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ORBITS OF ALGEBRAIC NUMBERS WITH LOW HEIGHTS 

GREGORY P. DRESDEN 

ABSTRACT. We prove that the two smallest values of h(a) +h( J1 ) +h(1 - 

are 0 and 0.4218..., for a any algebraic integer. 

INTRODUCTION 

For K an algebraic number field, let KV be the completion of K at the place v 
and let i iv be the absolute value associated with this completion KV (more precise 
definitions are given below). For a E K, we define the (logarithmic) Weil height, 
h(a), as follows: 

(1) h(a) = logmax(lalv, 1). 
v 

In this paper, we will prove 

Theorem 1. Let a be an algebraic number, a 7& 0,1. 

(i) For a a primitive sixth root of unity, 

h(a) + h(- ) + h(l-- 
I 

o. 
1 -a a 

(ii) Otherwise, 

1 1 
h(a) + h(1 ) + h(l--) > 0.4218-... 

1 -a a 

with equality for a any root of the polynomial: 

pi(z) = Z6 - 3z5 + 5z4 - 5Z3 + 5z2 - 3z + 1 

(2) = (Z2-Z + 1)3 _ 2 _ 2 

The reader will note that this theorem is a specific case of the following general 
problem. We generalize the Weil height to P'1(Q) in the obvious manner: for 

x= [l] we define 
X22 

h(x =8 -lgaxllv, IX1v).r YrIt IIt 

Received by the editor September 30, 1996. 
1991 Mathematics Subject Classification. Primary 11R04, 11R06; Secondary 12D10. 
I am very grateful for the assistance and guidance of my advisor, Dr. Vaaler. 

( 1998 American Mathematical Society 

815 



816 GREGORY P. DRESDEN 

Then, for G a finite subgroup of PGL2(Q), we extend the Weil height to orbits 
under the action of G, as follows: 

hG(x) h(gx). 
gEG 

We now ask about the smallest values of hG (x) for x c 1 (Q). We see that Theorem 
1 answers this question for G the cyclic group 

G= I[ 0 ' - 10 '1 0 
1 

At the end of this paper we mention further work that is being done on other 
subgroups G of PGL2 (Q). 

The reader will also note that this theorem is related to a recent result by Zagier 
[7] in which he sharpens a result of Zhang [8] concerning a lower bound for h(a) + 
h(l-a). 

Let us now proceed to a proof of Theorem 1. 

DEFINITIONS 

For K, the completion of the algebraic number field K at the place v, we will 
need two absolute values, K 1, (mentioned above) and 11 IK. We define 11 K1, to be 
the absolute value which, when restricted to Q, is the usual Euclidean or p-adic 
absolute value, and we define K as follows 

(3) K= 1l fldv/d 

It follows that K iv satisfies the product formula on K: fJv 1!1v = 1 for all non-zero 
/ E K. (Our normalizations of the absolute values are exactly as in [1] or [5].) 
Let us also agree that single-bar absolute values, i 1, without any subscript, will 
always refer to the usual Euclidean absolute value on C. We will use the standard 
notation log+(z) to refer to max(0, log(z)). Finally, we will need to define the 
following function for our proof: 

(4) 

g |(Z 2 _ Z) || -lglzI lg+| 1 | 1 | Ev (z) =B log (z---i~ - log+ flzl - log+ - log+ 1 
(Z -z)2 1-z z 

The constant B will be specified later; it is a positive real number, between 0 and 
1/2. Notice that Ev(z) is invariant under the transform z l-* 1 - 1; this means that 

(5) Ev (z) = Ev (1--) = Ev ( 1Ev . 
z -z 

In our proof of Theorem 1, we first establish some local estimates, and we then use 
these to establish a global result that will prove the theorem. 

LOCAL ESTIMATES 

Lemma 1. Let z be an algebraic number, z =/ 0, 1, or a primitive sixth root of 
unity. 

(i) Ev (z) < 0 for v finite, with equality for z any root of P,. 
(ii) Ev(z) <-0.4218 ... for v infinite, with equality for z any root of P,. 
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Proof of Lemma 1. The two parts of this lemma will require entirely different tech- 
niques to prove. In (i), for v finite, we will rely on the triangle inequality property 
of 1l II, and in (ii), we willbdifferentiate E,(z) and solve for z. (In both parts, we 
assume that z is neither 0 nor 1.) 

Proof of part (i): v finite. Recall the ultrametric triangle inequality: Ila + bllv < 

max(Ilallv, llbllv), and if llallv f- llbllv, then Ila + b|lv = max(flallv, llbllv). 
For (6(Z) = Z2 _ z + 1, we have the following interesting identity: 

(6) 4(6 (Z)6(l )46(1-) - (Z2 z i)2 

For finite v, then 11(6(Z)flv < max(l, lz 29 1v), and so log flI6(Z)flv < 2log+ flzflv. 
Thus, if we apply 11 llv to both sides of (6) and then take the logarithm, we conclude: 

(7) 2log+llzllv+2log+J1-z +42 log+1-- >log (z2-z)2 I -z v ~z (z2 -z) 2 v 

Since the constant B in equation (4) is less than 1/2, this implies that Ev (z) < 0. 
It remains to show that equality is achieved for z a root of the polynomial P1. 

Let z1 be such a root. It is easy to show that 1 - I and lz are also roots of 
P1, and since P1 is a monic polynomial with integer coefficients and a constant 
coefficient of 1, then all of its roots are algebraic units. This implies that all three 
of the log+ terms in Ev(z1) are zero; the first term is clearly zero as well, and thus 
Ev (z1) = -0. 

Proof of part (ii): v infinite. We need to define a new constant, D, in terms of B: 

1 
(8) D - [(1 + 2B) log(1 + 2B) - (6B) log(6B) - (1 - 4B) log(1 - 4B)] . 

2 
We now describe the method used to determine the value of B. This constant B is 
chosen so as to maximize the value of D; by differentiating (8) and solving, we find 
that B should be the single real root of the polynomial 184x3 + 6x - 1. That is, 
B = 0.1172..., and subsequently, D = 0.4218.... (Notice that -D is the number 
appearing in the statement of Lemma 1, part (ii).) 

Let us now show that Ev (z) < -D for all z EE C. Recall that for v infinite, then 
v-I 1, the regular Euclidean absolute value on C. 
Since Ev(z) goes to -oc for z near 0, 1, oo, and the primitive sixth roots of 

unity, and since Ev (z) is harmonic off the three curves Z z 1, 1 - 1 1, and 
z 

I1z I then (by the maximum principle) Ev(z) achieves its maximum only 
on these three curves. By the invariance expressed in equation (5), we need only 
check one of these curves. We consider the straight line 1 - 1 1, which is easily 
parametrized by z = 1/2 + iy. Since Ev(z) = Ev(z-), we need only consider y > 0. 
We substitute our parametrization into Ev(z) and derive the following formula: 

(9) E(133Blog(-Y)+ -2B)log +y) for yy (0, 2 )' (9) Ev (1/2 + iy) - 

t3Blog(y2--)-(1 + 2B) log(+ 2) for y E (3, oc). 

If we let S = y2 + 1/4, then (9) becomes 

(10) E (z) f3Blog(1-S)+(1-2B)log(S) forS (1,1), 
l3Blog(S-1) -( + 2B) log(S) for S E (1, oo). 
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We now find the maximum of E,(z) by differentiating (10) with respect to S, setting 
the result equal to zero, and solving for S. We find that E, (z) has two maxima, at 

S, I-4B 1+4B 
(11) S, and S2 - 

1 + 2B 1 I- 2B' 

Using our value of B we can compute that S, E (1/4, 1) and S2 E (1, oo). That both 
points are (local) maxima for E (z) can easily be verified by the second derivative 
test. 

We substitute S, and S2 into E, and find the following: 

Ev (Si) = [(6B) log(6B) + (1 - 4B) log(1 - 4B) - (1 + 2B) log(1 + 2B)] 

=-D 

and, 

1 
EV(S2) - [(6B) log(6B) - (1 + 4B) log(1 + 4B) + (1 - 2B) log(1 - 2B)] 2 

<-D. 

Thus, the maximum value for E, (z) is -D. This value is attained at S, 
(1 -4B)(1 +2B)1, and since B is a root of 184x3 + 6x -1, we find that S, satisfies 

(12) S3 - 2S2 +3S1 - 1= 0. 

If we recall that S, = y2 + 1/4, and z = 1/2 + iy, then we see that S1 represents 
the algebraic number z that is a root of the polynomial 

z6 - 3z5 + 5z4 - 5z3 + 5z2 - 3z + 1 = O. 

This is exactly the polynomial Pi (z) from equation (2). We have thus shown that 
E,(z) < -D, and E,(z) =-D for z a root of P,(z). Of course, P1 has five other 
roots; these are also maximums for Ev (z) and reflect the invariance of E, from 
equation (5) and the fact that E,(z) = Ev(z-). O 

GLOBAL ESTIMATES 

We will now combine our local estimates to prove Theorem 1. 
We first need to introduce a new constant, nv, defined as n, = 0 for v finite, 

and nv = dv /d for v infinite. We now combine (i) and (ii) of Lemma 1 into a single 
statement: 

(13) dv/d Ev(z) < -nv D. 

Proof of Theorem 1. In equation (13), we multiply each logarithm in Ev (z) by the 
dv/d term, and use the relation expressed in equation (3), to produce: 

(14) Blog (2-_Z +1)3 1 + 1 
(14) Blog (2)2 -log+lzlv-log+ -log+ 1-- <-nvD. (Z2 - Z) 2 1 -z z 

We now make use of the identities 

(15) EZrv = 1, Elog 0v=O, E log+ 13Kv = h(/3). 
v v v 
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(These last two formulas hold for all non-zero algebraic numbers, p3). Then, for z 
not zero, 1, or a primitive sixth root of unity, we can sum (14) over all places v and 
apply (15) to get 

-h(z)-h( )-h(l--) <-D. 
-z z 

This implies 

(16) h(z) + h( 1 ) + h(l -- > D = 0.4218 . ... 1- z z 

and since equality holds in (13) for z any root of P1, the same can be said of (16). 
This establishes part (ii) of Theorem 1; as for part (i), it follows easily from the 
fact that the minimal polynomial of the sixth roots of unity is Z2 _ z + 1. 0 

APPLICATIONS AND GENERALIZATIONS 

It is interesting to note that the Weil height h is related to the Mahler measure 
of a polynomial (as seen in [2] or [3]). Recall that for a polynomial f(x) = ao + 
a1x + a2x2 + * + anxn, with zeroes at al, ... , an, we define the Mahler measure 
M(f) to be 

n 

M(f) = |an| tMaX(|oaij, 1). 
i=l1 

D. Lehmer [4] asked if there exists a non-trivial lower bound to M(f) for f not 
cyclotomic (it is conjectured that this lower bound is 1.17628 ... ). The exact rela- 
tionship between the Weil height and the Mahler measure is as follows [7]. For a? 
a root of the polynomial f(x), then 

h(ai) = i log M(f) 

Given this relation, one can establish an immediate corollary to Theorem 1. Let 
G be the cyclic group of order three, generated by z 1 - 1/z. Let f(x) c 2[x] 
be a polynomial of degree n such that G is a subgroup of its Galois group. Then, 

M(f) > enk 

where k is (0.4218...). One can compare this to the result of Dobrowolski [3], 
later improved by Rausch [6], that for g(x) E 2[x] any non-cyclotomic polynomial 
of degree n, then 

M(g) > I + b 
log n 

for b a small positive constant. 
Let us now return to the generalization of Theorem 1, mentioned earlier in this 

paper. It is certainly possible to extend this result to other subgroups of PGL2 (Q); 
consider the subgroup K defined as 

K I { 0 1] '[1 ]' 1 0 ] - 1 }1 

Then, in a proof similar to the proof of Theorem 1, we can show that hK(x) = 0 

for x [j, [i], or any element in the orbit of [?] under K; and that otherwise 
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hK(x) > 0.732858..., with equality at x a root of the homogeneous polynomial 
x8 + 5x6x2 + 4x14x24 + 5X12X6 + X2, = (x2 + X2)4 + ((X1X2)(XI + X2)(X -X2))2 

An interesting problem would be to specify for which other subgroups G of 
PGL2(Q) one can find a similar statement. 

It would also be interesting to determine if one can find other low values in the 
spectrum of hG for a given group G, along with the exact algebraic numbers which 
achieve those values. For our original group G of order 3, after the first non-zero 
value of 0.4218..., the author conjectures that the next two values in the spectrum 
of hG are 0.43359381... and 0.43798825.... 

I wish to thank Dr. Vaaler for his many helpful comments, and also for suggesting 
the identity in formula (6). 
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