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POINTWISE ERROR ESTIMATES AND ASYMPTOTIC ERROR 
EXPANSION INEQUALITIES FOR THE FINITE ELEMENT 

METHOD ON IRREGULAR GRIDS: 
PART I. GLOBAL ESTIMATES 

ALFRED H. SCHATZ 

ABSTRACT. This part contains new pointwise error estimates for the finite 
element method for second order elliptic boundary value problems on smooth 
bounded domains in RN. In a sense to be discussed below these sharpen known 
quasi-optimal Loo and WI estimates for the error on irregular quasi-uniform 
meshes in that they indicate a more local dependence of the error at a point 
on the derivatives of the solution u. We note that in general the higher order 
finite element spaces exhibit more local behavior than lower order spaces. As 
a consequence of these estimates new types of error expansions will be derived 
which are in the form of inequalities. These expansion inequalities are valid 
for large classes of finite elements defined on irregular grids in RN and have 
applications to superconvergence and extrapolation and a posteriori estimates. 
Part II of this series will contain local estimates applicable to non-smooth 
problems. 

0. INTRODUCTION AND DISCUSSION OF RESULTS 

This is the first of a series of papers whose aim is to derive new pointwise error 
estimates for the finite element method on general quasi-uniform meshes for second 
order elliptic boundary value problems in RN, N > 2. In a sense to be discussed be- 
low, these estimates represent an improvement on the now standard quasi-optimal 
Loo estimates. In order to fix the ideas, here we will deal with global estimates 
for a model Neumann problem with smooth solutions. In succeeding papers, local 
estimates, both interior and up to the boundary, which are applicable to a variety 
of problems with both smooth and nonsmooth solutions will be considered. As 
a consequence of these estimates, some new and useful inequalities will be given 
which are in the form of error expansions. They are valid for large classes of finite 
elements on general quasi-uniform meshes in RN and have application to super- 
convergence and extrapolation and a posteriori esitmates. Let us begin by giving 
a brief description of some of the main results of this paper. 

Let Q be a bounded domain in RN, N > 2, with smooth boundary &Q. Let 

au 
N 

a/ u u 
(0.1) A(u, v) A-i x)-~ Z :bi (x) -v + c(x)uv)dx 
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be coercive over Wi (Q) and for given f C (W2(Q))' let u C W2(Q) be the solution 
of the Neumann problem with homogeneous boundary data defined by 

(0.2) A(u,v) = (f,v) = jfvdx for all v E W21 (Q) 

It is well known that if f is smooth in Q, then u is also. 
Now consider the approximation of u using the finite element method. Let 

0 < h < 1 be a parameter, r > 2 be an integer and Sr(Q) C W1 (Q) be a family 
of finite element spaces. The precise assumptions on these subspaces are given 
in Section 1 and are satisfied by many types of commonly used finite elements. 
For the purposes of this introduction they may be thought of as any one of a 
variety of spaces of continuous functions, which on each set r of a quasi-uniform 
partition of Q, roughly of size h, contains all polynomials of degree r - 1 and fit 
the boundary exactly. For example r = 2 could correspond to piecewise linear (or 
bilinear, etc.) functions and r = 3 to piecewise quadratic functions, etc. .Thus they 
can approximate functions to order h' in Loo(Q) and order h'-l in Wc (Q). The 
finite element approximation Uh E Srh(Q) is taken to satisfy 

(0.3) A(uh, p) = (f, p) for all p E Shr(Q) 

or 

(0.4) A(u -Uh, p) = 0 for all p E Srh(Q) 

Quasi-optimal Loo estimates on general quasi-uniform meshes for the finite ele- 
ment method were first proved by Natterer [3] and Scott [13] in 1975. These were 
followed by many other studies which refined and extended their results to more 
general situations (see for example [4], [5], [7], [8], [9], [10] and [11] to name a few). 
These estimates take the form 

(0.5) |U - UhhL.(Q) < Ch(ln ) inf lu - Xw1(Q) 

and 

(0.6) ||u UhHlwi (Q) < C inf ||u -Xw1(Q) 

In (0.5) r = 1 if r = 2 and r = 0 if r > 3. The constants C in (0.5) and (0.6) are 
independent of u, Uh and h. 

The results derived in this paper start with a slightly different point of view. 
They are based on the fact that part of all of the present proofs of the global Loo 
estimates have much in common with the proofs of local L2 based error estimates, 
where cut-off functions are replaced by weight functions. The proofs in a sense 
are local in nature. Hence here we shall focus our attention not on the Loo(Q) or 
W1 (Q) norm of the error but rather on the error at an arbitrary but fixed point x 
of Q. 

In order to describe our first results we shall need some notation. For each fixed 
point x E Q, real number s and arbitrary y E RN consider the weight function 

(0.7) ~ ~ ~ ~ X ?xh (Y) = X-v + h) 

Notice that if s > 0 and Ix- = 0(h) then os(y) = 0(1). Furthermore as(y) is a 
decreasing function of Ix - y and os(y) = 0(hs) when Ix- = 0(1). A plot of 
os(y) vs. Ix- y is given in Figure 1. 
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FIGURE 1 

Remark. The denominator in (0.7) can be replaced with the "equivalent" 
(lx - y12 + h2)1/2 without effecting the results to follow. 

For 1 < p < oo and fixed x consider the weighted norms 

(0.8) JIUIjLp(Q),.,, = Jj9X'(Y)UTY) IILP(Q) 

and 

(0.9) |IUIIW1(Q),X,s = JIUIjLp(Q),X,s + jjVUHILP(Q),X,S. 

Notice that if p = oo and s = 0 these weighted norms satisfy, for continuous u, 

(0.10) |u(x)j <? JIUHjL.(Q),X,S < jJUJjL,(Q) 

and at points where Vu(x) is continuous 

(0.11) 1Vu(x)l ? 11UH1Wl (Q),X,s < 11U11W1 (Q). 

Our first result concerns the error of (u - Uh)(x) at an arbitrary but fixed point 
x E Q and is given in Theorem 2.1, which may be roughly stated as follows: Let 
x E Q and 0 < s < r - 2, then 

(0.12) l(U - Uh)(X)l <? IHU - UhhL(Q),X, < Ch(ln h infhXE Sr -xjlw (Q),X,s 

Here s = 1 if s = r -2, s = 0 if 0 < s < r -2 and C is independent of u, Uh and x. 
It is easy to see that (0.12) is sharper than (0.5) when r > 3. In fact choosing 

x E Q to be the point where I(U-Uh)(X)I = IIU-UhIL.(Q) and using the inequality 
(0.11), it follows that (0.12) implies (0.5) when 0 < s < r - 2 but not vice versa. 
The estimate (0.12) gives new information about the behavior of the error at a fixed 
but arbitrary point x E Q. Because of the weighted norms on the right, it indicates 
a more local dependence of the error at x on the solution u in a neighborhood 
of x than is indicated by (0.5). Fiurthermore the larger the r the more local that 
dependence is. 
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Remark. Under some additional assumptions on the subspaces (see the Remark 2.1 
after Theorem 2.2), the term 

h inf IiU - XW(Q),Xl S 
XESh 

may be replaced by 

infh IjU - XIIL(Q),x,,- 
XESh 

Let us briefly discuss the differences in the proofs of (0.5) and (0.12). The 
starting point that can be used for both is the representation 

(0.13) |(U-Uh)(X)l < JA(u-X, gx -9h) I 

where gx may be thought of as a "smoothed" Green's function with singularity at x, 
9 E Srh(Q) is its finite element approximation and X E Srh(Q) is arbitrary. So the 

problem reduces to obtaining estimates for gx -9h. An analogous approach has been 
used previously for obtaining pointwise estimates for finite difference methods and 
was also used by Scott [13] in analyzing the finite element method. The estimate 
(0.5) for the Loo norm follows by taking 

U- UhhL.(Q) < CIUI- X|W.1(Q) SUp llgX - hxllWl(Q) 
xEQ 

and showing that 

(0. 14) supQ ||9 -9h ||w% (Q) ? C h ( ln n!)x 
xEQ 

If one thinks of gx as "almost" being in W1 (Q), then (0.14) is reasonable from 
the point of view of approximation theory, in terms of powers of h. This type of 
estimate is in fact proved in all those papers using this approach. On the other 
hand if one thinks of the Green's function with singularity at x, its "nonsmooth" 
behavior occurs only at x. Away from x it satisfies a homogeneous elliptic equation 
and hence not only is it smooth but its derivatives have very special decay properties 
as a function of inverse powers of the distance to the singularity. Thus we might 
hope that away from x, gx may be approximated to order hr-1 in W%l by using 
the fact that it is in WT and then bound the rth order derivatives in terms of 
inverse powers of the distance to x. This in fact can be done and we shall prove 
the weighted estimate 

(0.15) 11X -Y9h 1 Wj1(Q),X,-s < Ch (ln ) 

where s = 0 for 0 < s <=r - 2, = 1 if s = r - 2 and C is independent of h and x. 
The presence of the weight o--s(y) indicates that the estimate (0.15) is in general 
stronger than (0.14). 

Interior pointwise error estimates for the Green's function for this problem were 
proved in Schatz and Wahlbin [9]. The estimate (0.12) now follows from (0.15) and 
(0.13) which can be estimated by 

(U- Uh)(X)l < Cu - 
XHjW,1(Q),x,sjjgx -9hilWj(Q) x-s 

There is an analogous result for pointwise error estimates for first derivatives 
which is given in Theorem 3.1. This may be roughly stated as follows: Let x C Q 
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and 0 < s < r - 1, then 

1s 
(0.16) |U-thjjlW.1(Q),x,s <_ C ( n h infh IllU- XIw1 (Q),z,,s 

Here s = 0 if 0 < s < r - 1, s = 1 if s = r - 1 and C > 0 is independent of u, Uh, 

h, and x. 
We remark that the proofs of Theorem 2.1 and Theorem 3.1 have much in com- 

mon with the proofs of results given in Schatz and Wahlbin [9] and [10]. 
In view of our previous discussion it is easily seen that (0.16) implies (0.6), for 

0 < s < r - 1 but not vice versa. Hence (0.16) is sharper than (0.6) this time for 
r > 2, and also because the weighted norm on the right indicates a far more local 
dependence of derivatives of the error on u than is indicated by (0.6). 

In this direction one consequence of the weighted estimates (0.12) and (0.16) are 
estimates that we shall call "error expansion inequalities". They show the local 
dependence of the error on u. There are many variations which are easily derived 
from (0.12) and (0.16). Here we shall present a special case of a result given in 
Theorem 3.1. We begin with estimates for (u - Uh)(X). 

Suppose r > 3 and u E W2[-2(Q), then there exists a constant C independent 
of u, Uh, h and x such that 

-(U -Uh)(X) I 

(0.17) < C(ln h) (hr Z IDu(x)l + + h23 Du(x)l 
0c1h =r Ictl=2r-3 

+ h 2r2IUIIW2-2(Q)) 

A corresponding estimate for derivatives is as follows: Suppose r > 2 and u E 

W2,r1(Q), then there exists a constant C independent of u, Uh, h and x such that 

V(U - Uh) (X) I 

(0.18) h C(ln h) (hr S ID'u(x)l + + h23 Du(x)l 
IctI=r IctI=2r-2 

+ h2r-211UIIW2Wr1(Q)). 

We remark that these inequalities may be trivially changed to equalities with the 
constants C replaced by functions g(x, U, Uh, h) > 0, which depend on x, u, Uh, and 
h such that g(x, u, Uh, h) < C independent of x, u, Uh and h. 

Notice that all the terms on the right except the last in (0.17) and (0.18) involve 
derivatives of u at only one point. We would like to emphasize again that these 
expansions are valid at any point of Q and for a large class of finite elements in 
RN N > 2 and for equations of the form (0.1), (0.2). Other expansions will be 
given in forthcoming papers for different problems. With regard to other work, a 
precise asymptotic expansion has been derived in Blum, Lin and Rannacher [1] for 
the special case of Dirichlet's problem in the plane for -\u f in Q, u = 0 on 
&Q. Their expansions are valid at special points x on a "two regular grid" using 
piecewise linear elements. The approach used there is entirely different and seems 
not to easily generalize to more general situations. 
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We end this introduction by mentioning some consequences of the estimates 
(0.17) and (0.18) given in Corollaries 4.1 through 4.3. Very roughly stated, Corol- 
laries 4.1 and 4.2 say respectively that if D'u(x) = 0 for all lal = r, then the rate 
of convergence of (u - Uh) (x) for r > 3 is greater than h' and when r > 2 the rate 
of convergence of V(u - Uh)(X) is greater than h'-l. In Corollary 4.3 we shall give 
a sufficient condition on u such that the error at a point may be bounded above by 
the local interpolation error. In a future publication we shall use local results of this 
type together with some additional ideas to obtain some new superconvergence and 
extrapolation results for the finite element method and investigate some pointwise 
a posteriori error estimators (cf. [14]). 

A brief outline of this paper is as follows: In Section 1 we discuss some prelim- 
inaries. Section 2 contains results on pointwise estimates and Section 3 estimates 
for derivatives. Section 4 contains results on error expansion inequalities. 

1. PRELIMINARIES 

(A) A Neumann problem. Let Q be a bounded domain in RN with smooth 
boundary OQ. For any domain D C Q t > 0 an integer and 1 < p < oo, Wt(D) 

o~~~~~~~~~~~~~~~~~~~~ 
and Wp(D) will denote the usual Sobolev spaces with the usual norms 11 - IlWt(D). 

p~~~~~~~~~~~~~~~~~~ 
For t < 0 and 1 < p < oc, Wt(D) will denote the dual of W-t(D) with the norm 

J uvdx 1 1 
(1. 1) IIUIIWpt(D) = SUP D 

vECCo(Q) IIVIIWq t(D) p q 
vj~O 

Wt(D) will denote the dual of Wqyt(D). 
Consider the Neumann problem with homogeneous boundary conditions 

N N 

(1.2) Lu =-ZE 0 (aij(x)0- )+L bi(x) x + C(x)u = fin Q, 
i,j=1 x=1 

(1.3) 
au 

=0 on OQ, 

where denotes the co-normal derivative on OQ. For simplicity we shall assume 
OnL 

that the coefficients aij, bi and c are in C??(Q). These conditions can be weakened 
(see Remark 1.1). F'urthermore assume that L is uniformly elliptic, i.e., there exists 
an mo > 0 such that 

N N 

(1.4) moE (j' < E aij(x)(ij for all E RN and x E Q. 
i=1 i,j=1 

The weak formulation of (1.2), (1.3) is given in (0.2) where A(.,-) is defined by 
(0.1). Throughout this paper it will be assumed that A(.,-) is coercive on W21 (Q), 
i.e., there exists an m > 0 such that 

(1.5) mIIuI12(Q) < A(u,u) for all u E W21(Q). 

In this case both (0.2) and its adjoint problem 

(1.6) A(v,w) = (f,v) for all v E W2(Q) 
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have unique solutions for each f E W-1(Q). If f E Wp(Q) for t an integer 0 < t < 
r - 2 and 2 < p < oo, then u and w E Wt+r(Q) and 

(1.7) IJUHIWt+2(Q) < Cpllflwpt(Q), 

(1.7) WWPt+2(Q) < CpllfllWPt(Q), 

where C is independent of f, t and p. 
Let us remark that as discussed in Schatz and Wahlbin [10], the dependence of 

(1.7) on p for t = 2 may be found by tracing constants in, for example, the proof 
given in Gilbarg and Trudinger [15]. The estimate for higher derivatives may be 
found by bootstrapping with that case. 

Let GX(y) denote the Green's function for the problem (1.2), (1.3) with singu- 
larity at x. It will be convenient to use the following estimates for Gx (y) which can 
be found in Krasovskii [2]. 

Lemma 1.1. There exists a constant C such that for x, y E Q 

(1.8) lD`D3Gx(y)l < Clx -Y2-N-Ia+,31 for la + 31 > 0. 

Here C depends only on Q, mo, m and various norms of the coefficients. 

Remark 1.1. If r > 2 is an integer, then (1.8) holds for 0 < la + 01 < r if for 
example aij, bi, c E Cr+?1 and Q E cr+3. 

(B) The finite element subspaces. We shall now state our assumptions on 
the finite element spaces used in this paper. They are basically, with some slight 
simplifications, the same as those given in Schatz and Wahlbin [10] and [11]. 

For 0 < h < 1 a parameter and r > 2 an integer, Sh(Q) will denote a family 
of finite dimensional subspaces of W. (Q). If D. C Q then Sh (D) will denote the 
restriction of functions in Sh(Q) to D. In what follows Do cc Di cc D2 will 
denote concentric balls and Di = Di n Q, i = 0, 1, 2. 

Assume that there exist a constant k such that if dist (Do, &D1) > kh and 
dist (Di, ID2) > kh, then the following hold: 

A.1 (Approximation). If t = 0,1, t < ? < r, 1 < p < oo, then for each 
v E Wf(D2) there exists a X E Srh(D2) such that 

(1.9a) ||V- XHWt(D,) < ChtHvHllWPe(D2) 

If N < p < oo 

(1.9b) ||v - 
XW,(D1) 

< ChrlN/PNlVWr(D2). 

Furthermore if v vanishes outside of Do, X vanishes outside of D1. The constant C 
is independent of h, v, X) D1 and D2. 

A.2 (Inverse properties). If X E Srh(Q)) then for t = 0,1 and ? > 0 is an integer 
and 1 < q < p < oo, 

(1.10) IIXIIW0P(D1) < Ch p ] llXllW-'(D2) 

For easy reference we single out the special cases of (1.10) where for ? = 0,1 

(1.H 1) lXlls ietpn < Chd-tlnX ofhex-1an) 

Here C is independent of h, X) D, and D2. 
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A.3 (Superapproximation). Let w E Co (D1), then for each X E S,(D3) there 
exists an r1 C Srh(D3), vanishing outside of D2, such that for some integer -y > 0 

(1.12) IlWx -"7IIW2'(D3) < ChflWflgW (D,)lIXIIW2 (D3). 

Furthermore, if w -1 on Do and D_1 cC Do with dist(D-I, aDo) > k, then r1 = X 
on D_1 and 

(1.13) IIUX - HIIW21(D2) < ChilgIIWHW(D,)IIXIIW21(D2\Do). 

Here C is independent of w, X, 71, h, Do, D1 and D2- 

A.4 (Scaling). Let xo E Q and d > kh. The linear transformation y = (x - xo)/d 
takes Bd(Xo) = {X: Ix - xo < d} n Q into a new domain Bi(xo) and SP(Bd(XO)) 

into a new function space Sr/d(Bi(xo)). Then Sr/d(Bl(xo)) satisfies A.1, A.2 and 
A.3 with h replaced by h/d. The constants occurring in A.1, A.2 and A.3 remain 
unchanged, in particular independent of d. 

(C) Some preliminary error estimates. For v C W2 (Q) let vh be either the 
solution of 

(1.14) A(v- Vh, ~) = 0 for all fp E Srh(Q) 

or the solution of the adjoint problem 

(1.15) A(,v-Vh) = 0 for all , E Srh(Q). 

We shall need two well known error estimates, one global and one local, for the 
problems (1.14) and (1.15). First a well-known global estimate. 

Lemma 1.2. Let v and Vh be as above, then 

(1.16) |V|-Vh||L2(Q) + hllv-Vh IW21(Q) < Chllf 1L2(Q). 

We shall state the local results for special subdomains of Q. Without loss of 
generality we may assume throughout this paper that diam(Q) < 1. Let 

dj= 2-j for j=0,1,2,... 

and for fixed x set 

Qj = {y C Q: dj+1 < ly-xl < d3i, 

(1.17) Q' = {y C Q: d?+2 < ly-xl < dj_l}, 
QJ" = {y C Q: d +3 < |Y-xI < dj-2} 

Lemma 1.3. Suppose that A.1-A.4 are satisfied and that V - Vh satisfies either 
(1.14) and (1.15). Suppose that 0 < t < r - 2 is an integer, then if dj > kh 

(1.18) v - Vh I IK72l (Qj) < C(hr-1 dINv2I1w-t + -t vhll l ) 

where C is independent of v, Vh, h and j. 

If Qj is an interior subdomain of Q, then the result can be found in Schatz and 
Wahlbin [11] and for domains abutting the boundary, it can be found in Schatz and 
Wahlbin [10]. They are adaptations of the local result given in Nitsche and Schatz 
[6]. 

We shall now define two functions gX(y) and gx(y). gX(y) may be thought of 
as a smoothed Green's function with singularity at x, and g9(y) E Sh its finite 
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element approximation. We now give some facts that will be needed for the proof 
of pointwise estimates. 

For d > 0 and any fixed x C Q, Bd(x) will denote the intersection of Q with a 
ball of radius d centered at x, i.e., 

(1.19) Bd(x) = {Y C Q: IY-xI < d}. 

Let k be as in A.1-A.4 and u - uh satisfy (1.14). Define 

= f h-'N/2(U - Uh)(Y)/U - UhlIL2(B2kh(X)) for y c B2kh(x), 

0 elsewhere. 

Notice that supp(n) C B2kh(x) and 1I1IIL2(B2kh(X)) - hN/2. For fixed x C Q, gX(y) 

is defined to satisfy 

(1.20) A(v,gx) = (?7,v) for all v c W21Q). 

The finite element approximation gx (y) E Sh (Q) is taken to be the unique solu- 
tion of 

(1.21) A(co,gX -gx) = 0 for all o E Srh(Q). 

The importance of gx and gx is the following: 

Lemma 1.4. Let u-Uh satisfy (1.14) and gX -gx satisfy (1.21), then for any fixed 
x E Q, 0 < s < sO for any fixed so and any X E Sh(Q) 

(1.22) x I-Iuh)(x) ?< C( g -9?Ih 
W1'(Q),x,-8 

+ h) I j-x IWl(Q) ,x,s 

Here C is independent of u, Uh, gx, I9I h, x, s and X. 

Proof. For any V$ E Sh(Q), 0 < s < so, the triangle inequality A.1 and A.2 yield 

(U -Uh)(X)I < (u - q)(x) + Ch /21 - Uh IIL2(B2kh(X)) 

? (u - f)(x) 

+ Ch /2 (II - UIL2(B2kh(X)) + IU -UhI1L2(B2kh(X))) 

< C(k) - 
4|II L.(B2kh(X)) + Ch/ | I I- L2 (B2kh ()) 

< C(k)hIIuIIWl (B3kh(x)) + Ch N/211u - Uh IL2(B2kh(x)) 

? C(k)h||uj|1 W(Q),s,x + ChN/ U h- UhI L2(B2kh(x))- 

In view of (1.20), (1.21) and (0.4) 

h N/211U - UhIlIL2(B2kh(x)) = (U - Uh,r) = A(u - Uh, gx) 

= A(u - Uh, gx-h) = A(u, gx - gx) 

<C||gX -ghgjWl (Q),X-S||uI|w1 (Q),X,S. 

This inequality together with (1.23) yields 

(1.24) u 
I-1Uh)(X) 

? C g -9h 
Wl(Q),x,-8 

+ h) IIu lW 1 (Q),x,s 

The inequality (1.22) now follows by applying (1.24) with (u - X) - (uh- X), for 

any X E Sh(Q), in place of u - Uh, which completes the proof. D 
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In the next section we shall prove the weighted estimate (0.15) for gX - g' using 
the local estimate (1.18) and the global estimate (1.16) as primary tools. Here we 
collect two preliminary estimates. 

Lemma 1.5. Let gX and g9 be defined as above, then 
i) For any M > 0 

(1.25) glgX -gxh Wl(BMh(X)) < CM /h. 
ii) If dj > Mh > 8kh and Qj is defined by (1.17,), then 

( 1. 2) | |g-g 9 | w l(Qj ) < C (j d-_2 + d: 9-h I L1 (QG )) 

where C is independent of gx, gx, x, h and j. 

Proof. To prove (1.25) we use the Cauchy-Schwarz inequality, (1.16) and (1.20) to 
obtain 

IX 
- 9gI Wl(BMh(X)) 

? C(M)h 12gx - ghI W2(BMh(X)) 

< C(M)h N12+1 
171IL2(B2kh(X)) 

< CM 12h. D 

To prove (1.26) we use the Cauchy-Schwarz inequality and (1.18) to obtain 
N/2 

llx W2x A 

(1.27) glg- g9hlwl'(Q) < CdJ 9 - gi W2(Q3) 

< c(df/2hrgx /) + djN 
1 

gX-9hg19 L19(Qj))- 

Since for w E B2kh and y E Qj, Iw - y > 1dj, then in view of (1.8) it follows that 
for any lal < r 

IDy gx(y)l| < 1 7 7(w)l I |DGy (w)) Idw y 
~~~2kh (X) 

ChN/2 11 71IL2(B2kh(x)) < C 

- dN-2+r -dN-2+r 

then 

(1.28) gX9 1 W2-(Qj) < N/2-2+r 
d 

The inequality (1.26) follows from (1.27) and (1.28). 
We shall need one more approximation result. For each A E CO (Qj) with 

(1.29) IIAIIL(Qj) = 1, 

let z be the solution of 

(1.30) A(v, z) = (A, v) for all v E W2( 

Lemma 1.6. There exists a X E Sh(Q) such that 

(1.31) lZ - Xllwl(Q/Q'!) < Chr-ld2 

and 

(1.32) IIZ 
- 

XIIW21(Q!) < Chc/, 

where in (1.31) and (1.32) C is independent of z, A, h and j. 
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Proof. In view of (1.9), there exists a X E S'(Q) satisfying 

liz - XlWl (Q/Q'!) < Chr-1 llzllw, (Q/Q/ ). 

If w Q'. and y E Qj dj < lw-yl. Hence for any lal < r 
i 2~~ 2 

IDfz(y)l < JA(w)j JDyGY(w)jdw < C IA ILoo(Qj)d 2-r < Cd 2-r 
Qj 

where we have used (1.8) and (1.29). Together these last two estimates prove (1.31). 
Using (1.9), (1-7) and (1.29) 

||Z-Xll (Q'!)< ChjjzjOW22(Q) < ChjjA11L2(Qj) < Chdj /2AIL.(Qj) < Chd , 

which proves (1.32). D 

We shall also be interested in pointwise error estimates for (U - Uh). For this 

we shall need analogues of Lemmas 1.4 and 1.5. To begin with, using (1.10) and 
(1.11) and following a similar procedure as in deriving (1.22), we easily arrive at 

a (u- ~~~~a(u- x) 
(1.33) 1l 

U 
-Uh) IL(Bh(X)) 

< CIl axi IIL(BKh(X)) 

a+ - (u-Uh) II W2 1 (BKh (X)) 

Now by duality 

a 
(u - Uh) II W2 1 

(BKh (X)) 

= sup (h-N/2-1 a (U-Uh), ?) 
( 1 . 34) + E C'( BKhW(Z) ) xi 

11GCoW(BKh(X)) &X 

1 Vb 1W1(BKh(x)) (h1 

Now for each such V$ let h - hN/?2-' and let gx be the solution of 

(1.35) A(v,gx) = (v, ,) or all v e 

Furthermore let gh E Sh be its finite element approximation satisfying 

(1.36) A(p,x - hx) = 0 for all p E Seh(Q). 

Using (1.34), (1.35) and (1.36) 

(U -u h-N/2-1 aa) = A(u-uh,x) =A(u-Uh,x -) 

= A(u, g hx- ) =A(u -X, gx_x) 

K 99h 1 Wj1(Q),x-s1U1-XII W1 (Q),X,s. 

Combining this estimate with (1.34) and (1.33) we have proved the following: 
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Lemma 1.7. Let , g and 9h be defined as above, then for any 1 < i < N 

a1 (U -U)L B X) 
(1.37) axi Loo(Bh(XO)) 

< C(1 + SUP I9 - XxlW1 (Q),x,-s) 1U1 XIIW1 (Q),x,S 

We now present the analogue of Lemma 1.5 for the function x -9h 

Lemma 1.8. Let gx and 9h be defined as above, then 
i) For any M > 0 

(1.38) IT - hx11W1(BMh(x)) ? CM / . 

ii) If d3 > Mh > 9Kh and Qj is defined by (1.17,), then 

(1.39) W(Q) < 0 d IIL1(Qj 

where C is independent of gx, 9hx, x, h and j. 

Proof. To prove (1.38), notice that using (1.16) and (1.35) 

119 9hlWl BMhX))< CMN12hN12 Ig _ gx 11 IT -X1W1(BM<hMXh1 9hI W21(BMh (X)) 

< CMN/2hN/2+1 ai7 < CMN/2 
11ax L2 (Q)- 

The proof of (1.39) is similar to the proof of (1.26) 

(1.40) 1j - hxjwi(Qj) < CdN/2 ?r -Y W2(Qj) 

< C(d./ h-1lg wrQ + d-1|| -9hx ILi (Qj)) 

Since for w C B2Kh and y c Qj., Iw-- y> 1dj, then in view of (1.8) it follows that 
for any Ila < r 

(1.41) Da2x(y) D f (w)dw= (D Gy(w))dw, 
B2Kh '2KhTWaw 

ChN/2 || L2(B2Kh(X)) Ch |N|21 | |W21(B2Kh(X)) 

and therefore 

11X 11 W2 (Qj) <dI/ _ 

and (1.39) follows from this and (1.40). O 

2. POINTWISE ESTIMATES FOR (U - Uh)(X) 

(A) Statements of results. This section will be devoted to the derivation of 
pointwise estimates for (u - uh) (x) satisfying 

(2.1) A(u-Uh,) = 0 for all c Srh(Q). 

This will then be generalized to u - uh satisfying 

(2.2) A(u-uh, ) = F(Q) for all p CzSh(Q) 
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where F(p) is a bounded linear functional on W1I (Q). Such equations often arise 
when considering problems leading to perturbations of the bilinear form A (see, for 
example, Nitsche and Schatz [6], Schatz and Wahlbin [10], Schatz, Sloan and Wahl- 
bin [12]). 

The main result of this section is as follows: 

Theorem 2.1. Suppose that A.1-A.4 are satisfied and u C W1 (Q) and Uh E 

S,h(Q) satisfies (2.1). Let x c Q and s satisfy 0 < s < r - 2, r > 2. Then 
there exists a constant C independent of x, u, Uh and h such that 

(2.3) (U - Uh)(X)I < IJU - UhJL,(Q2),,,, < Ch(ln h)inf Il |- Xllwi Q,, 

Here =0 if 0 < s < r-2 and s1 if s = r-2. 

The generalization of Theorem 2.1 is as follows: 

Theorem 2.2. Suppose the conditions of Theorem 2.1 are satisfied except that 
U - Uh satisfies (2.2). Then 

(2.4 - (U-h) (x) l < C (h I n h infh Illu-Xil w (Q),x,, 

+ h(ln I) IIIFJII-1,x,s + (ln I)JLFI 11-2). 

Here s, s and r are as in Theorem 2.1 and C is independent of x, u, Uh, S, h and 
F. Furthermore 

(2.5) IIIFIII|i1,,s = sup F(.p) 
soV/ (R2) 

h011lwJ (Q)'X'-S= 

and 

(2.6) IlIFIll-2 = sup F((p). 

1l oEwl ()= 

Remark. Suppose that in addition to A.1-A.4 the following assumption on the 
subspace holds: 

N(h) 

i U T' 
j=1 

where the are disjoint sets having the property that there exists a constant C 
such that for any f c WI'(<4), 0 < h < 1, j = 1, ... , N(h), 

j If fds < 
C{h-liflIL,(jh 

+ lIf IWV(r})} 

Then using the technique introduced in [11] one can replace the term 

h ien5f 11- XI11W~(Q),x,s 

in (2.3) and (2.4) with 

inf IU - XIILoo(Q),x,s 
xE Sh 
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(B) Proof of Theorem 2.1. As remarked in the introduction the proof of (2.3) 
has much in common with previous proofs of L,, estimates. With some essential 
modifications, the proof given here will follow in outline that given in Schatz and 
Wahlbin [9], [10]. 

In view of Lemma 1.4, we have for any X E Srh(Q) 

(2.7) (u - Uh) (X) ? - + h) C| UX W1 (Q),x,s 

where gx(y) satisfies (1.20) and gx(y) satisfies (1.21). The main step in the proof 
of (2.3) is the following: 

Lemma 2.1. Under the conditions of Theorem 2.1 

(2.8) - h II Wj (Q) x -s < Ch (ln h ) 

Assuming (2.8) for the moment, let us complete the proof of Theorem 2.1. In 
fact combining (2.8) with (2.7) it follows that for any x E Q and X E Srh(Q) 

(2.9) (u - u)(x)j < Ch(ln ) I|U - XIIWH1(Q),X,s 

where C is as in Theorem 2.1. The inequality (2.3) follows from (2.9) and a simple 
inequality. To see this first notice that for any x, y and w E IRN 

ly I-xl + h ly - IYwl + h) 

h h2 - O l-yl+h)+(Iy-wl+h) 
(2.10) 

<?Ix-wl+h (lx-Y| +h)(ly-wl +h) 
2h 

- Ix-wl +h- 

Applying (2.9) with x replaced by y, then multiplying both sides by ( ( +h) 

and using (2.10) 

(x -( h )(u - uh) (y) 

< Ch(ln -) | l |+h l+h (u -X) (w)| Mn k x-yI + hJ -Y- w +hJ ( X)( L(Q) 
+ (x h+ h y( V +hu ) v(UQ () x)(w ) 

+ (X h) u-xw L h 

Taking the supremum over y E Q 

||U - UhIL,(,-(Q),x,S < Ch( ln h ) - (Q) X S 

which completes the proof of (2.3) provided (2.8) holds. 
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We now turn to the proof of (2.8). Let M > 8k > 8 (k defined in Section 1) be 
a constant which will be chosen later on to be sufficiently large. For convenience 
we shall choose M to begin with so that for some integer J 

(2.11) Mh = 2-J. 

Notice that since M > 1 

(2.12) J = 1n2 - + 1n2 - < 1n2 - 
M h h' 

Set E- gX - g, then 

(2.13) HJEHIw,1(Q),X,-S < CMsIlElEwl (BMh (X)) + 2s hj IEH W,1(Qj), 
j=0 

where we have assumed without loss of generality that diam(Q) < 1. Using (1.25), 
(1.26) and the fact that M > 8k > 8 

IJEJIW1 (Q),x,-s 

(2.14) M/ c( h(+) +E d3l? 
i= :1=0 

< C (MN/2+sh + h&(s) + h-1llEIIL1(0)x-s+1 I 

where Ci is independent of h, M, s and x. Here we have used the fact that since 
di = 2-i and J < In h and -y = r-2-s, 

(2.15) ? < 1 (- ) if =0, 
(+7 d i- -(21)- if 0< y K< -2. 

We shall now estimate the last term on the right in (2.14). 

J d-l+s 
(2.16) h-1IEIILj(Q),x,-s+l < CMsh- 'IE ILl(BMh(X)) +2 E hs IEI[L1(-J). 

j=0 

Using (1.16) and (1.20) 

CMsh 1||E ILl(BMh(X)) K CMN/2+shN/ EIIL2(BMh(X)) 

(2.17) < CMN/2+shN/2+1 711 L2(Bkh(X)) 

< CMN/2+sh. 

Furthermore for each 0 < j < J, it follows that 

(2.18) IIE L1(Qj) = sup (E, A). 

II\ECL(Qj)= 

For each A, let z be the solution of 

(2.19) A (z, v) = (A, v) for all v Cz W21 (Q). 

Then for any X E Srh(Q) it follows that 

(El A) = A(z, E) = A(z -, E). 
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Hence 

l(El A)1 < CIE|W (Q/Q! |Z x lW"" (Q/Q,!) 

(2.20) + C?0Efw- (Q/!) Z-XW2i (Qu!) 

=1 +12- 

In view of (1.31) 

11? < E~w 
j1<Cr_2 ||E||W1(0),x,-s 

and from (1.26) and (1.32) 

12 ?< C hr 
+ C h 

11E11L (Q"')- 

Collecting these estimates into (2.18) we obtain 

hr(di +h___ h8+1 
IE [Ll(Qj_) 

< C 
W_+ 

IE 
W1(Q),x,-s + ds h- E L (Q),x,S+1 I) 

where C is independent of x, h, M and j. 
Multiplying both sides by dj'-l/hs, summing for 0 < j < J and then using the 

result together with (2.17) in (2.16) we obtain 

h1 E L1(Q),x,-s+l < CMN/2+sh + Ch(Z (h )rl-) 

(2.21) +C( Z(+)) r- E 1 - s 
j=o J 

+ C ( -d )h lllEIIL,(Q),x-s+I 

Since r - 1 - s > 1, from (2.15) and (2.16) we obtain 

h-II E L1(Q),x,-s+l < CMN"2+sh + M I I E I I w1 (Q)- 
(2.22)M 

+ C2 h- EIILi(Q)x-s+1, 

where C2 is independent of x, M, s and h. Choosing M sufficiently large so that 
C2 < - we easily find 

M 2~~~~~~~~M12 C 

(2.23) h-1 E ILi(Q),x,-s+1 < 22MN/2sh + M202EJJW1(0),x,- M F 

The inequality (2.8) follows upon substituting (2.23) into (2.14) 

IJE IW1(0),x,-s <CM sh + Ch(ln h) + 2 M 2JEJw,()x -s 

and choosing M sufficiently large so that M,2 < - which completes the proof. 
M -2'1 
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(C) Proof of Theorem 2.2. The proof of (2.4) is almost exactly the same as 
that of (2.3) with one difference. In fact because of (2.2), instead of (2.14) we have 

(2.24) (| (-h)(X) |< C(|g9 - 
g|W1(Q),x_8 

+ h) luHwi (Q),x,s + IuF(gj)l 

Now in view of (2.8) 

IF(g) l < IF(gx-gx) I + IF(gx) I 

(2.25) < [lF j-j,x,sj gX - gxjW,(),x,s + jJFlllF j-2jjgXW2(Q) 

< Ch(ln h) |llFjjj_j,x,s +In -l|lF|lll2, 

where we have used the fact that 

llgXIIW2(Q) < CM 2h N2 dW (BMh(x)) + C 
Z dj g 

2 (Qj) 

j=o 

(2.26) <CMN/2+C Z 1 

j=o 

< CJ < C(ln h 

Together, (2.24) and (2.25) imply (2.4) which completes the proof. 

3. ESTIMATES FOR FIRST DERIVATIVES 

(A) Statement of results. Here we shall be concerned with weighted W1 esti- 

mates for u - Uh. The main result of this section, Theorem 3.1, is the analogue for 

first derivatives of Theorem 2.1. 

Theorem 3.1. Suppose that A.1-A.4 are satisfied and that u C Wj (Q) and Uh C 

S,h(Q) satisfy (2.1). Let x E Q and s satisfy 0 < s < r - 1, where r > 2. Then 
there exists a constant C independent of x, u, Uh and h such that 

(3.1) 

IIU-Uh hW. (Bh(X)) < 2||U-Uh||Wj0(Q),x,s < C(lnh) 1infhI |Xl-lwc (Q),x,S- 

Here s = 0 if 0 < s < r-1 and s = 1 if s = r -1. 

Remark 3.1. Notice that the range of s is greater in Theorem 3.1 than in Theorem 

2.1. Here s may be chosen s > 0 for any r > 2. 

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold where now (2.2) 
is satisfied. Then, 

IIU-Uh||W. (Bh(X)) < 2|U - Uh||Wl(Q),x,s 

(3.2) < C( infh lu - Xllw (Q),x,s + ln (h) FI 1), 

where 

[lF -= sup IF(p)l. 
(E i(Q) 
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Proof of Theorem 3. 1. Let us first remark that the inequality 

(3-3) IIU - UhllWl(Q),x,S < C in IluX-Xlwl (Q),x,S 
XE Sh 

follows, using (2.10), from the inequality 

(3.4) - Uh|W1(B,(x)) < C inf Hu - XIIW (Q),x,S- 
xSh 

Furthermore it follows from Theorem 2.1 that for 0 < s < r - 1 

|U - Uh IIL(Bh(X)) < Cinf u - X IIW (Q),x,S 

Hence Theorem 3.1 will follow once we have proved that for any 1 < i < N 

(3.5) (U -Uh) < C inf Iu-Xll()x, axi L. (Bh(X)) - XESih 

On the other hand, it follows from Lemma 1.7 that 

| (U -Uh )|| 

= C(i + sup HX 1- hxW1(Q),x,-S inf S u-XHw)(Q),x,s 

for all V$ C C0 (Bkh(X)) with LI/H W2I(Bkh(X)) = 1. Here g satisfies (1.35), i.e., 

(3.7) A(v, () for all v i W2(Q) 

and hx satisfies (1.36), i.e., 

(3.8) A(o, gx_g) = 0 for all o E Sh(Q). 

Thus Theorem 3.1 will follow from (3.6) once we have proved the following analogue 

of Lemma 2.1: C 

Lemma 3.1. For any Vb as above, let gx and gh satisfy (3.7) and (3.8). Then for 
0 < s < r-1 

(3-9) x 11 hiW,1(Q),x-s < C(ln h) 

where s = 0 if 0 < s < r-i, s = 1 and C is independent of ?., h and x. 

Proof. The proof of (3.9) follows closely the proof of (2.8), the only difference being 

the use of Lemma 1.8 instead of Lemma 1.5. Hence we shall only indicate the 

differences. We shall start with the case that 0 < s < r -1. 

Set E = _h, then analogous to (2.13) we have for 2-J - Mh 

J dS 

(3.10) IIEi W1(Q),X,-s < CMSIIEIIW(BMh(x)) +2S aj JEW(). 
j=O 

In view of (1.38), (1.39) and (2.15) 

(3.11) E Ilw (Q),x,-s < C (MN/2+s + 8(s) + h1 E Li(Q),x,-s+1) 

where Ci is independent of h, M and x. 

The procedure for estimating h-1 1 EII Li (Q),x,-s+l in this case is the same as that 

used for estimating h- E Li (Q),x,-s+1 in Theorem 2.1, where we now use (1.38) in 
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place of (1.25) and (1.39) in place of (1.26). It is then easy to see that the estimates 
analogous to (2.21) and (2.22) are 

h1 |E|| Li (Q),x,-s+l 

<0CM /+s + 0>1 (h)rs + (Z (kh)rls) W(r)1sh - 

(3.12) i 

+ C d ))hh1 Li(Q),x,-s 
j=o dj 

<O N/2+s? 02 02 < Ncm 2+ 
M-r-s IJEl 1W(Q),x,-s + Mhh I EIIL1(Q),x,-s+1, 

where C2 is independent of x, M and h. Choosing M sufficiently large so that 
2 < - in (3.12) and then combining the resulting inequality with (3.11) we arrive 

at 

E W(Q) ,x, -s ? 0CMN2 + 2021 
IJEJI,1(Q,X,-S< pjr-1-s IJJW,(Q),x-s1 

For r -1-s = > 0 we may further choose M sufficiently large so that M 
2 

2 < 
I 

MI 2' 
which completes the proof for this case. 

We now turn to a proof of (3.9) in the case that s = r - 1. We first note that 
the inequality (1.39) may be replaced by 

(3.13) W(Q) <o(d_ +d>rjE IW2-r(Q,)). 

This is easily obtained by using (1.18) with t r - 2 in (1.40). Using (3.13) in 
(3.10) with s = r - 1 we obtain instead of (3.11) 

(3.14) <E WI(Q),,1-r ? C(MN/2+s + 1n 1 + hl-r lEIW12-) 

Notice that the last norm on the right is not weighted. It will be estimated with a 
duality argument 

(3.15) IIEI W2_(Q) = sup (E)-. 

11011wr-2 =1 

For each Vb, let IQ E Wpr(Q) for 2 < p < oo satisfy 

(3.16) A(IQ, v) = (b, v) for all v E W2 (Q). 

Then for each such Vb and any X E Srh(Q) 

(3.17) (E,~ V) = A(T, E) = A('I - x, E) < CjEjiWj'(Q) 1@ - X IW.(Q) 

Now from the case s = 0 proved above 

(3.18) IlE llW1(Q) < C 

and from (1.9b) and (1.7) and for the choice p = ln h 

I - xw W~(X) ? Ohr /Pl C h IIIWr(Q) < Cphr IN/PV IW,2 

(3.19) 0 riNP<h 1_ 
< r--Nlp r-1 I 
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Using (3.18) and (3.19) in (3.17) and this in turn in (3.15) we obtain 

r 1 (3.20) FjEjjW12r(Q) < Ch In -. 
h' 

The case s = r - 1 now follows by using (3.20) in (3.14). This completes the proof 
of Lemma 3.1. O 

(C) Proof of Theorem 3.2. The proof of (3.2) is almost exactly the same as 
that of (3.1) with one difference. This time instead of (3.6) we have 

a (U - Uh) 
aX2 L. (Bh (X)) 

< C(i + SUp I Y - ghlwl W~(Q),-s) if II?u1 - XllWl (Q),x,s + su1p IF(h)j 

for all ?b E C0 (Bkh(X)), 11'1W(B1h(x)) =1 
Now 

JF(hx) I< FI - l-ljjjh xjW1 (Q) < ||IF| ||-(C?+ 1 IIW,1(Q)). 

F'urthermore using estimates of the type (1.41) 

01xiW1 (Q) < C(ln h) 

And (3.2) easily follows from these estimates and Lemma 3.1. 

4. ERROR EXPANSION INEQUALITIES 

(A) Preliminaries. Here we shall discuss some simple but useful consequences of 
Theorems 2.1 and 3.1. In particular estimates will be derived which for want of 
a better name we shall call "error expansion inequalities". These are bounds for 
the error at a point in terms of a sum of powers of h multiplied by appropriate 
derivatives of u taken at the point or a sufficiently close point. These expansions 
are a consequence of the weighted norm estimates and the fact that there are no 
polution effects in the smooth problems we are considering. In Part II of this 
work we shall show how localized versions of Theorems 2.1 and 3.1 lead to error 
expansion inequalities which may be applied to a variety of problems with both 
smooth and nonsmooth solutions (in which polution effects are present) to derive 
new superconvergence and extrapolation results. 

For simplicity, it will be convenient for us to assume a strengthened form of A.1 
in the case p = oo. 

A.5. Assume that the function X E Srh in A.1 satisfies 

(4.1) |u - XIWl(D1) < Chr r u W1(D2) 

where I |w (D) denotes the semi-norm 

(4.2) ju Wr(D) = E ID ul| L,(D) 

Ial=r 

Consider now the weighted semi-norm 

(4.3) Iu Wr (Q),x,s = E jD I'uIjL.(Q),x,s. 

jal=r 
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Then a simple consequence of the approximation assumption (4.1) is the fact that 
for any real s 

(4-4) IIu -x W1 (Q,x, < Ch r-I|lw (),, 

(B) The main results. Our first expansion inequality is as follows: 

Theorem 4.1. Suppose the conditions of Theorem 2.1 are satisfied and in addition 
A.5 holds. Let u E Wot(Q) where t is an integer r + I < t < 2r-2. Let C > 0 
be a fixed but arbitrary constant. For any x E Q, let x^ E Q be an arbitrary point 
satisfying Ix - xl < Ch, then 

I (u -Uh) (x) <C I n h) (h E IDO'u(x^) I +*- 
(4 5) Ial=r 

+ht-l E jD'u(X) +ht jUIjWjtQ)). 
Ial=t-1 

Here C is independent of u, Uh, h, x and x^. t = 0 if t < 2r-2 andt= 1 if 
t = 2r -2. 

Before proving the error expansion inequality (4.5) let us make a few remarks. 

Remark 4.1. The inequality (4.5) may be trivially converted to an equality of the 
form 

I(U-Uh) (X) = C(X, , h, u, Uh) (ln h (hr E ID'u() I+ 
(4.6) jal=r 

+ ht-1 J Du(x-) I+ htjjIujjwt () 
Ial=t-l 

Here C is a function of x, x, h, u, and Uh but by (4.5) may be bounded by a 
constant which is independent of these quantities. 

Remark 4.2. As discussed in the introduction (4.5) indicates a more local depen- 
dence of error on u than indicated by (0.5). We hope to discuss the implications of 
this with respect to a posteriori estimates in another paper. 

Remark 4.3. Higher order convergence than hr is obtained if appropriate deriva- 
tives of u vanish at some point x^. More precisely we have the following immediate 
consequence of (4.5). 

Corollary 4.1. Suppose that the conditions of Theorem 4.1 are satisfied and in 
addition for some point x^ with Ix - xl < Ch, D'u(x) = 0 for r = lal < t - 1; then 

(4-7) lU (-Uh) (X) I <- In h) ht I u Iwt (Q). 

Notice that under these conditions the maximum rate of convergence possible 
from (4.5) is h2r-2 (in h). 

Remark 4.4. If u belongs to the H6lder space C0+e, where r < i < 2r - 3 is an 
integer and 0 <y < 1, then one can easily derive the expansion inequality 

(U - Uh)(X) | 

<C(ln-) (hr E DOu(-) +.+ he j lDfu(z)l +he+ Ull Ce+-Y(Q) 
Ial=r 1a1=f 
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Here i = 0 if + y< 2r - 2 and i = 1 if + y= 2r - 2. 

Proof of Theorem 4.1. In view of (2.3) and (4.4) we immediately have for the choice 
s=t-r 

(4.8) I(u-WUh)(X) ? Chr(lnh) |UW.(Q),x,t-r- 

Now for any multi-index &' with & a'l = r and any y E Q 

(4.9) ID~au(y) ?a /+3 u(x)jl ly -1X 131 + IIUII W(Q) IY-Xtr). 

0<131< t-r-1 

This follows trivially from Taylor's theorem when Q is convex and in the non- 
convex case by first extending u continuously in Wt to a ball containing Q. Now 
from (4.9) 

Da u(y)I < C jD'u(x) (jy- l + xl - x)Icl-r 
r<Iac<t-1 

+ ,.lt(Q)(ly - XI + IX - Xl)t-1) 
(4.10) 

<C( E ID'u(x) (ly - xl + h)I 
r? lad?t-1 

+ jjUjjWt,(Q)(ly-Xl + h)t). 

Hence 

(ht-r 

( I Y I ) ar-r -)I + htt-r (ly -xl + h)t-r IDuyI?C'jh.~ ~(I+hr IW(Q). 
r?<lad?t-1 

The inequality (4.5) now follows by summing (4.11) over l&'l = r and substituting 
the resulting weighted semi-norm into (4.8). C 

We now state the corresponding result for derivatives. The proof, which follows 
that of Theorem 4.1, will be left to the reader. 

Theorem 4.2. Suppose that the conditions of Theorem 3.1 are satisfied and in 
addition A.5 holds. Let u E W1t+(Q) where t is an integer r < t < 2r - 2. Let 
C > 0 be a fixed but arbitrary constant. For any x E Q let x^ Q be an arbitrary 
point such that Ix - xl <Ch; then 

IIU UhllW (Bh(X)) ?C(lnh) (h 5 D'u(x) +I * 
(4.12) . jal=r 

+ht-1 E IDD'u(X)l +htjjujjWt 
JcaI=t-1 

Here f = 0 if r - < t < 2r -2 and f = l if t = 2r -2. 

Remarks similar to Remarks 4.1, 4.2 and 4.3 hold for the inequality (4.12). The 
analogue of Corollary 4.1 is the following, whose proof will be left to the reader. 



POINTWISE ERROR ESTIMATES 899 

Corollary 4.2. Suppose that the conditions of Theorem 4.2 are satisfied and in 
addition for some point x^ with Ix -xl < Ch, Dau(,x) = 0 for all r < lal < t - 1, 
then 

(4.13) |U - UhIIW. (Bh(X)) < Cht l1HuH|Wt(Q). 

It is important to notice here that since t < 2r - 1, the maximal rate of con- 
vergence that can be obtained from (4.13) is h2r-2 which is roughly comparable to 
(4.7) when t = 2r - 2. 
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