C2 k|V||, v C 1k, 1 < k < K, 

(here and later, by C, c,... we denote generic positive constants which are indepen- 
dent of k, K, and the functions involved). 

In this section we collect some basic properties of the intergrid transfer operators 
Pk,1 (respectively, Ik) and their iterates Q K (respectively, RK). The crucial results 
are the boundedness of the operators Ik with constant 2 (Lemma 2.3) and the 
uniform boundedness of the operators RK with respect to the discrete energy norm 

. ls 1(Lemma 2.4). 

Lemma 2.1. It holds that Pk-l (2 < k < K) is an orthogonal projection with 
respect to the energy scalar product, i.e., for any v C Vk, 

(V - Pk-lV,W)S = 0, VW E Vk-l, 
(2.3) 1 |V| 12 = | pk_l 12 + I PPk_lVII2 

Moreover, there are constants C and c, independent of v, such that the difference 
V = V-Pk- E Vk satisfies 

(2.4) c2 k||v| < IKvIs? < C2 k|I|v. 

Proof. For any E E Sk-1 with the four subsquares El C 8k (i 1,... , 4, see 
Figure 1), an application of Green's formula implies that 

(V [v - Pk1 v], VW) E jZ=1(V -Pk-1V], VW)Ej 
(2.5) ,4 = 9v 

If (V4Pk 1V)IEds, 
0e3 eE. E 

where eE are the four edges of E with the outer unit normals vi i = 1i... ,4. 

Note that in (2.5) the line integrals over edges interior to E C Sk-1 cancel by 



672 ZHANGXIN CHEN AND PETER OSWALD 

3 
eE 

F2 F3 

24 F1 F4t 2E | E 

El E4 

elr 
1 

FIGURE 1. Edges and subsquares of E E Ek-1 

continuity of Pk1lv in the interior of E. Also, if e3 and e3 form a n edge of F, it 

follows by the definition of Pk,1 that 

j (v -Pk1Iv)|E, ds + (v - Pk1lV)|E. ds 0, 

and that 

Ow Ow 

a le 
. 

I e3 

is constant. Then, by (2.5), we see that 

(V[v - Pk-Iv], VW)E 0. 

Now, sum over all E E SklI to derive the orthogonality relations in (2.3). 
The upper estimate in (2.4) directly follows from (2.2). The lower bound can be 

easily obtained from a direct calculation of the energy norms of v - PK1V on all 
E C Sk-. This completes the proof. 

Before we start with the investigation of the prolongations Ik, it will be useful 
to collect some formulas. For E E Sk-1 and any v E Vk-l, define 

bli = 
I 

v ds, 

(see Figure 1 for the notation), and set 

SE = bl + b2 + b3 + b4 AlE = b3 -bl, 

E = bl + b3? -b2 -br, A2 = b4j -b2. 

Then, with the subscript E omitted, we have the next lemma. 

Lemma 2.2. It holds that 

(2.6) IIV%12(E) = h 2_1 ( 1 s2 + 1f{(A1)2 + (A2)2} + 1 (00)2) 

1,Vv 1L2(E) = (A1)2 + (A2)2 + 3(00)2, 
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1 ~~~~~~1 e:3_el +e2 e_+e2 

2 2 21 

e-el e ey 2I el 

FIGURE 2. An illustration for Lemma 2.3. 

and 

(2.7) ~h2k-l f (bl )2 + (b 2)2 + (b 3)2 + (b 4)2} < IIVIIL2( 

< h41 {(bl)2 + (b2)2 + (b3)2 + (b4)2}- 

Proof. Using the affine invariance of the local interpolation problem connecting v 
with its edge averages bi, it suffices to prove (2.6) and (2.7) for the master square 
E= (-1,1)2. A straightforward calculation gives 

(2.8) 1~~~~ ~~ A2 A1 02 
2. (2.8) v =(X vxy) = -s + 2 x + /\ y _ 00(z2 _ y2 v=v(x~)=2j4 2 X?2 y-Ox- 

Now direct integration yields the desired results in (2.6). Also, (2.7) follows from the 
first equation of (2.6) by computing the eigenvalues of the symmetric 4 x 4 matrix 
TtDT, where D =diag(1/16,1/12,1/12,1/40), T stands for the transformation 
matrix from the vector (b1, b3, b2, b4) to (s, A1, A2, 00), and t' is the transpose of 
T. These eigenvalues are 1/10, 1/6, 1/6, and 1/4, which implies (2.7). O 

Lemma 2.2 is the basis for computing all the discrete energy and L2 norms 
needed in the sequel. The formula (2.8) valid for the master square can be used to 
derive explicit expressions for the edge averages of Ikv and Ikv - v. Toward this 
end, we first compute the corresponding values for the master square, and then use 
the invariance of the local interpolation problem for v under affine transformations 
(for the square triangulations under consideration, these transformations are just 
dilation and translation) to return to the notation on each E E Sk-l. 

Note that for the square partitions under consideration, vertices, subsquares, 
and horizontal/vertical edges can be labeled by multi-indices : E Z2 in a natural 
way. The origin and the square attached to it are labeled by = (0, 0), for all 
k. See Figure 2 for the further conventions. The left picture shows two squares 
Eo-el, E8 from Sk-l, and the right the same two squares (together with their 
subsquares) as part of 4k. We use the notation el = (1, 0), and e2 = (0, 1) for the 
unit vectors. Horizontal and vertical edges are distinguished by the superscripts 
1 and 2, respectively; e.g., el3 in the left picture is the horizontal edge in 8Sk-l 
emanating from the vertex with index : and belonging to the elemnent with index 
E8 of Sk - 1 The same vertex is labeled by 2/ if considered as vertex in Sk, and so 
on. 

Given an arbitrary v E Vk 1, let blj and b2 denote its averages over the horizontal 
and vertical edges e)3 and e in 04k-1, respectively. The corresponding quantities 
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for Ikv E Vk are indicated by a3, j = 1, 2. Now, introduce the auxiliary quantities 

= bl? + bl i-bl 2-b bl /30 -e f3+e f3+e2 -el~ 
2 =b2?+b 2 2 -b 2 i-b 2 
0;3 = b;3 + b3_e i+e 13+el-e2 

With this notation at hand, it follows from the definition of Ik that the edge 
averages of Ikv can be written as follows: 

al = b? + 162 

a2/3+el 

= bl-_162 
(2.9) 28/38 

al +2+l= ? ?2? lb2 
=8+8+e +8 8 8 /3+e2 ' 

a2,+e2+el = 8 8+el + .8b + -8b + -8 +e2, 

and 

a* 3 = b? + 10p 

* 28+e2 
= -2_ 6 

(2.10) 2 / 
8 

8/ 2 

a2/+el = 8 b 8+e2 ? 8 b/? 8b+elX 

*2 - 5 bl ?1 bl ? 1 b2 ? 1 b2 
a2/+e2+el = 8 /+e2 + 8 /3 8 /3 8 3+el. 

These formulas are valid for interior edges. Whenever the edge average a3 is as- 
sociated with a boundary edge of Ek, this value has to be replaced by zero. We 
give the elementary argument for the first and third formulas in (2.9); the others 
follow by symmetry arguments. Let us start with the edge e/3+e2 in a8Ek. Since it 
is interior to E/3 (see Figure 2), we have 

1 
2 1-11 v ds . 

a22+e2e -20+e2 

Using the dilation invariance, this integral can be computed by transferring E13 
to the master square and using (2.8). This leads us to integrating the expression 
in (2.8) along the path -1 < x < 0, y = 0, and substituting the values for the 
parameters obtained from the corresponding edge averages of v: 

s = b);3?+b)3+e2 + b + b+e A1 = bl -b 

/\ = b 2 e-b 2, 00 bl + bl3 2- b2 -b 2 

As a result, we have 

1 s A2~~2i52b2 1 
a2 +2 = 4- - - - = 8(5b,8 + b;3e + bl3 + bl+2) 2,8e 4 4 8 8 /3 3+e 8e2 

which is the third formula in (2.9). 
Analogously, we integrate in (2.8) along -1 < x < 0, y =-1, and obtain 

1I Al A2 0O 

el 31 Jfel V|E/ ds- 4- - - - - + 4 

bl ? 1(b 2 - b2+ei) = b3 +4 )b3 )3+el 

To obtain the average of VIEf 2 along the same edge, we integrate in (2.8) along 
the path -1 < x < 0, y = 1, and apply an index shift by -e2. This yields that 

j VIE 2 ds = bl + (b - e2 )+eie 
e2/3~~~~ 
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Combining the last two formulas results in the first formula in (2.9) since according 
to the definition of Ikv 

a8- 211 J1 (VIE,+ ?VIE,e2 )ds 
20 1 20 

To obtain the main results of this section which concern the behavior of Ik and 
its iterates with respect to the energy norm, we need to deal with the difference 
Ikv - v which is an element of 1k for any v C Vk. This is particularly useful since 
we have 

(2.11) H|IkVHg -IVI|1 = IHIkV -_ VI v E Vk-l 

The relation (2.11) follows from Lemma 2.1 (replace there v by Ikv and w by v and 
use Pk-lIk= ldk-l)- It shows that Ik is expanding in the energy norm, and that 
the energy norm growth is intimately connected with the energy norm of Ikv - v. 

The edge averages related to Ikv - v have simple expressions if we introduce the 
following notation. Set 

O8 8 = b 8+e2 -el 

02; = b2 elbg 2+ bp_2- 2b2+l_ 

if el resp. e2 are interior edges in a8k-1. For boundary edges, they need to be 
modified. For example, if el is a boundary edge in a&k-l, we define 

0p = 2(b,8+ei -b,8), 

analogously for vertical boundary edges. 
Denote temporarily w = Ikv - v. We have essentially two cases. If an edge 

e E ask belongs to the interior of some square in Sk-l, then the edge averages of 
w (taken from the restrictions to either of the two squares in 4k attached to e) 
vanish by definition of Ik. What remains are edges e that belong to a (boundary or 
interior) edge of the partition ?k-I- We give the result for the case that e coincides 
with l or l+e1, i.e., belongs to the edge e)3 E ask-l (see Figure 2 for the 
notation): 

2.12) 1 f~ wl ds 1 y WI ds = 810 ~~~~T2.1 20 Je2 T[2S 2 Ll I20+el _e2dS8p 

(2.12) 2 el 
eI e2, ,2/3_le2 e ? e2f+ ? e2l?el 8 2* 

The averages of w = Ikv - v on other edges (including those on the boundary of 
Q) are given similarly. The derivation of (2.12) is left upon the reader (just recall 
the above calculations which led to the proof of the first inequality in (2.9)). 

FRom (2.9)-(2.12) and Lemma 2.2, we immediately have the next lemma. Below 
the notation stands for two-sided inequalities with constants independent of k. 

Lemma 2.3. It holds that 

(2.13) Il1kV|I <? 4|IvI, Vv E 
1/k, 

IIIkV&II< ?v'IIVII, VV E Vk-l, 

and 

(2.14) 2kIIIkv-v II 8kVV11E VV E Vk-l 



676 ZHANGXIN CHEN AND PETER OSWALD 

Proof. Relation (2.14) is obvious from (2.12) and Lemma 2.2 (note that, for any 
element E in 'Ek, the values A' resp. A/ coincide with ?102 resp. ?102' for E E ~~~~~8 3 8/3' 
the corresponding /3, /'). The first estimate in (2.13) follows from a purely local 
argument and holds for any function v which is piecewise (on each square E E'Ek) 

in the rotated Qi space span{1,x,y,x 2 - y2}. Indeed, if the two edge averages 
corresponding to an edge e C ask of such a function are denoted by be and b', then A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Ikv has edge average (be + b')/2 for this e (and 0 for boundary edges). Thus, by 
(2.7), 

|Ik(V)JI2 < 4k E2 eb 6 < 4k E 2b < 5/2 III12; 

e.E&-k EE&k eC&E 

in the last summation be is either be or be depending on E. 

The most important result is the second inequality in (2.13). According to (2.11), 

it is enough to establish that 

H1kv -V|K f .lvf, VV E Vk- 

Going back to the above description of the edge averages of Ikv - v, we see that for 

each square in Sk two of them are zero, and the other two equal +801 resp. ?102 

for appropriate multi-indices /, /3'. Using the second equality in (2.6) gives 

1l1kV - VIL2 () = ((01)2 + (02,)2 + 
3 

(0h - 0 2,)2) < j ((01)2 + (02,)2) 

and carefully adding all local estimates, we arrive at 

llkkV - vl1 I E ((01)2 + (02,)2) + Z ((O1)2 + (02,)2) 

interior boundary 

(note that terms corresponding to interior edges occur four times while terms cor- 

responding to boundary edges only twice). Now, recall that 0p = Al3 - Al2 

for interior el3 (analogously for interior e2) while 0 = 2A)3 for a el on the lower 

boundary edge of the unit square (analogously for other boundary edges). Thus, 

by using again the crude estimate (a + b)2 < 2(a2 + b2) and regrouping the (AI)2 
and (A)13)2 terms with respect to the squares in Sk-l, we obtain 

HlIkV - Vl < E ((Alb)2 + (A2)2) 
EG& - 1 

A second application of (2.6) gives the desired result. Lemma 2.3 is established. D 

In the remainder of this section we prove the following property of the iterated 

coarse-to-fine intergrid transfer operators Rk. 

Lemma 2.4. It holds that 

(2.15) 1R v|| ? CIRvk, Vv E Vk, 1 < k < K. 

Proof. The proof is technical; it follows the idea of the proof of an analogous state- 

ment for the P1 nonconforming elements [20]. First, we consider the case of Q = R2. 

That is, we assume that all our definitions are extended to infinite square partitions 

of R 2; due to the local character of all constructions, this is easy to do. We keep 

the same notation for the extended partitions Sk, edges ei E ask, squares E E Sk, 
etc. In order to guarantee the finiteness of all norm expressions, we restrict our 
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attention to functions v E Vk with finite support. By the construction of Ik, this 
property is preserved when applying the operators Ik and RK. 

After the extension to the shift-invariant setting of R2, it is clear that it suffices 
to consider the case of k = 1. Set, for simplicity, j?k = Rk, k 1,... ,K. Our 
main observation from numerical experiments [23] was that the sequence 

{l I _kV _ k-IVI 12 , k = 2, . .. I K} 

decays geometrically. What we want to prove next is the mathematical counterpart 
to this observation. To formulate the technical result, introduce 

E- (oj )21 j = 0, 1, 2, 
a(EZ2 

where the quantities Oa are determined from the edge averages of v E Vi by the 
same formulas as above. The corresponding quantities computed for vb = 12v E V2 
are denoted by Oj and f, j 0,1, 2. From (2.14) in Lemma 2.3, we see that 

-1 + 02 
I 
IR2v Vl11 and &I + &2 IRV IR3V-_2VI12; 

moreover, we can iterate this construction. Thus, if we can prove that 

(2.16) IC*&O + &? + 2 < -*-=-*(C CO? + ?1 + 02)i 

where 0 < -Y* < 1 and c* > 0 are constants independent of v, then, by Lemmas 2.2 
and 2.3, 

I R{ KVI I < I IVI IS + EZK 2 If?kV - k-lvHIS 

(2.17) k=v|?Z 1 + C _k 

< C| v| ?- 

Since this gives the desired boundedness of RkK (for R2) via dilation, we concentrate 
on (2.16). 

From (2.9) and (2.10) we find the following formulas for Oj: 

-0 101?102?100 
2p= 8 8+ 80p+ 4 ' 

2,8+ e,1 8 +el 8 4 81 

00 e 101 I2 ?100 
2 +e2 8 0 8 83+e 4 8 

02p+e2 = 8 0p - 8 I0p 1 2 + 100 
021+el+e2 80f+el ? 8 0+e2 4 0 

02p = I0 - 8(0p ? 0pe ) - 3(00 -00_ 

02d+el 4 IO 

O2p+e2 2 4 81 /3+e2 

0= 2 - 8(0h ? 0p-e2) + 0 (02 - 0pe2)3 101I 

02/e+e2 24 0p 

/2+el = - 8 (0o+e ? 02) e2+el ) - 0 (0p 21 e2), 

02/+el +e2 4 81+e- 
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It is elementary but tedious to verify all these expressions, we give details for the 
first, fifth and sixth equations, and all others are similar and follow by some kind 
of symmetry argument: 

00 -a1 1 2 2 
2) - a2p + a2 1+e2 -a2- a213+el 

2 2* +2 ) 2) + 2 2b b+ bl + 8 (b + b1- 2-b 1 -b +el 2) + 1 (b? + 2?b ? b 1) 
18 f3-18e f3+e f-e + 8f3f38+ef 8 f3+e 

-b 28 (bl+bl-1-bl+e2-b_l e) + 8- (5b +bl 2 +b 2 +b 2 
1 ) 

- 8 (3bPbei ?b+e2 ? be +e2 )- (3b8b2e2? bf+ee /3+el _e2) 

= _101 ? 102 ? 100 

__ ape2-2 1 2 -e -a2f3e1+e2 

= + b)jble2 ? 5bb + b l+e) - 2(b-ei ? b -eb+e2 ? 5bP ? bel ) 

+b ei ? (b3?bp + e2 b 8 e i-b e- e2) 

- 78 (b_i 
I 

+ - e 

2 8 Q + e1 )4 8 W ve1), 

and 

01) (a2+e2+e2 - a-+e2) ? (a+1 -aal+e) 

=- +4 2 2 2b +e2-el) 

= (bl-b +bp +b b - + (b+l - + bl 1 e2+5 )b = 4 

These formulas are used to compute the quantities &f. In order to present the 
calculations in reasonably short form, we introduce the notation 

zZ*_ _ I30+I3, % 
1- 

ZEd I30+I3' k,l=O,1,2(jyfl); 
I3cZ2 /32z2 

if :3* e 22 iS the null vector, it is omitted in this notation. With them, we see, by 
carefully evaluating all squares, that 

- 
(002 

((0o 2 ? (O0+ei)2 ? (O2?+e2)2 ? (0/3+e1+e2)2) 

- 16 ?J + 4((1 + (J2) + 16 (-(01 + (J02) -32( 

+ blco + ? (J1 ? (b 2) + -2-b - 1e2) - 1 e2 

- bl 1 ( ? 2 2)2 2 -b22 (J1 ? 1b 2 -e +e2 

+b bl)(J + 61 (bl J2) - bl- (-J1 + e2 
2 3 
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Analogously, 

Ez (620)2 + (021+ei)2 + (0p+e2)2 + (621+el+e2 )2 

(9 (0J-0 J 
_ 

e) + 4Io-, + 31 (2+(2) (O Jl 

32 0 - (0o-2 ? ~e1)) ? 3 
j-1 2l 

? ( (, -e -oU)2) - 1 
(0J12 + J12)) + 16(J02 

32 02 02 (8J -1o)+4(1+ 1 2+ 2 ) 16 (Jl Jl 

9 3(0el _ I -e +) _ ? +e+e2)) ? 1J2 

9 1 3 (0 -9 2 e + 1 e 
3 

1 _ 
- 

e* 
32 o 0Jl 4J2 32J ? 2 8 0 

-32 J2 + 2)02 +e _ _e2 _ el+e2) 

+ 3 (J? +e+e 2 +e1 (T+e), 

9 32 12 9 1e 2 1 2e2 1 

Thus, introducing A =0v1 ? o2 and A = ?1 + 32, we have 

(2 18) 16 = 16 + 

where 
** 2- e +e el + -e +e e el e -e -e e+ 

Next, we simplify &* and o**. Note that 

1~ -2o Z01(02+ 0p+2?0a-2 ?0 10_e -0+2-a_ 

3 02(0+ i ? 002 e2 0-e1-e2 -3+e2 

-2o Z 0 (01 + 01-e2 + ?0p 1-e ?0p 1 -0p 1 -0p9 _e) 

&2 -0 + 3 + 03 +1+e1-e2 -/2e1 ? 2 

so that 

1 * e2 e16 + 

Analogously, we can simplify <** as follows: 

3 Z0 ((0 ?el+e2 e2 el +2 ) 

32 ( 0+ +1 0+e-e 1 +3-e1 ++e1 +e2)) 

s i n A ((0t+e1+e2 ? 2n +el -e2 + weh-e2 +3pe1+e2) 

-2(00 + 2 ? 0 ?+ e2)?+43)) 

(2.18) 
4 ~~~16 2 31 

A =9 0 ? + + e2)_4(<Je1?e I+ ? 

21 1 n2 12 10 2 0 2 0 1 1 
In thes calcuations the idOentity e e+ 

to + Oke2 -U0 -0__ei = - -_e2 - a +? 0 -e1e2 

which is valid for arbitraryn Nt2 and shows that the sequences {0t} are not 
completely independent, has been used several times. 
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Substitution of the expressions for o* and o** into (2.18) leads to 

&0? = 4(J + 31v-32(Je+(e) + 1 * 

(2.19) 3 ? 32 (e 
e2 ? 

l 
+e-2 2u& -2o2 e2 el 

< 2 ? 16IA 

where we have used the fact that lo-p I < oj_ j 0, 1, 2, which is valid for arbitrary 
3*. With the same argument, we see that 

" = ?9850(J81 + 7J ) - 3 -(ele + 2 e2) +1 +J** 

(2.20) - ?5 0 + 7 4 (+ 1 (-el-e2 el2+e2 

-4 ('& +0) - 3 (16 e2 ?+ ) 

< " 0?0 + 5A. 

Now, set B c?o and 13 = co-. Then it follows from (2.18) and (2.19) that 

- 5 11 I 
A< -?--B, B <-A?+-L3 8 4c - 16 2 

and 

(A + B) < max (+1'4+ (A+B). 

Let c c* 3v_ - 1, so we see that (2.16) holds with 

5 C* 11 1 3 3\V5+ 91 
8 16 4c* 2 16 

It remains to reduce the assertion of Lemma 2.4 to the shift-invariant situation 
just considered. To this end, starting with any v E Vk on the unit square, we 
repeatedly use an odd extension. Namely, set vb v on [0,112 and 

'b(x, y) -v(-x, y), (x,Iy) E [-1, 0) x [0, 11; 

after this, define 

v(x, y) -v(x,-y), (x,y) E [-1, 1] x [-1, 0), 

and continue this extension process with the unit square replaced by [-1,1]2 such 
that after the next two steps v is defined on [-1, 3]2. Outside this larger square we 
continue by zero. Clearly, IIbII2 = 161Iv I1, where the norms for b and v are taken 
with respect to R2 and the unit square, respectively. 

It is not difficult to check by induction that on [0, 1]2 the functions R Kb (ob- 
tained by the repeated application of the prolongations defined on R 2) and RfKv 

(as defined above with respect to [0,112) coincide. Also, the values of Ik+1v 

on [-2-(k+l), 1 + 2-(k+l)]2 depend solely on the values of b on the square 
[-2-k, 1 + 2-k]2, and on this enlarged square Ik+lv coincides with its odd ex- 
tension from [0, 1]2. Finally, the zero edge averages are automatically reproduced 
along the boundary of [0,112 from the above extension procedure. Therefore, by 
(2.17) and the dilation argument, we obtain 

| R Kv| I1 < | R Kf)112 < CII|V|I2 = 16CH |V| I, 

which finishes the proof of Lemma 2.4. D 
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Let us conclude this section with the following remark. All proofs given so far 
are valid for the unit square Q = (0, 1)2 and sequences of uniform square parti- 
tions Sk as indicated abbve. The energy norm is the one corresponding to the 
Dirichlet problem for the Laplace equation. Since constants (such as in the second 
estimate of (2.13)) are sometimes crucial for what follows, one has to be careful 
with generalizations. For instance, the second relation in (2.13) is valid whenever 
5k-I is a collection of equally sized squares. This covers certain L-shaped domains 
Q. However, replacing the Ho (Q) norm by more general energy norms seems to be 
problematic. Lemma 2.4 can be extended to polygonal domains if they are equipped 
with an initial partition El (into quadrilaterals) which is topologically equivalent 
to the above considered square partition E1 of the unit square. Then, the sequence 
{Sk} can then be inherited from {Sk}. Using the parametric version of the NR Q, 
elements [25], one easily sees that intergrid operators associated with {Sk} are just 
copies of the Ik and RfK considered above. The result of Lemma 2.4 then carries 
over by spectral equivalence of the norms (note that (2.15) is insensitive to replac- 
ing (., )g by spectrally equivalent forms; i.e., the uniform boundedness assertion 
remains valid for more general second-order uniformly elliptic problems than the 
Poisson equation). We did not check any details for the n-dimensional counterparts 
(n > 3) of these elements as defined in [25]. 

We will not discuss any further the possible extensions of the above properties of 
intergrid operators. Below we will indicate which of the algorithms can be justified 
to converge for larger classes of domains, partition sequences and second-order 
elliptic boundary value problems, respectively. 

3. MULTIGRID ALGORITHMS 

In this section and the next section we consider multigrid algorithms and multi- 
level preconditioners for the numerical solution of the second-order elliptic problem 

(3.1) -V o(AVu=f n Q, 
u =0 onIF, 

where Q C R2 is a simply connected bounded polygonal domain with the boundary 
F, f- C L2(Q), and the symmetric coefficient matrix A E (Lo"(Q))2x2 satisfies 

(3.2) ce I(t > (tA(x, y) > cot (X, y) E Q, (2 C2 

with fixed constants ar1, ao > 0. This guarantees that the energy norm related to 
(3.1) is spectrally equivalent to that for the homogeneous Dirichlet problem for the 
Poisson equation, i.e., to the Ho' (Q) norm. The condition number of preconditioned 
linear systems to be analyzed later depends on the ratio a1/ao. However, some of 
the multigrid results below are only valid in the case of the Laplace operator, i.e. 
if A(x, y) _ aoI. 

Problem (3.1) is recast in weak form as follows. The bilinear form a(., *) is defined 
by 

a(v,w) = (AVv,Vw), v, w E H1(Q). 

Then the weak form of (3.1) for the solution u C Ho'(Q) is 

(3.3) a(u,v) = (f,v), V v E HTo(Q). 
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Associated with each Vk, we introduce a bilinear form on Vk ( Hi (Q) by 

ak(V,W) =X (AVV, VW)E, V, w E Vk ? Ho(Q) 
EGEEk 

The NR Qi finite element discretization of (3.1) is to find UK E VK such that 

(3.4) aK(UK,V) = (f,V), V V E VK. 

Let Ak: Vk -- Vk be the discretization operator on level k given by 

(3.5) (AkV,w) = ak(V,W), V W E Vk. 

The operator Ak is clearly symmetric (in both the ak(*, ) and (,.) inner products) 
and positive definite. Also, we define the operators Rk-1: Vk > Vk-l and R?_1 
Vk -> Vk-1 by 

ak-l(Rk-lV,W)= ak(V,IkW), V W E Vk-l, 

and 

(R?k 1v,w) = (V, Ikw), V w E Vk-l- 

It is easy to see that IkRk-1 is a symmetric operator with respect to the ak form. 
Note that neither R?k nor Rk is a projection in the nonconforming case. Finally, let 
Ak dominate the spectral radius of Ak. 

The multigrid processes below result in a linear iterative scheme with a reduction 
operator equal to IdK- BKAK, where BK: VK-* VK is the multigrid operator to 
be defined below. 

Multigrid Algorithm 3.1. Let 2 < k < K and p be a positive integer. Set 
B1 = A1'. Assume that Bk-I has been defined and define Bkg for g E Vk as 
follows: 

1. Set xo = O and q = 0O. 
2. Define xl for I = 1, ... , m(k) by 

x = x + Sk(g-AkX'1). 

3. Define ym(k) - Xm(k) + IkqP, where q% for i = 1, . . . ,p is defined by 

qi = qt-1 + Bk-I [R-1 ( - AkX(k)) - Ak-lq] - 

4. Define y' for I = m(k) + 1,... ,2m(k) by 

y =yl = +Sk (g-Akyl-1) 

5. Set Bkg = y2m(k) 

In Algorithm 3.1, m(k) gives the number of pre- and post-smoothing iterations 
and can vary as a function of k. In this section, we set Sk = (Ak)-1Idk in the 
pre- and post-smoothing steps. If p = 1, we have a V-cycle multigrid algorithm. If 
p = 2, we have a W-cycle algorithm. A variable V-cycle algorithm is one in which 
the number of smoothings m(k) increase exponentially as k decreases (i.e., p = 1 
and m(k) = 2K-k) 

We now follow the methodology developed in [6] to state convergence results 
for Algorithm 3.1. The two ingredients in their analysis are the regularity and 
approximation property and the boundedness of the intergrid transfer operator: 

(3.6) | ak (v - IkRk_Iv,v)l C 0 lAkvk ak(V,V), V v E Vk, 
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and 

(3.7) ak(Ikv,Ikv) < Cak-1(V,V), V V E Vk-l, 

for k = 2, ... , K, where Ak is the largest eigenvalue of Ak. The proof of (3.6) is 
standard under the full elliptic regularity assumption on the solution of (3.1); see 
the proof of a similar result for the PI nonconforming elements in [15]. Inequality 
(3.7) has been shown in [1] using the approximation property of the operator Ik. 

However, here we see that if A = aoI is a scalar multiple of the two-by-two identity 
matrix I, by the second inequality in (2.13) in Lemma 2.3, we actually have 

(3.8) ak(IkV, IkV) < 2ak-I (V, V), V V E Vk-l- 

This leads to the following main result of this section. Let the convergence rate for 
Algorithm 3.1 on the kth level be measured by the convergence factor &k satisfying 

lak (v - BkAkV, v) I <? kak (V, V), V V E Vk. 

Theorem 3.2. Define Bk by p = 2 and m(k) = m for all k in Algorithm 3.1. 
Then, for Q = (0, 1)2, if A = aoI is constant, there exists C > 0, independent of 
k, such that 

C 
6k <_ 6 =- +VM- 

The proof of this theorem follows from (3.6), (3.8), and Theorem 7 in [6]. From 
Theorem 3.2, we have an optimal convergence property of the W-cycle with one 
smoothing. While a uniform preconditioner result for the variable V-cycle has been 
given for the first version of the NR Qi elements in [9], we see from (3.6) and (3.7) 
that the same result also holds for the second version even in the case of the variable 
coefficient A. That is, defining Bk by p 1 and m(k) = 2K-k for k= 2,... , K, 
there are 7ro, m77 > 0, independent of k, such that 

rloak(V,V) < ak(BkAkv,v) < rlak(v,v), Vv E Vk, 

with 

> m(k)/(C + m(k)) and ql < (C+ m / . 

Finally, we mention that for a general A the convergence result for the W-cycle can 
be theoretically established (e.g., by the theory of [6]) only for sufficiently many 
smoothing steps on each level, and that Theorem 3.2 is a first improvement for the 
model problem under consideration. 

4. MULTILEVEL PRECONDITIONERS 

In this section we discuss additive multilevel preconditioners of hierarchical basis 
and BPX type for (3.4). We assume that the reader is familiar with the theory of 
additive Schwarz methods as outlined in [16]; see also [21], [30], or [28]. Below we 
use the notation 

V; a(., .)I = RkfVk-;bk -,-} 
k 

which briefly expresses the following assumptions: V, Vk are finite-dimensional 
Hilbert spaces, equipped with their respective symmetric positive definite bilinear 
forms a(., .), bk(., .), Rk: Vk -* V are linear mappings such that the space V is 
the (not necessarily direct) sum of its subspaces RkVk. Since in our applications 
Vk t V, the Rk are not just natural embeddings, their choice is a crucial ingredient 
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of the algorithms which are associated with the above space splitting. Roughly 
speaking, these algorithms aim at iteratively solving a variational problem on V 
governed by the bilinear form a(., .), by solving subproblems in Vk associated with 
the form bk (., .). The transfer of information between V and the Vk is performed 
by the operators Rk and their adjoints. A small condition number of the space 
splitting (which is expressed by certain two-sided norm equivalencies; see below) 
guarantees good convergence rates of these algorithms. For details, see the above 
references. 

We start with a theoretical result which follows from the material in Section 2 
along the lines of [23]. Since we rely on Lemma 2.4, we assume that Q is the unit 
square, and that {Sk} is a sequence of uniform square partitions (compare, however, 
the remark at the end of Section 2 about extensions of Lemma 2.4). More precisely, 
we derive the condition numbers of the additive space splittings 

K 

(4.1) {VK; (, )?} =R1{Vi; ( +, )?} ER R{Vk; 22k(., .)} 
k=2 

and 

K 

(4.2) {VK; ( ))} = R 1{Vi; (, )} ? E R {(Idk - IkPk-l)Vk; 2k(, )} 
k=2 

The condition number of (4.1) is given by [21] 

(4.3) A 
= max Amax = sup s2 Amin= inf [l V ' 

where 

IIIV1112 = inf {V 112 + 1:k|2 k||2} 

with v E ZkRkvk. A similar definition can be given for (4.2). 

Theorem 4.1. Under the above assumptions on Q and {Sk}, there are positive 
constants c and C, independent of K, such that 

I vll 
(4.4) C < < CK, VV EVK, 

and 

(4.5) c < < CK VV VK 

where 

K 

||||V||l2 =|IQ11KvI |?+ E 22k (Idk -IkPk)QkVI . 
k=2 

That is, the condition numbers of the additive space splittings (4.1) and (4.2) are 
bounded by O(K) as K -> oo. 
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Proof. For k = 2,... ,K, it follows from the definitions of Ik, 'k, and Qk, (2.4), 
and the first inequality of (2.13) that 

22k 1 (Idk =-2kIk(ldk Pk_1)QKV 12 

< 2 2k | Ikpk1)kK 2 - 2 22k(Idk k-_Pk)QKV112 

?_~J~ -pk_l)QK?V11 

< ClQlvdk k-. 

Summing on j and using the orthogonality relations in (2.3), we see that 

infVkvk {VIV112 + Ek 2 2 klVkl1} 

< I |QKV112 + Ek=2 22k|(Idk -IkPk_)Q[KV112 

< C||V||12 

with v = EkRkvk, which implies the lower bounds in (4.4) and (4.5). 
For the upper bounds, we consider an arbitrary decomposition v = K_ RkKvk 

with Vk E Vk. Then we see, by Lemma 2.4, that 

/ K \ 2 K K 

|v < ?|R KVk|I ) < K VRk vk||1 < CKZ|VklH1. 
k=I k=I k=I 

Consequently, by (2.2), we have 

||V|12 < CK (I|V,i 1 + Z22k lVk 11) 

Now, taking the infimum with respect to all decompositions, we obtain 

flVf2 ?< CKinfvkEvk {IV, + Ek 22Vkl1} 

< CK (~I IQKVI 12 + LkK 22k (Jdk- IkPkl2)QkVHl)t 

with v =EkR vk, which finishes the proof of the theorem. El 

We now discuss the algorithmical consequences for the splittings (4.1) and (4.2). 
Theoretically, Theorem 4.1 already produces suitable preconditioners for the matrix 
AK using (4.1) and (4.2). However, they are still complicated since they involve 
L2-projections onto Vk, 1 < k < K, which means to solve large linear systems 
within each preconditioning step. To get more practicable algorithms, we replace 
the L2 norms in Vk and Wk = (Idk - IkPk-1)Vk C Vk, k = 2,... ,K, by their 
suitable discrete counterparts. We first consider the splitting (4.1); (4.2) will be 
discussed later. 

Let {QJ k} be the basis functions of Vk such that the edge average of k equals 
one at e k and zero at all other edges. Then each v E Vk has the representation 

2 

V =EEa , 
j=l a 
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Thus, by the uniform L2-stability of the bases, which follows from (2.7) in Lemma 
2.2, we see that 

(4.6) -2-2k E(ai 
)2 < I V11 2? -22k EZ(a )2. 

j=1 a j=1 a 

Note that (with the same argument as in Lemma 2.2) 

(4 ) 2 || ,,kl = 20 ak( . k' a k) a,jkll S= 51 
120'0 

so (4.6) can be interpreted as the two-sided inequality associated with the stability 
of any of the splittings 

2 

(4.8) {Vk; 2 2k(., )} SE= k; 22k(., .)} 
j=1 ca 

2 

(4.9) {Vk; 2 (., *)} ,, k; (- )&}' 
j=1 Ck 

and 
2 

(4.10) fVk-; 22k(., .)1 Et {Vo,, k; ak,.} 
j=1 a~ 

into the direct sum of one-dimensional subspaces V3 k spanned by the basis func- 

tions 0j k. Any of the splittings (4.8)-(4.10) can be used to refine (4.1). As we 
will see below, the difference is just in a diagonal scaling (i.e., a multiplication by 
a diagonal matrix) in the final algorithms. As example, we consider the splitting 
(4.10) in detail; the other two cases can be analyzed in the same fashion. 

With (4.1) and (4.10), we have the splitting 

K 2 

(4.11) {VK; aK(, ')} RI {V;a,(., .)} + E ERk R{Va,k;ak(, )} 
k=2 j=1 ca 

It follows from (4.4), (4.6), and (4.7) that the condition number r, for (4.11) still 
behaves like O(K). Now, associated with this splitting we can explicitly state the 
additive Schwarz operator 

K 2 

(4.12) P.K = R T1 +? E S Rk T, k) 

k=2j=1 a= 

where 

aK(v, RKc K 
)3 

ak kk 
- 

and T1v E V1 solves the elliptic problem 

a,(Tiv, w) = aK(V, R1 w), Vw E V,. 
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Thus the matrix representations of all operators with respect to the bases of the 
respective Vk are 

2 

Tk = ZZ,TS k = Sk(ftK)tAK, Sk = diag(aj c k 

j=1 a 

for 2 < k < K, and 

Ti = Al(RlK)tAK, 

where for convenience the same notation is used for operators and matrices. Hence 
it follows from (4.12) that 

/ K 

PK = tRKAl(RK)t+ERK Sk(RK)) AK CKAK) 
k=2 

which, together with the definition of Rk - K ... I k+1, leads to the typical recur- 
sive structure for the preconditioner CK 

(4.13) Ck = IkCk-l]k + Sk, k = K, ... ,2, S=C_A1 

Note that with these choices for Sk, the multiplication of a vector by CK is formally 
a special case of Algorithm 3.1 if one sets m(k) = 1, p = 1, removes the post- 
smoothing step, and replaces Ak by a zero matrix for all k > 2. 

From (4.13) and the definitions of Ik and Sk, we see that a multiplication by CK 
only involves O(nK+?.. ?+n2+n2) = O(nK) arithmetical operations, where nk 22k 
is the dimension of Vk. This, together with (4.4), yields suboptimal work estimates 
for a preconditioned conjugate gradient method for (3.4) with the preconditioner 
CK. That is, an error reduction by a factor c in the preconditioned conjugate 
gradient algorithm can be achieved by O(nK log 2K log(G 1)) operations. 

We now turn to the discussion of the algorithmical consequences for the splitting 
(4.2). To do this, we need to construct basis functions in Wk, k = 2, ... , K. Starting 
with the bases {?J k} in Vk, to each interior edge e%kl E &kk1I, we replace the 

two associated basis functions 02p k2/+ej,k with their linear combinations 

20,k 20?,k + 23+ej,k 23?+ej,k -2),k +2/+ei,k1 
j 1,2, 

where e and e-?eJ k E &&k form the edge e, k-l- For all other interior edges 

eak which do not belong to any edge in 05k-l, we set 

aka,k ' 

The new bases {'+b k} in Vk are still L2-stable; i.e., they satisfy an inequality 
analogous to (4.6). Moreover, if 

2 

V = b3 03,k, 
j-1 a a 

we have 
2 

Pk-1V = E E bjjk1 
j1=1 / k 
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and 
2 

(Idk - IkPk-l)V = E E Cca,k' 
j=1 c5#2/ 

since 2Vp -Ikq$%k- can be completely expressed by the functions fI with 
a 7 2,B only. More precisely, we have 

2+= b2/+el -g b23 + b2(3-e2) b2(3+el) -b2(/+e1_2) 

C2?e2 - b -8 ~(5b2 ? ?+ b2(/3+el) ?2(+e 

2/+el +e2 = 2/3+e28 (b2 b b2 b(+e2) 

and similar relations hold for j = 2. Hence any function from Wk has a unique 
representation by linear combinations of {f <k: a = 23}, and this basis system is 
L2-stable. With this basis system, as in (4.11), we have the corresponding splitting 

K 2 

(4.14) {VK; aK(, ')} = R1 {I;ai(, v)} ?+ E Rk 5 {W k; ak(, )} 
k=2 j=1 ct#2/3 

into a direct sum of R{KVi and one-dimensional spaces RKW k induced by the 

basis functions Vj k. Then, with the same argument as for (4.13), we derive an 

additive preconditioner CK for AK recursively defined by 

(4.15) Ok =IkCk-1Ik + kSkIk2 k = K,.. ,2, C = S1 -A- 

where 

Sk = diag (ak(jb jk< a Jk)1, a 5 23, j = 1,2) 

are diagonal matrices and Ik is the rectangular matrix corresponding to the natural 
embedding Wk c Vk with respect to the bases {f k} in Wk and {q5,} in Vk (one 

may use the bases {f' k} for all Vk, which would change the Ik representations, but 

keep Ik maximally simple). (4.15) has the same arithmetical complexity as before. 
We now summarize the results in Theorem 4.1 and the above discussion in the 

next theorem. 

Theorem 4.2. Let Q and {Sk} satisfy the above assumptions. Then the symmetric 
preconditioners CK and CK defined in (4.13) and (4.15) and associated with the 
multilevel splittings (4.11) and (4.14), respectively, have an O(nK) operation count 
per matrix-vector multiplication and produce the following condition numbers: 

(4.16) 1S(CKAK) < CK, 1(CKAK) < CK, K > 1. 

The splitting (4.11) can be viewed as the nodal basis preconditioner of BPX type 
[5], while the splitting (4.14) is analogous to the hierarchical basis preconditioner. 

We now consider multiplicative algorithms for (3.4). One iteration step of a 
multiplicative algorithm corresponding to the splitting (4.11) takes the form 

0 i 
y -XK, 

(4.17) y 1+1 = yi - wR K_ISK-1(R K_I)t(AKY1 - fK)i I = O, .., K - 1, 
j?1 K~ 

K 

XKj+ Y K 
K -Y, 
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where w is a suitable relaxation parameter (the range of relaxation parameters 
for which the algorithm in (4.17) converges is determined mainly by the constant 
in the inverse inequality (2.2) [30, 28, 16]. The method (4.17) corresponds to a 
V-cycle algorithm in Algorithm 3.1 with Ak replaced by Ak - (RK)tAKR , one 
pre-smoothing and no post-smoothing steps. 

The iteration matrix MK,, in (4.17) is given by 

MK,W (IdK- wEj) ... (IdK - )(JdK-WEK), Ek kRk Sk(Rk)tAK . 

An analogous multiplicative algorithm for (3.4) corresponding to the splitting (4.14) 
can be defined. 

From the general theory on multiplicative algorithms [30], [16], and by the same 
argument as for Theorem 4.2, we can show the following result. 

Theorem 4.3. Let Q and {Sk} satisfy the above assumptions. For properly chosen 
relaxation parameter w the multiplicative schemes corresponding to the splittings 
(4.11) and (4.14) possess the following upper bounds for the convergence rate: 

C C 
(4.18) inf IIMK,w II < 1--: inf K'MK,,u II < 1-K: K-oo, 

where MK,,, and MK,,, denote the iteration matrices associated with (4.11) and 
(4.14), respectively. 

We end with two remarks. First, one example for the choice of w is that w K 
which leads to the upper bounds in (4.18). Second, the diagonal matrices Sk and Sk 
in (4.13) and (4.15) can be replaced by any other spectrally equivalent symmetric 

matrices of their respective dimension. 

5. EQUIVALENT DISCRETIZATIONS 

As an alternative to the preconditioners described in Section 4 for which the 

estimates in Theorems 4.2 and 4.3 guarantee only suboptimal convergence rates, we 

propose now to switch from the NR Qi discretization (3.4) to a spectrally equivalent 

discretization for which optimal preconditioners are already available; see [22] for 

references and examples for other conforming elements. The most natural candidate 

for a switching procedure is the space of conforming bilinear elements 

UK { C 0(Q) IE E Q1(E), VE E Ek and (11 = Oil 
on the same partition. For simplicity, we again assume that Q is the unit square, 

and that the Ek are uniform square partitions. However, it is easy to realize that a 

switching procedure can be implemented also in the general case if, e.g., triangular 

linear elements are used as reference elements. 

We introduce two linear operators YK: UK -) VK and YK: VK -* UK as follows. 

If ( E UK and e is an edge of an element in EK, then YKT E VK is given by 

(5.1) jYK(ds= jds, 

which preserves the zero average values on the boundary edges. If v E VK, we 

define YKV E UK by 

(5.2) (YKV) (z) = 0 for all boundary vertices z in EK, 

(YKv) (z) = average of vj (z) for all internal vertices z in SK, 

where vj = VIEj and Ej E EK contains z as a vertex. 
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Another choice for UK is the space of conforming PI elements 

UK { C (Q) JE E P1(E), VE E SK and (jr = ?}, 

where SK is the triangulation of Q generated by connecting the two opposite vertices 
of the squares in EK. The two linear operators YK: UK - VK and YK: VK -* UK 
are defined as in (5.1) and (5.2), respectively. Moreover, for both the conforming 
bilinear elements and the conforming PI elements, it can be easily shown that there 
is a constant C, independent of K, such that 

2Kg - YKjj < C111, VF E UK, 

2K v-YKVI <? CHvHsE, VV E VK. 

Since optimal preconditioners exist for the discretization system AK generated by 
the conforming bilinear elements (respectively, the conforming PI elements), the 
next result follows from (5.3) and the general switching theory in [22]. 

Theorem 5.1. Let CK be any optimal symmetric preconditioner for AK; i.e.,. we 
assume that a matrix-vector multiplication by CK can be performed in O(nK) arith- 
metical operations, and that s(CKAK) < C, with constant independent of K. Let 
SK = 22KIdK (Or SK = diag(AK) or any other spectrally equivalent symmetric 
matrix). Then 

(5.4) SK + YKCK(YK) 
is an optimal symmetric preconditioner for AK. 

6. NUMERICAL EXPERIMENTS 

In this section we present the results of numerical examples to illustrate the 
theories developed in the earlier sections. These numerical examples deal with the 
Laplace equation on the unit square: 

(6.1) -Au on Q-(O, 1)2, 

where f E L2. The NR Qi finite element method (3.4) is used to solve (6.1) 
with {Sk} QK being a sequence of dyadically, uniformly refined partitions of Q into 
squares. The coarsest grid is of size h1 = 1/2. 

The first test concerns the convergence of Algorithm 3.1. The analysis of the 
third section guarantees the convergence of the W-cycle algorithm with any number 
of smoothing steps and the uniform condition number property for the variable V- 
cycle algorithm, but does not give any indication for the convergence of the standard 
V-cycle algorithm, i.e., Algorithm 3.1 with p = 1 and m(k) 1 for all k. The first 
two rows of Table 1 show the results for levels K = 3,... , 7 for this symmetric 
V-cycle, where (iv, &v) denote the condition number for the system BKAK and the 
reduction factor for the system IdK - BKAK as a function of the mesh size on the 
finest grid hK. While there is no complete theory for this V-cycle algorithm, it is of 
practical interest that the condition numbers for this cycle remain relatively small. 

For comparison, we run the same example by a symmetrized multilevel mul- 
tiplicative Schwarz method corresponding to (4.17). One step of the symmetric 
version consists of two substeps, the first coinciding with (4.17) and the second 
repeating (4.17) in reverse order. The condition numbers sm for MK,WAK with 
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TABLE 1. Numerical results for the multiplicative V-cycles. 

1/hK 8 16 32 64 128 

N. 1.54 1.70 1.84 1.96 2.06 

6V 0.23 0.27 0.32 0.33 0.35 

I, m 1.75 1.81 1.84 1.85 1.85 

w K` are presented in the third row of Table 1, where MK,, M= m ,lMK, is 

now symmetric. The results are better than expected from the upper bounds of 
Theorem 4.3 which seem to be only suboptimal. 

In the second test we treat the above multigrid algorithm and symmetrized mul- 
tilevel multiplicative method as preconditioners for the conjugate gradient method. 
In this test the problem (6.1) is assumed to have the exact solution 

u(x, y) = x(1 - x)y(1 - y)ex. 

Table 2 shows the number of iterations required to achieve the error reduction 
10-6, where the starting vector for the iteration is zero. The iteration numbers 
(iterv, iterm) correspond to Algorithm 3.1 with p = 1 and m(k) = 1 for all k and 
the symmetrized multiplicative algorithm (4.17), respectively. Note that iterv and 
iterm remain almost constant when the step size increases. 

TABLE 2. Iteration numbers for the pcg-iteration. 

1/hK 8 16 32 64 128 

iterV 8 8 9 9 10 

iterm 9 9 9 10 10 

In the final test we report analogous numerical results (condition numbers and 
pcg-iteration count) for the additive preconditioner CK associated with the splitting 
(4.11) (subscript a), and the preconditioner C> (subscript s) which uses the switch 
from the system arising from (3.4) to the spectrally equivalent system generated 
by the conforming bilinear elements via the operators in (5.1) and (5.2). We have 
implemented the standard BPX-preconditioner [5], with diagonal scaling, as CK* 
These results are shown in Table 3. The numbers show the slight growth, which 
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TABLE 3. Results for the preconditioners CK and CK. 

1/hK 8 16 32 64 128 256 512 

Ka 9.6 12.3 14.4 16.1 17.4 18.3 19.3 

itera 18 22 24 26 27 28 28 

Ks 3.37 3.87 4.24 4.54 4.80 5.05 - 

iterS 10 11 13 13 14 15 - 

is typical for most of the additive preconditioners and level numbers K < 10. 
The condition numbers K, for the switching procedure are practically identical 
to the condition numbers for OKAK characterizing the BPX-preconditioner [5] in 
the conforming bilinear case. The switching procedure is clearly favorable as can 
be expected from the theoretical bounds of Theorems 4.2 and 5.1; however, the 
computations do not indicate whether the upper bound (4.16) is sharp or could be 
further improved. 
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