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NONCONFORMING FINITE ELEMENT APPROXIMATION OF 
CRYSTALLINE MICROSTRUCTURE 

BO LI AND MITCHELL LUSKIN 

ABSTRACT. We consider a class of nonconforming finite element approxima- 
tions of a simply laminated microstructure which minimizes the nonconvex 
variational problem for the deformation of martensitic crystals which can un- 
dergo either an orthorhombic to monoclinic (double well) or a cubic to tetrag- 
onal (triple well) transformation. We first establish a series of error bounds 
in terms of elastic energies for the L2 approximation of derivatives of the de- 
formation in the direction tangential to parallel layers of the laminate, for the 
L2 approximation of the deformation, for the weak approximation of the de- 
formation gradient, for the approximation of volume fractions of deformation 
gradients, and for the approximation of nonlinear integrals of the deformation 
gradient. We then use these bounds to give corresponding convergence rates 
for quasi-optimal finite element approximations. 

1. INTRODUCTION 

The nonconvex elastic energy used to model martensitic crystals is generally 
minimized only by a microstructure [3], [4], [9], [19], [23], [26], [31]. A common 
example of such a microstructure is a simple laminate in which the deformation 
gradient oscillates on a fine or infinitesimal scale in parallel layers between two 
stress-free homogeneous states. 

Finite element approximations of energy-minimizing laminates necessarily have a 
finite thickness. Although conforming finite element methods can be proven to give 
convergent approximations to the microstructure [28], [29], [31], [32], they cannot 
generally give a laminate which oscillates on the scale of the mesh size for arbitrarily 
oriented meshes [11], [31]. 

Nonconforming finite element approximations are not required to be globally 
continuous [10], [38], so it is reasonable to think that they would be able to give 
a more accurate approximation to fine-scale microstructure [31]. The class of non- 
conforming finite element methods analyzed in this paper was successfully used 
to compute crystalline microstructure in [25]. These elements were first proposed, 
tested, and analyzed in [39] for the Stokes problem. A short discussion on one of 
these elements in the setting of the mixed finite element method can be found in [2]. 
This class of elements was analyzed for general second-order elliptic problems in 
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[24]. In this paper, we prove the convergence of these nonconforming methods to an 
energy-minimizing microstructure for the nonconvex elastic energies which model 
martensitic crystals which can undergo either an orthorhombic to monoclinic (dou- 
ble well) transformation or a cubic to tetragonal (triple well) transformation. The 
results in this paper also hold for a general rotationally invariant, double well energy 
density. 

In the recently developed geometrically nonlinear theory of martensitic crystals, 
the elastic energy density attains its minimum value (below the transformation 
temperature) on a set 

(1.1) SO(3)U1 U * U SO(3)UN, 

where SO(3) is the group of proper rotations defined by 

SO(3) {Q C 3X3 QT = Q-1 and det Q = 1} 

and where the symmetry-related matrices, U1, *. , UN, for N > 1, represent the 
martensitic variants. The martensitic variants U1, * * , UN are linear transforma- 
tions which transform the lattice of the austenitic phase into the lattice of the 
martensitic phase. In the above, R23X3 is the set of all 3 x 3 real matrices. 

A martensitic crystal which can undergo an orthorhombic to monoclinic trans- 
formation has two symmetry-related martensitic variants, that is, N = 2, and 
hence the elastic energy density has two wells [4], [31]. A more commonly observed 
martensitic transformation is the cubic to tetragonal transformation [3], [4], [31]. 
In this case, there are three associated symmetry-related martensitic variants, so 
N = 3, and the elastic energy density has therefore three wells. 

For certain boundary conditions, the elastic energy of the martensitic crystal 
cannot be minimized by a deformation and can be lowered as much as possible only 
by a sequence of deformations whose gradients oscillate so that the limiting volume 
fraction is nonzero for more than one gradient [4], [31]. Based on the hypothesis 
that the crystal structure is determined by the principle of energy minimization, 
the geometrically nonlinear theory describes the crystalline microstructure as the 
limiting configuration of energy-minimizing sequences of deformations [3], [4], [9], 
[19], [23], [26], [31]. 

Both of our nonconforming finite elements are defined on rectangular paral- 
lelepipeds. The first one has its degrees of freedom given by the values at the 
centers of the faces of the rectangular parallelepipeds. The second one has its 
degrees of freedom given by the averages over the six faces of the rectangular par- 
allelepipeds. To prove the convergence of this class of nonconforming finite element 
methods for the nonconvex energies which model crystalline microstructure, we 
prove some important properties of the nonconforming finite element deformations. 
They include a discrete version of a slight variation of the divergence theorem, a 
Poincare type inequality which is more general- than that in [24], and a discrete 
version of the usual trace theorem in Sobolev spaces [1]. These properties will be 
used as key technical tools in establishing various kinds of error bounds in terms of 
the elastic energy. 

Our analysis utilizes the theory of numerical analysis for the microstructure in 
nonconvex variational problems that was developed in [13], [16], and extended in 
[6], [7], [8], [21], [34]. This theory was also used to analyze the finite element 
approximation of microstructure in micromagnetics [33]. The approximation of 
relaxed variational problems has been analyzed in [5], [20], [35], [36], [37], [40], [41]. 
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A nonconforming finite element approximation for a nonconvex variational problem 
with not only an elastic energy but also a nonphysical penalty term was analyzed 
in [21]. 

An analysis of the finite element approximation for a physical, rotationally invari- 
ant energy was first given in [32] for the orthorhombic to monoclinic transformation. 
This analysis has been extended to the cubic to orthorhombic transformation [29], 
to more general boundary conditions [27], [28], and to the method of reduced inte- 
gration [12]. The estimates in these papers and in this paper show that all of the 
local minima of the energy (restricted to the finite element space) which satisfy a 
quasi-optimality condition give accurate approximations to the energy-minimizing 
microstructure for the deformation, the volume fractions of the deformation gradi- 
ents, and the nonlinear integrals of the deformation gradient. 

In this paper, we further generalize the results in [29], [32] to the approximation 
by the two nonconforming finite elements. Our results show that the approximation 
errors due to the nonconformity of the employed nonconforming finite elements are 
negligible compared with the errors of the approximation of microstructure which 
are already present in the conforming approximation. Therefore, the asymptotic 
rate of convergence that we obtain for the nonconforming methods is equal to the 
rate found for the conforming methods. 

We refer to [31] for an introduction to the modeling and computation of crys- 
talline microstructure and for a more extensive survey of results and references. 

We organize the rest of the paper as follows. In ?2, we describe the underlying 
continuum model for crystals which can undergo either an orthorhombic to mon- 
oclinic or a cubic to tetragonal martensitic transformation. In ?3, we review the 
definition and basic properties of the class of nonconforming finite element spaces 
that we analyze. Further properties of nonconforming finite element deformations 
are given in ?4. These properties are then used to establish a series of error bounds 
in terms of the elastic energy for the nonconforming finite element approximations in 
?5-?7. Finally, in ?8, we first prove the existence of finite element energy minimizers 
and then derive the corresponding error estimates for quasi-optimal nonconforming 
finite element approximations. 

2. MULTI-WELL ENERGY MINIMIZATION PROBLEMS 

We first briefly review some basic definitions and properties of martensitic crys- 
tals which can undergo either an orthorhombic to monoclinic or a cubic to tetragonal 
phase transformation. For more details, we refer to [3], [4], [31]. 

The energy wells for an orthorhombic to monoclinic transformation are deter- 
mined by the martensitic variants 

Ul = (I +re2 & ei)D, U2 (I-re2 0 el)D, 

where I is the identity transformation from iiR3 to R3, q > 0 is a material parameter, 
{ e1, e2, e3} is an orthonormal basis for R3, and D is a diagonal, positive definite, 
linear transformation given by 

D = die ei + d2e2 0 e2 + d3e3 0 e3 

for some d1, d2, d3 > 0. We recall that the tensor a 0 n for a, n E Ri 3 defines the 
linear transformation (a 0X n)v = (n v)a for v E Rit3. 
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The energy wells for a cubic to tetragonal transformation are determined by the 
martensitic variants 

U1 = I? + (q2-Tl)el 0 el, U2 = I? + (i2-i7)e2 0 e2, 

U3 = lI + (2- l)e3 0 e3, 

where m > 0 and q2 > 0 are material parameters such that l # ii2, and {el, e2, e3} 
is again an orthonormal basis for R2. 

For convenience, we define the set of indices K to be K = {1, 2} for the or- 
thorhombic to monoclinic transformation and K = {1, 2, 3} for the cubic to tetrag- 
onal transformation. We also denote 

Ui = SO(3)Uj, i E K, and U = U{Ui: i E K}- 

The following lemma, proved in [3], [4], [31], serves as a key crystallographical basis 
for our analysis. 

Lemma 2.1. (1) For each i E K there is no rank-one connection between Ui and 
itself, that is, there do not exist Fo, F1 E Ui with Fo 7& F1 such that 

F1 - Fo + a ?9 n 

for some a E R3 and n E R3, Inr = 1. 
(2) For any i, j E K, i 7& j, there are exactly two rank-oone connections between 

Ui and Uj, that is, for any Fo E Ui there are exactly two distinct F1 E Ui such that 

F1 -Fo +aOn 

for some a E R and n E R3, In- 1. In this case, we have also for any A c (0,1) 
that 

(1- A)Fo +AF, ?U. 

Moreover, we have for the orthorhombic to monoclinic transformation that 

nrE C{+el, +e2}, 

and for the cubic to tetragonal transformation that 

nE {+ I(ei + ej), iI (ei-ej)} 

We now consider a crystal that can undergo either an orthorhombic to mon- 
oclinic or a cubic to tetragonal transformation. We denote by Q the reference 
configuration of the crystal which is taken to be the homogeneous austenitic phase 
at the transformation temperature. We assume that Q c R1t3 is a bounded domain 
with a Lipschitz continuous boundary. We denote deformations by y: Q -+ Rt3 
and corresponding deformation gradients by Vy: Q j-3 X R . We denote the elastic 
energy density at a fixed temperature below the transformation temperature by the 
continuous function R$ 23x3 X3 -- R. The elastic energy of a deformation y is then 
given by 

(2.1) 6(y) j X b(Vy(x)) dx. 

To model the underlying martensitic transformations, we assume that the energy 
density q is minimized on the energy wells Ui- SO(3)Ui, i E K, so we assume (after 



NONCONFORMING APPROXIMATION OF MICROSTRUCTURE 921 

adding a constant to the energy density) that 

q(F) >, 1VF E R 3x3 

0(F) = 0 if and only if F E U = U{Ui: i E K}. 

We shall also assume that the energy density 0 grows quadratically away from the 
energy wells, that is, 

(2.2) 0(F) > IlF-7r(F)12 VF CEz R3X3 

where i' > 0 is a constant and ir: R3X3 --> U is a Borel measurable projection 
defined by 

fIF - 7r(F)II = min fIF - Gl, VF C R3X3. 
GEb( 

In the above and in the following we use the matrix norm defined by 
3 

flFf12 = trace (FTF)= E P., VF = (Fij) E jR3x3. 

i,j=l 

The projection ir(F) exists for any F E R13x3 since U is compact, although the 
projection may not be unique. It is unique, however, if fIF -7r (F) II is small enough 
[311. 

Let F0, F1 E U be rank-one connected so as to satisfy 

(2.3) Fi = Fo + a X n 

for some a, n c IR3, Inr = 1. By Lemma 2.1; we may assume without loss of 
generality that Fo E U1 and F1 E U2 and also that 

n=- el 

for the orthorhombic to monoclinic transformation and 
1 

(2.4) n = -(el + e2) 

for the cubic to tetragonal transformation. Let A be a constant such that 0 < A < 1 
and let 

FA = (1 -A)Fo + AF1. 

We define the set of admissible deformations which are compatible with the simple 
laminate to be 

Wl' (2;W) {y E Wl,'((Q;IR3) y(x) = FAx,Vx Ez aQ}- 

Our multi-well energy minimization problem is to minimize the elastic energy 
(2.1) among all deformations y E W'(Q;2R 3). Ball and James have shown that 
there exist no energy minimizers for this minimization problem and that any energy 
minimizing sequence will converge to a unique microstructure which is composed 
of the gradient Fo with volume fraction 1 - A and the gradient F1 with volume 
fraction A [4]. 

We note that the proofs given in this paper for the orthorhombic to monoclinic 
transformation hold without modification for the more general problem with a 
rotationally invariant, double well energy (that is, N = 2, in (1.1)) if there exists a 
rotation Q E SO(3) and vectors a, n E IR, Inr = 1, such that 

QU2 = U1 +a0n. 



922 BO LI AND MITCHELL LUSKIN 

3. NONCONFORMING FINITE ELEMENTS 

We will denote a generic point in JR3 by (xl, x2, x3). Our first finite element is 
defined by the triple (Q, PQ, E'); where Q-[a-li, iCl +111 x [a2 -12,0a2+12] X 
[a3 - 13, a3 + 13] is a rectangular parallelepiped with its center at (al, oa2, (a3) and 
the lengths of its edges are 211, 212, and 213, where 1l, 12,13 > 0; 

(3.1) PQ=sPan{1,Xl,X2,X3, ( _ ( ( (32 

and the set of degrees of freedom EQ (the superscript p denotes point) are given by 

EQ={ q(C'-Fj: i= I--161} 

where c,i 1, ,6, are the centers of the faces .Fi,i = 1,- ,6, of the rectan- 
gular parallelepiped Q. Our second element is defined to be the triple (Q, PQ, E'). 
The polynomial space PQ is the same as defined in (3.1) and the set of degrees of 
freedom E' (the superscript a denotes average) is defined by 

Q {jI J q dS:: i = ,6} 

where 1j, = 1, ,6, are the faces of Q, and fil is the area of the face 1j for 
i 1,= ,6. 

In the sequel, we will restrict ourselves to considering rectangular domains with 
faces parallel to coordinate planes. The results presented in this paper can be im- 
mediately extended to domains which are the union of rectangular parallelepipeds. 
However, we will assume for simplicity of exposition that Q = (0, Li) x (0, L2) x 
(0, L3) for some Lk > 0, k = 1, 2, 3. To construct a rectangular partition Th of Q, 
we define the one-dimensional partitions of [0, Lk], for k = 1, 2, 3, by 

? = X?k < Xk1 < *-.* < XM k = Lk, 

where the mk are positive integers. We then define the rectangular parallelepipeds 

ili2i -[X x?"j] X [X?,2-1, i22] X [Xi3-1 xi3] 

for 1 < il < ml, 1 < i2 < m2, 1 i3 < M3, and the rectangular partition 

Th ={'Ri,i2,i3 :1 < il < ml, 1 < i2 ?< M2, 1 < i3 < m3}. 

The mesh size parameter h is defined by h = max{hk 1 < k < 3}, where hk 
max{xi- Xi-: 1 < i < mk} is the maximal discretization size in the kth coordinate 
direction for k = 1, 2, 3. We will always assume that the rectangular partitions Th 

are quasi-uniform, that is, there exists a constant a > 0, independent of h, such 
that 

(3.2) mnin{4 x - :x i = 1, ... , Tnk, k = 1, 2,3} > uh. 

For the first finite element, we define the set of nodal points Nh to be the set 
of all centers c F of faces f of elements in 'rh. The finite element spaces over the 
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partition Th are then defined respectively to be 

Vh = {Vh E L2(Q): Vhl7Z E P-, ViZ E Th; adjoining Vh have the same 

values at shared nodal points, that is, vh is continuous on Nh}, 

Vh - {Vh E L2 (Q): VhIR Ez PR, VIZ EC Th; 

JVhI Rf dS = JVhIzR, dS, V faces F = &R! n aZ X 0, z', Jz" m}h 

We denote by Ah the set of admissible finite element deformations Yh Q R 3 
such that each component of Yh belongs to Vhp and such that Yh(cyr) = F\cy if c1- 
is the center of an element face .F lying in &Q. Similarly, we denote A' to be the set 
of admissible finite element deformations Yh: Q -) R 3 such that each component 
of Yh belongs to Vh' and such that 

Yh(x)dS FJ xdS 

for any element face f c &Q. Note that the deformation yh(x) = FAx, x c Q, 
belongs to both AP and A'. We denote for convenience Vh = Vhp U Vh' and Ah 

XAPh UXAh. 
h 

It is obvious that both of the spaces Vhp and Va are finite-dimensional affine 
subspaces of L2 (Q). They are also affine finite element spaces [10]. For vh E Vhp 
or Vh E Vh a we have in general that vh , C(Q) since vh is continuous only at 
some points of the faces of adjacent elements. Thus, V a, V 4 g C(Q), and hence, 
neither AP nor Ah is contained in WX ?(Q; R3) which is a subset of C(Q; R3) by 
the embedding theorem [1]. Therefore, in viewv of minimizing the elastic energy 
over W\' (Q; R3) c W1 '(Q; 1R3), the above finite elements are nonconforming. 

We now denote the Lagrange interpolation operator Ih: C(Q) -+ Vh to be either 
'hp:C(Q) - Vhp or Iha: C(Q) -+ Vha, which are defined respectively by Ihpv E Vhp 
and Ihav E Vha, and 

Ih v(CFF) = V(Cj), VCF E Nh, 

JIhav dS J v dS, V faces.F c 7R, VR E Th, 

for any v E C(Q). We will also use the same notation IIl, Ihp and Iha to denote the 
restrictions of these operators to an element of the partition 'rh. 

For any element 7Z E h and a face .F c 0R, we define the functional TJ 
C(.F) - ER by T (w) = w(c.) for w C 0(.F), where c.F is the center of the face .F, 
when considering the Vhp-approximation, and the functional T: L2(.F) - R by 
Ta(w) = (/LF) w dS for w E L2(.F), when considering the Vh-approximation. 
Similar functionals of suitable deformations can be defined component-wise. With- 
out confusion, the same notation TJ or Ta will be used for functionals defined on 
both scalar functions and vectorial deformations. 

We will use the letter C to denote a generic positive constant which is indepen- 
dent of the mesh size h. For convenience, we also define for any integer k > 0 and 
p E [1, oc] the space 

Wk (Q) -p{v C LP(Q): v WkP(7Z) VZ Th} 
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and we equip Wjk'P(Q) with the following semi-norm and norm: 

] Ik h- { (E [kp,. if I < p < oo, 

maxE-Th I |k,oo,R if p =o; 

H fl,p,h- t (ZH 1 ,p, , if 1 < p < 00, 

maxRE Th 11 * ||k,oo,R if p - oo; 

where, for 7Z Th, I k,p,-R and 11 - Ilk,p,R are the usual semi-norm and norm on the 
Sobolev space WkP(7Z) [1]. If p = 2 we write Hhk(Q) for Wh'kp(Q) and omit p in all 
of the above semi-norm and norm expressions. We define the spaces Wjk,p(Q;- R3) 
and Hhk(Q;]R3) in a similar way and use the same notation I - |k,p,hi 11 - |k,p,hi I , k,h 

and 11 Ilk,h for the associated semi-norms and norms. 
We now collect some useful properties of the finite element spaces VP and Vh' in 

the following lemmas. 

Lemma 3.1. For any Vh E Vh = Vhp U Vha restricted to any 7Z E Th, we have 

(3.3) Xk E span{ ,xk}, k = 1,2,3. 

It follows that 

(3.4) Vh(X1,X2,X3) - Vh(X1,X2 X3) = Vh(Xl,X2,X3) - Vh(Xl,X2,X3), 

(3.5) Vh(X1,X2,X3) - Vh(Xl,X2,X3) = Vh(X1,X2,X3) - Vh(Xl,X2,X3), 

(3.6) Vh(X1,X2,X3) - Vh(Xl,X2,X3) = Vh(X1,X2,X3) - Vh(Xl,X2,X3). 

for any (X1,x2,X3) E 7Z and (X1,X2,X3) E 1Z. 

Proof. The equation (3.3) follows directly from the definition of the finite element 
polynomial space PQ (3.1). The result (3.4) follows from (3.3) since aVh/aXl is 
independent of X2 and X3, SO 

x 
Ia0Vh 

Vh(Xl,X2,X3) - Vh(Xl1,X2iX3) =2 O a3) x 

xi 01 Vh 
= X a h(I X2 i X3) d< 

= Vh(X1,X2,X3) 
- 

Vh(Xl,X2,X3)- 

The results (3.5) and (3.6) follow similarly. 

Lemma 3.2. Let k and 1 be two integers such that 0 < k < 1 < 2. We have the 
following inverse inequalities for any ]Z c Th and any Vh E Vh = Vhp U Vha: 

(3.7) |Vh|l,R < Ch k 
[Vhlk,Re, 

(3.8) lVhll,h < Ch klvh|k,h, 

(3.9) IVhll,oo,R < Ch1 2AVh|k,R, 

(3.10) lVhj1,oo,h < Ch 2 |Vh|k,h. 

Proof. Since both VhP and Vha are affine finite element spaces, the results of this 
lemma can be proven by a standard argument via affine mappings [10]. D 



NONCONFORMING APPROXIMATION OF MICROSTRUCTURE 925 

Lemma 3.3. We have for any R E Th and any face F C 0Th that 

(3.11) J iv - T.(v)12 dS < Chlv12 Vv E H'(1Z). 

We also have that 

(3.12) J Vh - T-(Vh) dS < Ch|Vh VVh E Vh. 

Proof. We will prove (3.11) and (3.12) on the reference domain 7Z (0,1) x (0,1) x 
(0,1) with face F = {O} x (0,1) x (0,1). We can then obtain the results (3.11) and 
(3.12) on the element 7Z E h and the face CF c &1Z by an affine scaling. 

For v E C'(7Z) we have that 

r1 r1 

v(0, x2,x3) - j v(O 2 3, x3) U2 dc3 

V(X1i,X2,X3) - i;i; v(i, &2, X3) dd&2 dU3 

(3.13) 
- 

&V (lX2 iX3) d&i 
?iiiii 

&j &2d 
oNw 

1~~~r 1 

vU(xi,x2,x3) - (lxv3d2x 

(3.14) [v<gx(xi,x2,x3)dx - v(i 1;x) +; v(i, a,x) - d ^d 

v=O,)V- j j v(X, X2, X3) - V(X1, X2, x3)] d&2d&3 

(3.15) + ~~~~lf J iX3 &v3 & & 2 3 & & & 
_J j V (xv2x)x+ V(l,x2,x3ddx+fJlfx . 

Now, 

V(Xl, X2, x3) )-V(X1,i X2, i3) 

(3.14) =[V (X1, X2, x3) - V(X1, XJ2, XA) + [V (X 1 X'2, X3) - V(X 1 X2, &A 

=~ ~~~X I a ( 2, X3) d-t2 + (X 1 &z 2 -t3) d-t3 

We obtain from substituting (3s14) into (3.13) that 

r1 t1 

v(o~ ~ ~ ~~~~X xI x32, X3 d-t d&2 d2&3)x2 

o o 3 

(3.15) + (X 1 &2 
iX (X,X 3) dt3 d,_2 

& 

(& 
iV (,X2 iX3) dj +A 

(& 
J 

&2 
( 

i 
x&3)d&j d&2 d&3 

We can then obtain by squaring both sides of (3.15), integrating with respect to 
(Xl iX2 iX3) over the domain (O, 1) x (O, 1) x (O, 1), and using the Cauchy-Schwarz 
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inequality that 

j j V(0, X2, X3) -( 2 i3) &6 &6 dX2dX3 

(3.16) Vj j v(0, x2,x33) jj (0,J24 x3)d &2cU3 dxldx2dx3 

<8 _V 2 Ov 2 Ov 2 

- Ox1 0A+ OX2 0,, +4 X3 o,i 

The inequality (3.11) for 7Z and .F now follows from the density of C? (R) in H1 (R) 
and the continuous embedding H1 (7Z) > L2(F) [1]. 

We note that we cannot prove the inequality (3.12) for all v c H1(R) because 
Tp (v) = v(c1) is not a well-defined operator on H1(7R) since H1(R7) is not continu- 
ously embedded in 0(k) [1]. To prove the inequality (3.12) with 7Z and .F replaced 
by 7Z and .F, respectively, for vh E PF, the finite element polynomial space (3.1), 
we derive as above the identity 

Vh(0, X2, x3) - Vh(0, 1/2, 1/2) 

(3.17) f (x 2 X3) dV2 + f O (xj, 1/2) ,3) dxt3 
J/2 O9X2 J/2 O9X3 

x'Vh 
xi 

01 
OV/ Jill 

U(1X2iX3)dJ +2 (11/1/2)c1 
O9Xi )d~ Jo O9x1 .~II 

Since by Lemma 3.1, OVh/OXk E span {1,Xk}, for k = 1, 2, 3, we have from (3.17) 
that 

Vh(0, x2, x3) - Vh(0, 1/2, 1/2) 

x2OVh fX3O0vh 
(3.18) = (Xj, Xt2, i3) dt2 + X 1 (1, X2, i3) dxt3 (3.18) 

O~~/ 0X2 J/2aOX3\x~2X) 

j OVh (xIxx)d +j Vh(lx2x3)dxh 

We can then obtain by squaring both sides of (3.18), integrating with respect to 
(Xl, X2, X3) over the domain (0, 1) x (0, 1) x (0, 1), and using the Cauchy-Schwarz 
inequality that 

vh (0, X2, x3) -Vh(0, 1/2, 1/2)|2 dx2 dx3 

09h2 09 2 09h2 
(3.19) < 8 OVh +4 OVh +4 

0Vh Ox1 o, Ox2 ov Ox3 ov 

Lemma 3.4. We have 

(3.20) jjVIhVHlo,oo,h < CIIVvIIO,OO,Q, Vv C W (Q). 

Proof. The proof easily follows from the quasi-uniformity of the partition Trh 

[10]. R 
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4. PROPERTIES OF NONCONFORMING FINITE ELEMENT DEFORMATIONS 

In this section, we will give some further properties of the considered noncon- 
forming finite element deformations. We first prove a discrete version of a slight 
variation of the divergence theorem. 

Theorem 4.1. We have for any Yh E Ah A'h U Ah that 

(4.1) E J Vyh(x)dx= E JFldx. 
RE Th RE Th 

Proof. Applying the divergence theorem to each integral on 7Z C Th in the summa- 
tion and noticing the cancellation of contributions from adjacent elements to their 
common faces, we see by the definition of Ah that (4. 1) holds if Yh E A a 

For Yh E A4, we set Zh(X) = Yh(X) - Fx, x E Q. We also denote by c.F the 
center of a face F of an element in Th. Thus, by the definition of APh, we have 
Zh(CF) = 0 if ,F c &Q. Moreover, we have 

S VZh(x) dx = 
ZjZh (X)?l9 dS 

RE-rh Jr Erh a 
(4.2) - S S J[Zh(X) Zhx(C)]? (8 v| dS, 

kETh JC&1 F 

where v is the unit exterior normal to the underlying boundary. 
Fix R= [a, - I1, a, + 11] x [a2 - 12, 2 + 12] X [a3 - 13, 3 + 13] Ci Th- Set 

.F? = [al - 1l, ai + 1l] X [a2 - 12, a2 + 12] X {a3 ? 13}. It follows from (3.6) that 

Zh(X1, X2, a3 + 13) -Zh(al, a2, a3 + 13) = Zh(Xl, X2, 3 - 13) - Zh(al, a2, a3 -13)- 

Noting that vl+ =-v = = e3, we then have 

A [Zh(X)- Zh(CfF+)] 0 v?F+ dS + J [Zh(X) -zh(c_)] ?h C|T_ dS 

[ fc1+li f 2+12 

{[Zh(Xl, X2, a3 +13) -Zh(a1, 02, a3 +13)] 
L -11 2 -12 

(4-3) -[Zh(X1,X2,a3 -13)-Zh(Cal,Cf2,C 3-13)]} dxdX2] 0e3 

-0. 

The same argument applies to any other pair of faces .F? c &T. Therefore, 

(4.4) J [Zh (X) - Zh (CF)] 0 V v 1x dS = 0. 

The arbitrariness of Ri E -rh then implies that the sum in (4.2) is zero. This proves 
(4.1) for Yh E Aph as well. F 

We now prove a Poincare type inequality for all of the finite element deformations 
in Ah. This result is more general than that proven in [24]. 
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Theorem 4.2. There exists a constant C > 0 such that for all w E R1 with lw I I 
and all Yh E Ah, 

L Yh(X) - Fxx12 dx 

(4.5) < C f {[VYh(X)-FA] W12 + h IIVYh(x)FA } dx. 

Proof. Fix an arbitrary w E ]R3 with IwI.= 1. For Yh E Ah, set again Zh(X) 

Yh(X) - FAx, x E Q. By integration by parts we obtain [44] 

j Zh(X) 
1 

dx = E I Zh(X) (W . x)(w v) dS 

(4.6) - E J (vzh(x)2 w) (W. x) dx 

1zETh 

-11+12. 

We estimate the second term 12 by the Cauchy-Schwarz inequality to get 

1121 Zh J (V^zi(x)| w) (w . x) dx 
lRETh 

/ a~~~~~~~~~~2\ 
(4.7) < 2max 1w* XI (Z j VZh(X)W12 dx (J Zh (X) dx) 

if2 <2 I |Z/(CV)l dx + C |V (xw d. 

To estimate h1, we first consider the Aa-approximation. So, we fix Yh E Aa. 
Observing that Ta(zh) = 0 for any element face F C &Q, we obtain by the definition 

of Aa that 

'1 5 j [Zh(x)I (W x)(wX v) dS 

lRETh JC&1 

- Z Z J Zh(X) -T(Zh) I(W x)(W.X) vddS 
RETh XCaR 

(4.8) + Z Z JZ T(Zh)2 (W. X)(W. vL,) dS 
RETh FCaR 

+ E E J 2Ts((Zh) [zh(x) W.TX(zh)] (w x)(w ) dS 
RETh FC&1R 

+ S E S JZh(X>T(Zh) Z(W.X)-(W .Z ) dS 
lRETh FCW9R 

+ Z S hX J Ts(Zh) 
1 

[zh(x) T(zh)] (w v 1x)(dS) dS 

lRETh FC&1R 

J1a + 2J, 
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where we combined adjacent elements and canceled their contributions to the com- 
mon face to obtain that one summed term is equal to zero. It follows directly from 
(3.11) that 

I 1 - E Z / lZh(X) -Tj(Zh) (W * x)(w wlj) dS 

(4.9) < Chi|VZh|| h. 

Setting gv(x) = (w . x)(w * v), we have 

J2 - S S JT.(Zh)* [Zh(X) -T(Zh)]g 9(x) dS 

ErETh JCW9 

(4.10) = 5 5 JTXF(Zh) [Zh(X) -T5 (zh)] [gv(x) -TF(g9v)] dS. 
RETh JCaR 

For a fixed face .F c &T of some element R E mrh, we have by the inverse estimate 
(3.9) that 

IT.(Zh)l <? iZhl0,oo,( < ChA2 IIZhfl0,R- 

We also have by (3.11) that 

J Zh(X) - T.(Zh)12 dS < ChH|VzhH R 

and 

J jgv (X) - T (gLv)12 dS < ChJJ'VgvL,2R < Ch4. ,~~~~~~~~~~~~ 

Consequently, 

IJ2ai ?Z T. .(zh)I (J X zh)-T(Zh)i dS) 
lzETh JCWR 

(Ig gv(x) - T (gv) 12 dS) 

(4.11) < Ch E tiZhtioR11VZhiioR 
lZE'rh 

< Ch |Zho H1VZh IO1,h 

< 8 |IZhHIO,Q + Ch 11VZh l,h. 

Now we consider the Aph-approximation. Fix Yh E Ap. We have as above that 
T(zh) = 0 for any element face .F C &Q, so (cf. (4.8)) 

j: Zh(X) - T,(zh)12(w * x)(w v) dS 

(4.12) + 2 j f T(z x* [Zh(X)w- Tv(zh)] (W *)(w .vF.) dS 

REThJrh XC09 

J + 2J4. 
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It similarly follows from (3.12) that 

iip 1 Zh (X)- T-(Zh)| (W x) (w v 1-x) dS| 
R ETh 'XC al 

(4.13) < Ch||Vzh o,h. 

Let us fix again R = [ai -11, aei + 11] x [a2 -12, C2 + 12] X [a3 - 13, a3 + 13] E Th 

and a pair of its faces T? = [al - 11, ail + 11] x [a2 - 12, a2 + 12] X {a3 + 13}. We 

have that gv(x) = +g(x) on J?, where g(x) = (w * e3) (w x). We also have by (3.6) 
that 

Zh(Xl,X2, Cf3 + 13) -Zh(Cl, C2, Cf3 + 13) = Zh(Xl, X2,i3 - 13)- Zh(al, a2, a3 -13)- 

It then follows from the above identity, the inverse inequality (3.9), and (3.12) that 

Zh (C:F+ [Zh (X) -Zh (C+ )]g(x) dS 

J Zh (C:F_ [Zh (X)-Zh (CJI- g (x) dS 

c cI +11 f +12 

[Zh (x 1, X2, Ca3 + 13) -Zh (Cg1, C2, C3 + 13)] 
?1 -11 ?2 -12 

[9g(X 1, X2, Ca3 + 13)Zh(1, i2, 3 + 13) 

-9(X1, X2, oa3-13)Zh(Cl, C2, Ce3-13)] dxl dX2 

ce I+11 02 +12 

(4.14) /Zh (Xi, X x2, a3 + 13) - Zh(a1,a2,a3 + 13)] 
I 1-11 ?2 -12 

CeI c3?13 ad3 
*J a (9(X)Zh(a1,a2, x3)) dX3 dxl dX2 

c3 13 a9X3 d1 

< Ch|IZh111,oo,RzJ Zh(X) - Zh(C+Z)I dS 

< Ch 2 Zh 1,oo,R Zh() - Zh(C?+)1 dS) 

< Ch (||Zh ,o, VilvzhHjo,R + 11Vzhhi, ) 

This argument also applies to other pairs of faces of R E mh. Hence, we can also 
conclude in this case that 

IJ211 < ChHZhfljo,QtVZh t0,h + ChtVZhhlo,h 

(4.15) < j zh (X)|2 dx + Ch|HVZh O,h. 

The assertion of the theorem now follows from (4.6)-(4.15). CH 

A local trace inequality was used in [21] to derive estimates for a nonconform- 
ing finite element approximation of a variational problem. But even an improved 
version of such a local result (cf. Lemma 3.4 in [24]) cannot be applied here to our 
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situation. We thus give a global version of a discrete trace theorem for our finite 
element deformations. 

Theorem 4.3. There exists a constant C > 0 such that for any rectangular paral- 
lelepiped w c Q which is a union of elements 7Z of a rectangular mesh Th, 

Z Z? h IYh(C.F) FAC_1 < h Yh(X) -FAx 2dx 
czw,aRnaw#o0 FcqRnX&w 

(4.16) + C ( Yh(X) -FAx| dx) ( J vYhx) 2FAI dx) 

for all Yh E A', and 

Z Z J IYh(X) - FAX2 dS 
czw,aRnaw#o0 --caRnaw 

Cf 12 2F (4.17) < I( ) Yh(X) - FAX| dx + Ch J VYh(X) 2 dx 
A(w) JR1cw 

+0 (C lYh() -FAxI dx) ( i JVYh(X) -FAI2 dx 

for all Yh E Ah, where A(w) is the length of the shortest edge of w. 

Proof. Assume that w [= w,W+] x [w-,wC+] x_[w-,w+]. 
Fix Yh E Ah and set 

Zh(X) = yh(x) - Fx, x E Q. Also, fix an arbitrary element face To c ow of an 
element 7Z c w. Assume without loss of generality that the corresponding unit 
exterior normal at F0 with respect to ow is v = vj.Fo =-el. Denote by 

So {x + y: x E TFo and y = se1 where s E [O,W+ - Wj]} c w 

the cylinder composed of elements of Th with generating line parallel to e1, one 
base To c w, and the other base also on ow. We denote the corresponding height 
(the length of the generating line segment) of the cylinder SO by A1 = +-Wi. 

Notice that A1 is in fact the length of one edge of the rectangular parallelepiped 
w. Suppose further that the element faces which are in the cylinder So and are 
parallel to..FO are given by Fi, i O,.* , k, and that these faces lie respectively in 
the planes x1 = a for some wz = ao) <(k) = <a +. 

Case 1. Yh E AP. Denoting by c.F the center of the face Fi for i =O, , k, we 
have by the fact A1 = a (k) -_ (o) that 

k-1 
Z [(a(k) _ +(i?)) Zh(c 1) 2 - ((k) - f(i)) 1Zh(Q 2] 

i=O0 20~~~~~~~~~~~~ 
(4.18) =-A1 1Zh(CQ0o) . 

If 0 < i < k - 1, then 
( (k) (i+l)) 1Zh(Ce )12 C((k) i) Zh(cE)l 

((k) - (i)) [1Zh(C+ 2)2 - zh(cs)12] + ((i) - a(i+l)) Zh ( 9122 

2 
? A1 [Zh (C,-T1) - Zh (C,-)] [Zh (C,-T) + Zh (C,-T) I+ h jzh(CFj+1) 
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This, together with (4.18) and the inverse inequality (3.9), leads to 

h2 1hC~)2 ? 3 1j[ZO, 111 h I Z h (C,-To ) < h JJ ||VZh | | 00 , % |Zh | | ,.,R + A l l Zh 0 , 0,R 

1Rcso yH ~ 1 
(4.19) <C J hJo, HhZhHJo, 

+ A(w) HlZhHoR] 

Case 2. Yh E Ah. Noting that a(k) - a(O) A1, we have 

__ - x(a _ ) lZh(X)l] dx 

S - (a1 x1) 
k 

Zh(x)1 (v el) dS 

k-i 

-A] Zh(X)I dS + z (as_ - ))] [4(X) 2-(X)12 dS, 
i= 1 

where for a fixed face Fi, 1 < i < k - 1, we denote by z4 the restriction of Zh to Yi 
for Zh defined on the adjacent element sharing the common face Fi such that the 

corresponding unit exterior normal of the element boundary i satisfies vl.r = ?el. 

Consequently, we have that 

Zh(X)1 dS 

< E Zh (X) 
1 

2-|2Zh(X)I||VZh(X)[|] dx 

+ I [ zh+(x)2|*2zh (x)Vz(x] dx| k-1 

(4.20) + J X [(x _ IX)T (Zh) + TdS(Zh) 

-Zh (x)Th(Zh) +T2.(Zh) 21 dS| 

= E (~ | , + 2 HZhHJo,R JJVZhlJoH) 

k-1 

+ fJ [Z+4(x) - Ta.(Zh) - Tzh(x)- T(Zh) 21 

< E JJZh o, + 2JZhJJO,R 11VZhHO,p + h HVZhHO?] 

where in the last step we used (3.12). 

Since every such cylinder So C w will only be used twice corresponding to its 
two bases on OZ, we therefore obtain (4.16) and (4.17) from (4.19) and (4.20), 
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respectively, by summing over all boundary faces Jo c Ow of elements 1Z c w such 
that &R7now =A 0. F 

Remark 4.4. We can generalize the above theorem to cover more general closed 
subdomains w c Q which are still unions of rectangular elements of 'Th. For such 
an w we denote by A(w) the smallest height of all cylinders So C w composed of 
elements of Th which have generating lines parallel to the coordinate axes and for 
which both bases lie in the boundary Ow. Both of the inequalities (4.16) and (4.17) 
remain valid. 

5. APPROXIMATION OF LIMITING MACROSCOPIC DEFORMATIONS 

We define 

Sh(Yh)= Z J5(VYh(x)) dx, VYh C Ah- 

lZCTh 

The following result which will be frequently used is a direct consequence of the 
quadratic growth rate of the energy density around the energy wells (2.2). 

Lemma 5.1. We have 

>Z JI VYh(x) -lr(Vyh(X))2 dx < /' Sh(Yh), VYh C Ah. 
7ZETh 

In the following lemma, we recall that we have assumed that 

(5.1) F=-Fo+a 0n, 

and that we have assumed without loss of generality in the cubic to tetragonal case 
by Lemma 2.1 that 

(5.2) n 2 (ej + e2). 

Lemma 5.2. For any w E 1R3 satisfying w n= 0, there exists a constant C > 0 
such that 

(5.3) , J lr(VYh(X))-FA]w dx < Ch(Yh)V, VYhE Ah 
7ZETh 

Proof. We first consider the orthorhombic to monoclinic transformation. In this 
case we have 

ir(F) E SO(3)Fo U S0(3)Fi,. VF E R3X3 

Consequently, we have by the rank-one connection (5.1) and by the identity 

F\ = (1- A)Fo + AF1 = Fo + a a0 n 

that 

(5.4) I-r(F)wl = =Fjwj= IFAwl, VF Ez 3X3, 
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for any w E 1R3 such that w n- 0. It then follows from Theorem 4.1, the Cauchy- 
Schwarz inequality, the identity (5.4), and (2.2) that for any Yh E Ah, 

E I LJ[r(Vyh(X))-F] W12 dx 
l4ETh 

=2FAw * J X F) -r(Vyh(x))] wdx 

(5.5) = 2FAw 
ZET [Vyh(X) - 7r(Vyh(X))] w dx 

< 2 I FA w I (measQ) [z VYh (J)I-r (xVYh (X()() )I2 dx 

? 21FOwl(meas 2)1/%i1/2Sh(yh)2, 

which implies (5.3) for the orthorhombic to monoclinic transformation. 
Now we consider the cubic to tetragonal transformation. Set 

wl = el-e2 + e3 and w2= el-e2--e3. 

It is easy to check that 

w H n ,W2* n=O, 

and 

1 Ui wi V1 = +12 i = 21?,3, j=1, 2. 

Consequently, we can obtain (5.4) and hence (5.5) again for w = w1 and w W2, 
respectively. Thus, (5.3) is also proved for the cubic to tetragonal transformation 
since {WI, W2} is an orthonormal basis for the two-dimensional subspace {w E 3l: 

. _ n-_0} D 

The following theorem is a direct consequence of the above two lemmas. It gives 
error bounds for the approximation of directional derivatives of deformations to 
the limiting macroscopic deformation gradient FA in the direction tangential to the 
parallel layers of the laminate. It will play a key role in establishing all of the other 
error bounds. 

Theorem 5.3. For any w E R3 satisfying w n = 0, there exists a constant C > 0 
such that 

S J 
r [Vyh(x)-FA]hWI dx ?C [?h(Yh)2 + ?h(Yh), VYh C Ah- 

We now give error bounds for the strong L2-approximation of deformations to 
the limiting macroscopic homogeneous deformation FAx, x E Q. 

Theorem 5.4. There is a constant C > 0 such that 

j Ih(X) -Fx dx < C [ h(Yh)2 + h(Yh) + h VYh E Ah. 
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Proof. For any Yh Ah, we have by Lemma 5.1 that 

Z J lVyh(Y ) -XFAH2 dx 
7ZCTh 

(5.6) < 2 > JHVYh(X) -l(VYh(X)) dx + 2 > J H7r(VYh(X)) -FA1 dx 
7Z-T 7ZC-Th 

< CSh(Yh) + C, 

which together with Theorem 4.2 implies the desired inequality. O 

We now establish error bounds for the weak approximation of deformation gra- 
dients to the limiting macroscopic deformation gradient FA. 

Theorem 5.5. For any rectangular parallelepiped w C Q whose boundary ow is 
composed of faces parallel to the coordinate planes, there exists a constant C 
C(w) > 0 such that for all Yh E Ah 

(5.7) || jE [VYh (X) -FA] dx ?C [sh(Yh) 
1 

+ h(Yh)2 +h4] 
J -CTh 

Proof. Denoting 

Wh = U ETh m 1 C W}, 

we have for any Yh c Ah that 

E j [Vyh(X) - FA] dx 
RC-Th wnR 

(5.8) = E j [Vyh(X) - FA] dx + S j [Vyh(X) - FA] dx 
R4ETh ,7CWh RC-Th (W-U)h)n7z 

K1 +K2. 

Since 

meas (w- Wh) < Chi 

we can estimate K2 by virtue of the triangle inequality, the Cauchy-Schwarz in- 
equality, and Lemma 5.1 to get 

JJf2 1-|Ew ) [VYh(X) - FA] dx 
14T W-Wh )nr 

< JwwEhl [VYh(X) - 7r(Vyh(x))] dx 
RET7h (W-W h) nR 

(5.9) + [w(VYh(X))-FA] dx 
RE rh (W-Wh )nR 

<Chl [ I I Y vYh(X) -r(VYh(X))H dx + Ch 

< Ch2 1h(Yh) 2 + Ch. 
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To estimate K1 we first assume that Yh e A' . It then follows from the divergence 
theorem and the definition of the A'-approximation that 

K1, J[VYh(X)-FA] dx 
7ZETh ,7CWh 

= E ,C [Ph(X)-FAX] ? vdS 
R4ETh ,RCUWh 

= S S: [Yh(X)-FAX] 0 vdS. 
7RCWh ,,-&nR9h#0 FC7RnZ9Wh 

Since Jh C Q is a rectangular parallelepiped which is a union of elements in Th, we 
have by the Cauchy-Schwarz inequality and (4.17) that 

lKi II < JIYh(X)-FAxl dS 
lRCWh ,&ZnO9Wh$0 FCRnZ09Wh 

2 

< (meas w}h)! Z JlYh(X) -FXI2 dS 2 

LRcWh ,Rn&0Wh#0 FCcRin0Wh 

< C (meas aw) {A(wh) Lh lYh(X)-FAXKI dx+h E JVYh(x)-FA|dx 
lZCWh 

+ (L Yh()FAx X) ( d I IVYh(X) FA12 dx)} 

< C A(h) j Yh(X) -FAX dx + h 5 tIVYh(X)-FAH 2dx 

+ (jIYh(X)-FAx12 dx) I VYh(X) \112 dx) 

since A(w) < CA(wh). This, together with (5.6) and Theorem (5.4), implies that 

(5.10) IIKiH1 < C [h(Yh) 8 + Sh(Yh) 2 + h4] 

Now let us assume that Yh E Ah. By the same argument as in the proof of 
Theorem 4.1, cf. (4.3) and (4.4), we have 

K,- S J[VYh(X)-FA] dx 
7ZETh ,RCWh 

- ZE j [Yh(X)-FAx] ? vdS 
lZCETh ,7ZCWh 

= 5 S J { [Yh (X)-FAX]-[Yh (CF)-FQc-F]}? vdS 
7ZEThh,7CWh TFC&7 

? 5 5 J [Yh(cr)-F ]0 vdS 
7ZEThh,RCWh -FC&97 
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- E S S J[h(c)-F ] cX vdS 
7ZETh,CZCWh FCOR 

- >1?E 5 J [h(CF)-FAcF] vdS. 
RCWh,7z0nOwh #V .FC&lZnflWh 

Using a similar argument to that for Yh Ez A' we can obtain (5.10) again for 
Yh E Ah by (4.16), (5.6), and Theorem 5.4. 

Finally, (5.7) follows from (5.8), (5.9), and (5.10). 

6. APPROXIMATION OF MARTENSITIC VARIANTS 

Let us now define the projection operator l1l2: R3X3-- U1 U U2 by 

fIF-ir12(F)flz= min |IF-GHI, VF cz 3X3. 
GECUl UU2 

For the orthorhombic to monoclinic transformation, we note that wi2 = wr. The 
next lemma gives an estimate for T12 - w for the cubic to tetragonal transformation 
by showing that the measure of the set of points in which the gradient of energy 
minimizing sequences of deformations is near U3 converges to zero. Thus, the next 
lemma reduces the three-well problem for the cubic to tetragonal transformation 
to a two-well problem. 

Lemma 6.1. For the cubic to tetragonal transformation, there exists a constant 
C > 0 such that 

(6.1) 5 J J7(VYh(x))-7r12(Vyh(x))11 dx ? Ch(Yh) Vy E Ah- 

7ZETh 

Proof. We have by a simple calculation that 

Finf I [F - F] e3 I > J'q2- |q - 

Denoting 

3= U {x E : 7r(Vyh(x)) E U3} 
7RETh 

for Yh C Ah, we have by Lemma 5.2 that 

meas Q3z= 5 meas {x C Z: 7T(Vyh (X)) C U3} 

7ZETh 

(6.2) ? t?2_llt2 5 Jt[7r(Vyh(X)) -FA]e312dx 

lZETh 

< CSh(Yh)2, 
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since e3 n = 0 (recall that n = 2-1/2(el + e2)). The result (6.1) then follows from 
the inequality 

I: FLw(VY(x)) - 7Fl2(Vyh(x)) 2dx 
RC-Th 

- 7ZETh jfl3 *Ilj7(Vy(X)) - 712(VYh(X)) 112 dx 
tRE C--h n Q3 

<4(2)1 + 7 meas Q3 

< C-Eh (Yh ) 2 

since li7r(F)fl = H7r12(F)H -=2~2 ? 2 for all F e R D 

We next define the operators 0: IR3X3 SO(3) and H R: I3x3 , {FoF1 } by 
the relation 

(6.3) w12(F) = E (F)F(F), VF z R 

The following theorem gives an error bound for the convergence of deformation 
gradients to the set of variants {Fo, F1 }. 

Theorem 6.2. There exists a constant C > 0 such that 

S J HlVYh(X) -(Vyh(x))H2 dx ? [sh(Yh)2 + Sh(Yh)J, VYh CAh. 
7ZETh 

Proof. For any w E 1R3 such that w * n = 0, we have 

J(F)w = Fow-= Flw = FAw, VF C R3x3. 

Thus, it follows from (6.3) that 

[E (F) - I] Fow = [E (F) - I] J(F)w = [712 (F) - FA] w 

[71r2 (F) -r(F)] w + [w(F) -FA] w, VF C R3x3. 

We can then apply the triangle inequality to the above identity with F = Vyh(x), 
x E 1Z, for any Yh E Ah and any element R E Th, and estimate the corresponding 
two terms by Lemma 6.1 and Lemma 5.2 to obtain for w n = 0 that 

5 J 1[0 (Vyh(X))-I] Fow12 dx 
7ZETh 

< 2 J [7r12(Vyh(X)) -7r (Vyh(X))] w2 dx 
7ZCTh 

(6.4) + 2 L [7 (Vyh(x))-FA] w12dx 
IZGTh 

< CSh(Yh) - 

Choose wi EC R3 and W2 E 1R3 so that w, * n = W2 - n = 0 and wl, w2 are linearly 
independent. Set m= Fowl x Fow2. Since 

Qm= QFowl x QFow2, VQ E SO(3), 

we have for all F E 1R3X3 that 

[E)(F) - m = {0 (F) Fowl x 0 (F) FoW2} - {Fowl x FoW2} 

= {[O (F) - I] Fowl x E0 (F) Fow2} - {Fowl x [I - E(F)] FoW2} 
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This together with (6.4) implies that 

(6.5) > J [E (Vyh(X)) -I] m2 dx < CSh(Yh) 2 

7ZCTh 

Now {Fowl, Fow2, m} is a basis for R3, so we can conclude from (6.4) and (6.5) 
that for all Yh C Ah 

(6.6) H[E (VYh(x))-I]l2 dx < C [Sh(Yh) 2 + Sh(Yh)] 

We complete the proof by applying the triangle inequality to the identity 

F - P1(F) = [F - 7r(F)] + [w(F) - Tl2(F)] + [712(F) -11(F)] 

= [F - 7r(F)] + [7r(F) - 7l2(F)] + [E(F) - I] 11(F), VF E 1R3X3 

with F = Vyh(X) for any Yh E Ah, x E 1, and R E Th, and by estimating the three 
terms by Lemma 5.1, Lemma 6.1, and (6.6). E 

7. APPROXIMATION OF SIMPLY LAMINATED MICROSTRUCTURE 

For any subset w c Q, p > 0, and Yh C Ah, we define the sets 

Wo (Yh) = x Ez n R (VYh(X)) = Fo and lVyh(x) -Fo| <p}, 

wl (Yh) UTh{x Ez n 7 : (Vyh(X)) = F and IlVYh(X) -F1lI < p}. 

The following theorem states that for any rectangular parallelepiped w C Q and 
for any energy minimizing sequence {Yh} the volume fraction that the piecewise 
defined gradient Vyh is near Fo converges to 1 - A and the volume fraction that 
VYh is near F1 converges to A. 

Theorem 7.1. For any rectangular parallelepiped w c Q whose faces are parallel 
to the coordinate planes, and any p > 0, there exists a constant C = C(w, p) > 0 
such that for all Yh E Ah, 

measwp? (Yh) (1- )Y + h) 

meas w measw 

(7.1) ? C Sh(Y + h ?h(Yh)2 + h4] 

Proof. Fix Yh E Ah. It follows from the definition of w (Yh) and w W-(Yh) 

that 

[measwo -(1 - A)measw] Fo + [meas w - Ameasw] F1 

(7.2) j [H (Vyh(X)) - FA] dx 
'RE-rh nR 

RE-rh({P Uw~})flR H(Vyh(x)) dx. 
1Eh(-fWOUWp})n-R 
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We have by Theorem 6.1 and Theorem 5.5 that 

S1 E J [II (VYh(X)) - FA] dx 
'R Z rh wnR 

< || E / [H (Vyh(X)) VYh (x)] dx + 5 j [Vyh(x) - FA] dx 
14Eh 

n'R nRCTh r 
(7.3) 

< (meas w) 2 fl (Vyh (x)) - Vyh (x) 12 dxl 

+ 5 j [VYh(x)- FA] dx 
'(E-rh n 

< C Sh(Yh) 
1 

+ hh(Yh) 2 + h1] 

Since 1-H (F)H + for all F e 1Ri3, we can conclude by the definition of 
wp and w and by Theorem 6.2 that 

11CTh f w-{w2Uw~})flH H(Vyh(x)) dx 
Gr7h (W{pw })n 

< Cmeas(w - wQ UW 1}) 
C I~~p 

(7.4) < S I I H(Vyh(x)) Vyh(x)) dx 
'RZETh (W{WpUW })nR 

C (meas w) [12 21 

?C cFh(Yh) + Sh(Yh) 2] 

Therefore, we have by (7.3) and (7.4) that 

II [measw2 - (1 - A)meas w] Fo + [measw' - Ameas w] F| 

C c h(Yh)8 + ?h(Yh)2 + h 4 

which implies (7.1) because Fo and F1 are linearly independent. 

We now denote by V the Sobolev space of all measurable functions f (x, F) 
Q x -3X3 I R such that 

2lflv j [esssupflVFf(x,F)H] dx+ IGffl> <11 , 
Q FCR3x3 

where 

Gf(x) = f(x,Fi) - f(x, Fo), x E Q. 

The following theorem gives error bounds for the approximation of nonlinear inte- 
grals of deformation gradients which represent macroscopic thermodynamic densi- 
ties. 
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Theorem 7.2. There exists a constant C > 0 such that 

J {f ((x, VYh (x))- [( 1-A) f (x, Fo) + Af (x, F)]} dx 
.REE-rh 

? CllfIV [Eh(Yh)I + Eh(Yh)I + h]I Vf eV VYh E Ah- 

Proof. We have 

, f {f ((x, VYh (x)) - [(1 - A)f (x, Fo) + Af (x, F1)]} dx 

- S J [f (x, VYh(X))-f (x, H (Vyh(x)))] dx 
lZ Cz-rh 

(7.5) + -f (x, H (7Yh(X)))-[(1- A)f(x,Fo) + Af(x,Fi)]} dx 

M1 + M2 

The first term M1 can be easily estimated by the Cauchy-Schwarz inequality and 
Theorem 6.2 to give 

M<~ ? zJ [esssup IlVFf(x, F)l] lVyh(1)-H(Vyh(x))fl dx 
14Erh 

< 
F(ER3 x 3I'YhX)H(YhX)IId 

< { [esssupHVFf(x,F)H12 lx} 
14rh%FcR3 x 3 

(7.6) {I 1ZYh (X) -H(7Yh(X)112 dx} 

? Clfllv [Eh(Yhi + Eh(Yh)2]. 

To estimate the second term M2, we use the identity 

f (x, H (F)) - [(1 - A)f(x, Fo) + Af(x, F1)] 

{a * [II(F) - FA] n} Gf (x), VF E R 3X3 

to show that 

M2 - ( J{f(xH (V7Yh(X))) -[(1 A)f(x, Fo) + Af (x, Fi)] } dx 
lZC-rh 

- 7ZCTh l 2 {a. [TI(VYh(X)) -Vyh(x))] n} Gf (x) dx 

+ Cr a2{a [Vyh (x)-FA] n} Gf (x) dx 

(77) JY h 2X{a [H(Vyh(x))-Vyh(x)] n} Gf (x) dx 

+ 12{a. [Yh()-Fxx]}(n r v)Gf(x)dS 
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- 7ZCTh 2 {a. [Yh(X) -FAx]} [VGf(x) rin] dx 

P + P2 + P3. 

We can estimate P1 and P3 by the Cauchy-Schwarz inequality, Theorem 6.2, and 
Theorem 5.4 by 

(7.8) P1l ?0 (i Gf(x) I dx> [Eh(yh) +?h(Yh)2] 

(7.9) 1P31 <c(C IVGf(x)n dx [Eh(Yh) +?h(Yh) 2 +h ] 

To estimate P2, we denote again Zh(X) = yh(x) - FAx, x E Q. We rewrite P2 as 

P2 S Ja2[a zh(x)]Gf(x)(n r v)dS 
lZe-rh FC&7Z ' 

- S S jA. 12 {a' [Zh(X) - T(Zh)1} [Gf(x) - T' (Gf)] (n z,v) dS 
'RkeTh jFC O' R a 

for Yh e A' by the definition of A' and 

P2 -lE R hF' ak 2 {a zh(x)] Gf (x) }()(n) v)dS 

E E | 2 {aa [zh(X) -Zh (CF) ]I Gf (x) (n * V) dS 
'R ETh F 091 

I a 

for Yh E Ah by the definition of A5h. By the same argument as for estimating J2 

and J2 in the proof of Theorem 4.2 (cf. (4.10), (4.11), (4.14), and (4.15)) and by 
Lemma 3.3 and (5.6), we have 

P2,1 < Ch I / VYh (X) -FA2dx1 [j vGf (x) 2 dx] 

(7.10) < Ch [h (Yh) 
I 

+ 1i 1VGf 1Ho,Q. 

Finally, the assertion of the theorem follows from (7.5)-(7.10). 

8. ERROR ESTIMATES FOR QUASI-OPTIMAL DEFORMATIONS 

We first establish the existence of finite element energy minimizers as well as the 
error bound for the corresponding minimum energy. 

Theorem 8.1. There exist a constant C > 0 and Yh E Ah such that 

Eh(Yh) = min ?h(Uh) < Ch2. 
UhCAh 

Proof. Fix a mesh Th. We have by the inverse inequality (3.8), Lemma 5.1, and 

Theorem 5.4 that 

IHUh |l,oo,h < Ch 2 HlUh 11,h 

(8.1) < Ch2 [3h(uh)I + Eh(Uh) 2 + I], VUh c Ah- 



NONCONFORMING APPROXIMATION OF MICROSTRUCTURE 943 

Moreover, the continuity of the energy density $ implies the continuity of the energy 
functional 1h on the finite-dimensional affine space Ah. Therefore, the bound (8.1) 
implies the existence of a finite element energy minimizer by compactness. 

To finish the proof, we need to construct a finite element deformation Yh C Ah 
such that 

Sh (Yh) < Ch2 

This can be demonstrated by an argument similar to that in [8], [32], [31] since the 
space of our finite element polynomials (3.1) contains all linear polynomials and 
since the interpolation operator Ih: C(Q) -* Vh satisfies the inequality (3.20). D 

The number of local minima of the energy functional .h on Ah grows arbitrarily 
large as the mesh size h - 0 [31]. Many of these local minima are approximations 
on different length scales to the same optimal microstructure [31]. Thus, it is rea- 
sonable to give error estimates for finite element approximations Yh E Ah satisfying 
the quasi-optimality condition 

(8.2) Sh(Yh) < -y inf &(Uh) 
Uh Ah 

for some constant y > 1 independent of h. Our estimates show that all of the local 
minima of 1h on Ah which satisfy the quasi-optimality condition give accurate 
approximations to the energy-minimizing microstructure for the deformation, the 
volume fractions of the deformnation gradients, and the nonlinear integrals of the 
deformation gradient. 

It follows directly from the above theorem and aJl of the error bounds established 
in ?5, ?6, and ?7 that we can obtain the following error estimates for all quasi- 
optimal finite element deformations Yh E Ah and for any family of rectangular 
meshes Th satisfying the quasi-uniformity conditi6n (3.2). 

Corollary 8.2. For any w E i3 satisfying w n = 0, there exists a constant C > 0 
such that 

I [VYh (X) W12 dx < Chl 

for any Yh E Ah which satisfies the quasi-optimality condition (8.2). 

Corollary 8.3. There exists a constant C > 0 such that 

S J IYh(x)- FAxI2dx < Ch4 

for any Yh E Ah which satisfies the quasi-optimality condition (8.2). 

Corollary 8.4. If w C Q is a rectangular parallelepiped whose faces are parallel to 
the coordinate planes, then there exists a constant C= C(w) > 0 such that 

S|RE jnR [VYh(X) - Fx] dx < Ch 116 

for any Yh E Ah which satisfies the quasi-optimality condition (8.2). 

Corollary 8.5. There exists a constant C > 0 such that 

5 J JJVYh(X) - H(VYh(x))11 dx < Ch4 

for any Yh E Ah which satisfies the quasi-optimality condition (8.2). 
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Corollary 8.6. If w c Q is a rectangular parallelepiped whose faces are parallel to 
the coordinate planes and p > 0, then there exists a constant C = C(w, p) > 0 such 
that 

meas w (Yh) meas w (Yh) A <Ch" P -(1-A) + _~p A<C1 
meas w meas w 

for any Yh E Ah which satisfies the quasi-optimality condition (8.2). 

Corollary 8.7. There exists a constant C > 0 such that 

Z J X {f (XVYh(X)) -[(1 -A)f(x,Fo) + Af(x,Fi)]}dx < Cllfllvh- 
7Z Cz -rh 

for any f E V and any Yh E Ah which satisfies the quasi-optimality condition (8.2). 
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