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CONVERGENCE ANALYSIS OF A COVOLUME SCHEME FOR 
MAXWELL'S EQUATIONS IN THREE DIMENSIONS 

R. A. NICOLAIDES AND D.-Q. WANG 

ABSTRACT. This paper contains error estimates for covolume discretizations of 
Maxwell's equations in three space dimensions. Several estimates are proved. 
First, an estimate for a semi-discrete scheme is given. Second, the estimate 
is extended to cover the classical interlaced time marching technique. Third, 
some of our unstructured mesh results are specialized to rectangular meshes, 
both uniform and nonuniform. By means of some additional analysis it is 
shown that the spatial convergence rate is one order higher than for the un- 
structured case. 

1. INTRODUCTION 

Staggered mesh schemes for the numerical solution of Maxwell's equations go 
back as far as [18]. Over the years this scheme has seen a number of generaliza- 
tions intended to enhance its usefulness. Mostly, these generalizations are aimed 
at increasing the geometric complexity that can be handled. Thus, in [3] a tensor 
formulation was given. This permits the method to be extended from rectangular 
meshes to meshes defined by curvilinear coordinates. Two dimensional generaliza- 
tions using quadrilateral meshes are given in [6] and [8]. 

For three dimensions, hexahedral mesh formulations were proposed in [7] and 
[9]. These formulations use interpolation to obtain values for nonbasic field compo- 
nents those which, in the rectangular situation, lie along the primal or dual mesh 
edges. Another approach is the "control path" method of [4] and [5]. The control 
path method uses the classical finite difference approach of modifying the finite 
difference stencil near the boundary of the domain. 

A natural generalization of the standard staggered mesh scheme to tetrahedral 
meshes was given in [10]. A similar technique was used independently in [14] to 
solve the Navier-Stokes equations. This "covolume" approach does not use any 
interpolations and is a very natural way to generalize the original rectangular stag- 
gered mesh approach. A characteristic feature of covolume schemes is the use of 
Voronoi-Delaunay mesh pairs to replace the rectangular staggered mesh arrange- 
ment. 

Very little rigorous analysis of staggered mesh schemes for electromagnetics is 
available. We know only of the rectangular mesh analysis of [11] and [12]. For 
the incompressible Navier-Stokes equations results may be found in [14], [15], and 
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[16]. Our goal in this paper is to provide a rigorous proof of convergence for the 
covolume discretization applied to the interior problem for Maxwell's equations. 
The corresponding analysis for the exterior problem involves the application of 
radiation conditions at a finite distance from the scatterer and will be given in a 
subsequent report. 

The contents of the paper are as follows. In the first section we state Maxwell's 
equations for bounded domains with perfect conductor boundary conditions. Fol- 
lowing that is a section on Voronoi-Delaunay mesh notations and properties. The 
main result of Section 3 is an error estimate for a semi-discrete covolume approx- 
imation to Maxwell's equations. In practice, a kind of leapfrog scheme is used to 
time march the discrete equations. Section 4 contains an error estimate for the 
resulting fully discrete approximation to Maxwell's equations. In the last section 
we specialize our results to the rectangular case. The rate of convergence is shown 
to be one order higher than for an arbitrary triangulation. 

2. MAXWELL'S EQUATIONS 

Let Q be a bounded domain in Rf3 with boundary F and unit outward normal n. 
Let the constants c and ,u denote, respectively, the electric and magnetic permeabil- 
ities of the medium occupying Q. Then if E(x, t) and H(x, t) denote, respectively, 
the electric and magnetic fields, Maxwell's equations [2] are: 

(2.1) cEt-curlH=J in Qx(0,T), 

(2.2) ,uHt+curlE=0 in Qx (0,T), 

(2.3) div(c E) = p and div(,uH) = 0, 

where J = J(x, t) is a known applied current and p(x, t) is a charge density. We 
shall assume a perfect conductor boundary condition so that 

(2.4) E x n = 0 on F x (0,T). 

In addition, initial conditions are prescribed so that 

(2.5) E(x, 0) = Eo(x) and H(x, 0) = Ho(x), Vx EQ, 

where Eo and Ho are given functions satisfying 

div(c Eo) = p(x, 0), div(u Ho) = 0, 

and where it is assumed that 

(2.6) at = div J. 

Let LP(0, T; X) denote the set of all strongly measurable functions u(t,*) from [0, T] 
into the Hilbert space X such that 

T 

I lu(t) lpX dt <oo l< p< oo. 

We say u E W1P (0, T; X) if and only if both u and 
au 

are in LP(0, T; X). Also at 
Cm (0, T; X) denotes the space of m times continuously differentiable functions from 
[0,T] into X. By H(curl; Q) and H(div; Q) we mean the Hilbert spaces defined by 

H(curl;Q): = {v E (L2(Q))3,curlv E(L2(Q))3 

H(div;Q): = {v E (L2(Q))3,divv E L2(Q)}. 
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We shall assume the existence of (E, H) to (2.1)-(2.5) such that 

E, H E C1(0, T; (L2(Q))3) n C?(0, T; H( curl; Q) n H( div; Q)). 

For this, it is sufficient that J E C?(0, T; (L2 (Q)) 3), p E C?(0, T; L2(Q)) and ' E 
L2(O,I T; H- 1 (Q)) , see [2]. 

3. MESH NOTATIONS AND DISCRETE VECTOR FIELDS 

In this section some basic properties of dual mesh systems are introduced. These 
will lead to a detailed formulation and analysis of our numerical schemes in the 
following sections. 

Assume that the polyhedral domain Q has a primal family of finite element 
style tetrahedral partitions, parametrized by the maximum side length which is 
generically denoted by h. We will assume that the ratio of radii of circumscrib- 
ing spheres and inscribed spheres of all the individual tetrahedra are uniformly 
bounded above and below as h approaches 0. A dual mesh is formed by connecting 
adjacent tetrahedral circumcenters and, in the case of a tetrahedron with a face on 
a boundary, by connecting their circumcenters with those of their boundary faces. 
By elementary geometry these dual edges are perpendicular to the associated tetra- 
hedral faces. These connections also form the edges of a set of polyhedra. It follows 
from elementary geometry that the edges of tetrahedra are perpendicular to and in 
one-to-one correspondence with the faces of dual polyhedra or "covolumes". The 
reciprocal orthogonality between edges, and faces is the key to the results which 
follow. 

The N nodes of the tetrahedral mesh are assumed to be numbered sequentially 
in some convenient way, and likewise the T nodes of dual mesh. Similarly the 
F faces (edges) and M edges (faces) of the primal (dual) mesh are sequentially 
numbered. The individual tetrahedra, faces, edges, and nodes of the primal mesh 
are denoted by ri, -j, (k, and vl, respectively. Those of the dual mesh are denoted 
by primed quantities such as o. A direction is assigned to each primal edge by 
the rule that the positive direction is from low to high node number. The dual 
edges are directed by the corresponding rule. We also denote F1 the number of 
tetrahedral interior faces (or dual edges) and M1 the number of tetrahedral interior 
edges (or dual faces). Let sj denote the area of 1j and h'j the length of o'. In RFFi, 

where F1 denotes the number of interior primal faces, we will introduce the inner 
product (, -)w defined by 

(3.1) (u) v)w S ujvjsj1j = (Su, D'v) = (D'u, Sv) 
,j C 

and denote the resulting inner product space by U and the associated norm by 

(3.2) 1~~~~~lul Iw := (u,) wl 

In (3.1), (,.) denotes the standard Euclidean inner product, S := diag(sj), 
D' := diag(h') and W := SD' are F1 x F1 invertible diagonal matrices. The 
norm defined by (3.2) is clearly three times a discrete L2 norm. Similarly, we will 
introduce an inner product in RM, where M denotes the number of primal edges: 

(3.3) (u, v)w, := 5 ujvj s1hj = (S'u, Dv) = (Du, S'v) 
3 
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and denote the inner product space by U'. The associated norm is 

(3.4) llullw := (U,U)w/ 

The notations in(3.3) and (3.4) correspond to those of (3.1) and (3.2). For example, 
s'j denotes the area of dual face /-. 

For each primal face ri a discrete circulation is defined by 

(3.5) (Cu)Ki:= E Uihi. 
CJj c0ni 

Similarly, for each interior covolume face K the discrete circulation is 

(3.6) (C'u),'v S ujhl. 
3 % 

A tilde on hj or hl means that the quantity is to be taken with a negative sign 
if the dual edge is directed against the positive sense of the description of &-i or 
,K1, respectively, and with a positive sign otherwise. The linear operators C and 

C' map from RM to RFF and RfFl to RMl, respectively. 
For each strictly interior dual edge u/ we can form a vector whose ith component 

is the sign of the orientation of the edge relative to the orientation of the ith strictly 
interior dual face. From these vectors we obtain the F1 x M1 matrix G defined as 
follows: 

1 if oj is oriented positively along 
(G)ji := < -1 if oj is oriented negatively along K 

0 if / does not meet KI. 

Let w E RM denote the vector-whose kth component is the value assigned on 
the kth primal edge. Denote w1 E Rml the restriction of w to the interior primal 
edges. So wjr = 0 means that the components of w E RM related to the boundary 
edges are zero. A direct computation shows: 

Cw = GDwl. 

Also it can be verified that if v E RFl, 

C'v = GT Dv. 

From these two identities we can prove 

Lemma 1. With the above definitions of w,v and w, with wlr = 0, 

(Cw, D'v) = (Clv, Dwi). 

Proof. This is proved as follows: 

(C'v, Dwi) = (GTDlv, Dwl) = (D'v, GD'wl) = (D'v, Cw). 
D 

This lemma provides a discrete analog of the integration formula 

j curlE- Hdx=j curlH -Edx 

which holds when E x n = 0 on F. 
For each tetrahedron ri a discrete flux is defined by 

(Du)i := 5? ujVuj, Vu E RF1. 
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By ?j we mean sj negatively signed if the corresponding velocity component is 
directed toward the inside of -ri and positively signed otherwise. 

In addition to G we will introduce another matrix B1 of dimension F1 x T 

1 if rij is oriented positively along a-rj 
(Bl)ji := < -1 if -j is oriented negatively along a-ri 

0 if -j does not meet a-rj. 

It can be checked directly that 

D = BTS. 

Using B1 we will define the difference operator P by 

Pq$:= D'1 B1l, VqEeRT 

Now we have 

Lemma 2. 

(3.7) BTC = O, 

and 

(3.8) (u,Pq)w = (Du,q$), Vq e RT,u E RF1 

Proof. For (3.7) see [17], Theorem 1. For (3.8), we have 

(u,Pq)w = (SD'u,D' 1Bjq) = (BTSu,Oq) = (Du, q). 
1~ ~~~~ 

We remark that (3.7) and (3.8) provide the discrete analogs of the identity 
div(curlu) = 0 and Green's formula f u * grad dx = f(div u) q dx for X E 

Ho (Q), u E H(div; Q), respectively. 
For additional details and relations between other discrete operators in Voronoi- 

Delaunay meshes, see [13] and [17]. 

4. SEMI-DISCRETE MAXWELL'S EQUATIONS 

In this section the covolume method is used to obtain a spatial discretization of 
Maxwell's equations (2.1)-(2.5) from which we will obtain a formulation of a semi- 
discrete form of Maxwell's equations. A basic error estimate is given in Theorem 
2. 

First we introduce, for general field A, its "face averages" Af E RF and its "edge 
averages" Ae E R' as follows (refer to Figure 1): 

Af IJA - nds, 

A/ f A;nds, 

Ae:h, A t du) 

Ae:- hJ A ttdo, 
J 3 
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FIGURE 1 

where n and t denote the unit normal vector to the face ri (or K) and the unit 
tangent vector to the edge oj (or j), respectively. Error functions for primal edges 
and faces will be denoted by 

EA =A - Af, 

7A A - Ae, 

6A = Af - Ae. 

Error functions for dual edges and faces are defined similarly. 
As shown in Figure 1, for each tetrahedron -ri we will use the normal components 

of the magnetic field H to its faces and the tangential components of the electric 
field E in the directions of its edges. Now integrate both sides of (2.1) over the 
co-face K' to obtain 

(4.1) ,d(E3 dt (CdHe)Ef =f J(x, t) dx.. 
dt 

Here, (Ef)j denotes the average of E nj over the face KI where the nj is the unit 
vector in the direction of 0j, and (C'He)r,, is the discrete circulation around the 
face ,j. Similarly, from (2.2), 

(4.2) ~~~~d(Hf)i 
(4.2) /tsi (dt + (CEe)>i 

= O, 

where (Hf)i denotes the average of H ni where ni is the unit normal to the face 
ri and (CEe)r;j is the discrete circulation around the face r-. 

Let E and H denote vectors of components in RMi and RFi, respectively. Then 
(4.1) and (4.2) (which are exact) suggest the approximations (where it is implied 
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that components of E associated with boundary edges are zero, i.e. Elr = 0) 
dE 

(4.3) eS'- - C'H = 
dt 

(4.4) AS dt + CE =0, 

where J E RfM with components given by the right hand of (4.1). Since ,uS and 
CS' are invertible, (4.3)-(4.4) is a system of linear ordinary differential equations, 
and the existence and uniqueness of a solution follow from well-known results. 

From (4.4) and (3.7) in Lemma 2 we obtain 

d (DH) = [t d (B TSH) = -BTCE = 0. 

This shows the sense in which divH = 0 is satisfied at the discrete level in the 
covolume scheme. 

By subtracting (4.3) from (4.1) we have 

(4.5) es, (E- E' )- C(H- He) = . 

Similarly, from (4.2) and (4.4) 

(4.6) USd -(H-Hf) + C(E- Ee) 0, 
dt 

where (E, H) denotes the exact solution of (2.1)-(2.5) and where, by the boundary 
condition (2.4), 

(4.7) 77EIr = 0. 

Note that the error in the magnetic field H satisfies the discrete solenoidal condition 

(4.8) DeH = 0. 

Multiplying (4.5) by D71E and (4.6) by D'rqH, and adding we obtain 

(4.9) E(6el 77E)WI + I(eH, r4H)W = (C7'1, D71E) - (C7, Dlql 

where the dots denote time differentiations. 
The main result in this section is the following theorem. 

Theorem 1. Denote by (E, H) the solution of (4.3) and (4.4) and by 

(El H) E W1,1 (O, T; (W1,p(Q))3)2 

the solution of (2.1)-(2.5) with p > 2. Then we have the estimate 

max (11 (E - Ze) (t) lIIw + 1 |(H- He) (t) jjw) < Kh(l IE L1(0,T;(WlP(Q))3) 
O<t<T 

+ |IHIHIL1(O,T;(W1,P(Q))3)). 

To prove this theorem we use (4.9) to get 

E(?7Egi7E)w' +i(rH/77H4)W = e((71E-CE)*),7E) + A ((r7H -EH) 7H) 
w w 

?(C71H, D71E) - (C71E, D71H ). 

Since E x nlr = 0, the components of W7E restricted to the boundary are 0. So 
Lemma 1 is applied to yield 

(C71H, D71E) - (C71E, D71H) = 0. 
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By 

n7E-E = Ef-Ee, 
r1H-6H = Hf -He, 

we obtain from (4.9) 

(4.10) 
1 d11 
2 j(II(I1) 2 HlIw + Il(6) 7EIIWV) = /((Hf - He)<t7j {)w + 6((Ef - e), E) 

where () denotes time differentiations. Integrating (4.10) from 0 to T and using 
Cauchy's inequality we obtain 

(IIGu) ri(T)II2v + 1(e) 7E(T)IIwv) 
T 

< 2jX (11(,U) (He - Hf)`lIwII(u) >l n(s)IIw 

o~~~~~~~~~~~~~~~~~ 
+ II(6) (Ee-Ef)`IIwII(6)c7E(s)IIw')ds. 

Let t* be such that 

(I I(p) lq (t* I I w + I I(e) qE (t* I I w,) =<mta<x(I I(p) 
1 

qH(t)|lW + II() 2E)|W) 

Then 

(IIA1, (t*)IIw + IIC1qE(t*)Iw,) ' 2( t .{(T)HIr + 116227(T)j|p) 

t* 

? 4j ((lpl (He -Hf)`IIwiIpKI71 (s)IIw 
O ~ ~~~ 

2 

+ 161(Ee-Ef)'Iw'HII7IE(s)IIw') ds 

? 4j 
(11_2 

(He- Hf) lWIIA r (s)IIw 

+ I62(Ee-Ef)lIW |Iw(c) 2rE(s)Iw') ds. 

So it follows that 

ma (IIj(A) 2rH/(t)||w + I|(C) 2nE(t)IIW') 

(4.11) T 

? 4] (H(1i) 2 (He - Hf)T1W + 11(V) 2 (Ee - Ef)IlwI) ds. 

Theorem 1 will follow from Lemma 3: 

Lemma 3. Assume that E,H E (W1,p(Q))3, p > 2. Then there exists a generic 
constant K, such that 

(He- Hf)1l1w < KhIHI(W1,p(Q))3, 

Ee- Ef)H|w' < KhIEI(W1,P(Q))3j 

where 

K < K' max (max( h2), max( h )) 

and K' is a constant. 
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Proof. For the primal face /ji, 

(He - Hf) = j H ndl -j H. ndx. 

By the Sobolev embedding theorem, V: H (He-Hf) defines a bounded linear 
functional on (W1P(rij))3 . For constant H this linear functional vanishes in the 
union of two tetrahedra that share the same face Ki and consequently 

|(He -Hf) l < K(Ti U T1) )IHIW1P(7iU-rj)3, 

where K(ri U T) is a constant. In order to estimate K(ri U -r), we use a standard 
scale change argument as follows. 

Let the primal face ri = 0ri n i be in the xy plane so that a' is parallel to the z 
axis, changing the coordinates by 

( A ) ( y) z = hiz' 

where A is a 2 x 2 matrix, it results that K(ri U r1) depends on the quantity 

1) 

max(1 1A-111-1( detAlhi)- p 

where - + - = 1. Let hl denote the length of the co-edge and si the area of the 
p p1 

primal face. A further calculation then shows that Idet Al = cisi, hi = c2hl so 
that 

1 _1 

IA-111-1 (I det Alhi)- Pin (A TA) < c vdet(ATA) s 
2 p 

= C3-~~ 1 =1' 

(si hl P (ih' hl hP 

where ci, i = 1,* , 4, are independent of hl and si, and Amin is the least eigenvalue 
of the positive definite matrix ATA. 

Collecting these results, K(ri U -r) is bounded by 

K(Tr Ujr) < max(SK 1 j )- 
hl P s 

Now we have 

F 

ll(He Hf)112r = Esih1l(He-Hf)12 
i=l 

F2 2 

< K >I sih/ max ( ' 2 ' )HI(W1,P(rjUr))3 

i=1 \hl~ s? / 
F 

< K2E h3 P H (W1p(rUT1))3, 
i=1 
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where K2 depends only on max(js'). By Holder's inequality and since h3F < 

K'measure(Q) we obtain 

II(He -Hf ) lj 12 < K2h5- (Fl, pI(WlP(T ))3) ( ) ) 

= K3h-6F P2 
|H(W1,p(Q))3 

< Kh lH(W ,p (Q)) 3. 

The proof of the estimate for I (Ee - Ef )I I w' is similar. 
From the estimate above we know the constant K depends on the quantity 

max(maxx( ?2 ), max( S)) 

D 

Theorem 1 now follows from (4.11) and Lemma 3. 

5. THE FULLY DISCRETE PROBLEM 

There are many possible time stepping methods that can be applied to (4.3) and 
(4.4). We will discuss a leapfrog scheme which is very popular in computational 
electromagnetics (see [18]). In this scheme we approximate E(t) at times tn = 

n A ti 0 < n < oo with a vector {8Enj}o 0, and H(t) at time tn+ 1 with a vector 

{tnf+ 2} ? The initial value N2 can be computed using, for example, a Taylor 
expansion and the given equatioes (2.1)-(2.2). Given ( 2T, N+K)n>O, the next 
approximation (2n+1, N+4) is obtained by solving the equations 

(5.1) -SI(En+ _Sn) _ AtCAn+2 Jn+2 

(5 2) ~~~t1S(-Hn+3 2 Hn+ 2 ) + AtCEn71+ = o (5.2) [t(~2 2 ~n~ tS~ 

where 

jn (n+l)t Jn2 J / dt. 
mAt 

(5.1), (5.2) is an explicit scheme, so the existence and uniqueness of a solution 
are apparent. Using the error functions defined in the last section, we can rewrite 
(5.1)-(5.2) as 

(5.3) CS, (en+1 nE) = (At)C 71Hn+ G, 

(5.4) , 2 
2)= _(AtS(H)Cn+l +6G 

By a direct computation, Gn and Gn are given by 

(5 5) G~~n = Jn+' 1 S n+1 En) + AtC/H + 21) (5.5) G fl+ - eS' (E7~ - E)?ACH?, 

(5.6) G =tS(Hf _ )AtCEe 

Our main estimate for the fully discrete scheme is then given in the following 
theorem: 



ANALYSIS OF A COVOLUME SCHEME FOR MAXWELL'S EQUATIONS 957 

Theorem 2. Let (S',Htn+2?) N, denote the solution of (5.1)-(5.2), and let 

(El,H) E (Hl (01T; (W1p(q))3))2 

denote the solution of (2.1)-(2.4), p > 2. Under the stability condition 

(5.7) cA t < min(hij) 

where c (ep) -2 is the speed of the light in the medium, M2 is the maximum of 
the ratios of the maximum to minimum side-lengths over the unnion of adjacent 
tetrahedra, and M3 is the maximum number of edges over all co-faces, we have the 
following error estimate for the fully discrete scheme (5.1)-(5.2) 

max (, _lEIS' ? EelIw + tlHW+2 -He+ 2 W) 
(5.8) O<i<N-1 

< Kh(| E| |H1(O,T;(W1,P(Q))3) + IIHI H (0,T;(W1,P(Q))3)) 

Proof. Multiplying (5.3) by D(rE + 7E+) and (5.4) by D'(rlH?2 + H+ 2) respec- 
tively, and adding all these equations from n = 0, 1, , N - 1 gives 

erj, + tt 7N -At(Clrj,N-~ (17E IW + l7H 2|w = C7H 2,Dr1E) 

N-1 N-2 

+ e(&i -(B &Ii+) + 2(Gi 
2 2 

i=O i=o 

N-i N-2 

+ ~?((G', D (ri' + 71uz?1)) + D (Ci, D 3( + q 

The proof has three steps: 
(i) First, 

<E 2 ((SDA) 2 SH 2 )H (DS )2 ((DS) 2D 

<z~4I(SD)- C'(DS' )1I112 1 7H 2|II17E II 

From algebra, l(SD')- C'(DS'1) II2 is the largest singular value of the matrix 
and by Gershgorin's theorem 

3 

I I (SD') C'(DS'- 1) 2 1 12 < max( maxij(hi)) )(2 Al3) 
minij (hi)) 2 

where maximum above is taken over all of the union of adjacent tetrahedra. Com- 
bining the results gives 

3 

/\t(CrlH2 DN < t 2.%,,a` M3M2 I N 1 N I I N 
H 2Ci/ IDrjE ? ALt Hi/H IIWI/EW 

min(h1j) 

______ If N -1 2 
< (6R min(hWj) 

E 1 / H 
) 

(,llN 1 2 ,+ t IN 21 K Er 1W +/iHIIW) 
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(ii) bE+ -bE can be estimated in the following way. We have, by integrating in 
time 

- i iEI ? |EI|Ll(iAt<t<(i+1)At)- 

So 

I 5%i+1 _ 2 = Z 
S'hkI(Qi5l?k - (6i)k12 

k=1 

ml (i+l)At 

< 
/ 

Shk( 
I 
(6E)k | ds)2 

k=1 iAt 

J (i+l)At M1 

< At Z shkI(bE)kV ds 
iAt k=1 

I(i+l)At 
- lt kEEIw2, ds. 

iAt 

By Lemma 3 

| |E+1 - 6' 5Iw' < K,hALt |E|IL2((iAt,(i+1)At);(Wl,P(Q))3). 

Similarly, 

1 l'+ 
- 6H llw < K,hV/L-tlliI((L2((iAt(+l)At);(Wl,p(Q))3).- 

(iii) We have from the definition of II * Il 

(GI D( ( ,q %+ 1)) < 21 1(S' )G' IIw (I 1' I ?I w ? + I 17' 1 

From (5.5) 

(i+I)At ;+ 
i= _ J (i+1)((C'He) + At(C'H,+2)1) ds, 

iAt 

where the subscript corresponds the lth dual edge. By the quadrature rule, G' 
vanishes for constant (C'He)l in time, so 

IG(I < K2 |(C'IIe) ILl (iAt<t<(i+l)At), 

where, by a scale change, K2 varies as At. By the Bramble-Hilbert lemma 

IC'Hel < K3IHI(Wl,P(T1))3, 

2-3 
where, by scaling, K3 varies as h2 P. So 

2 J (i+l)At 

IGfl < K4h P At HI41(W p (_r)) 3 ds. 
it 

Using Cauchy's inequality 

6 j(i+ltAt 

it 
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and 
FZ (i+1)At F1 

1=1il2 < K h46(At)1 S (Wl P(,))3ds 
It 1=1 

K K~h (At) ) X1 )At ( I (W 1Q))3) )d 

from Holder's inequality. Using (5.7) to estimate At we obtain 

(Gi Gi) < K4h3 A tLH L2((iAt,(i+1)At);(W1IP(Q))3) 

and from the definition of II w 

II(S 1)GiIw, < K5h |t HI HI1((iAt,(i+1)At);(W'P(Q))3) 

N N 

By Cauchy's inequality Zai < N(Z a) 2 and N A t = T 
i=l i=1 

N 

11(S )Gilw, < K7h IHI H (O T;(W",P(Q))3). 

i=l1 

Similarly, 

IIS-1GiIIw < K8h tI IEI H1 ((iAt,(i+1)At);(W',P(Q))3) 

and 
N 

(S-1)Gi 1 w < K9h| IEI H1 (0 T;(W1,P (Q))3) . 

i=l1 

Collecting the terms from (i)-(iii), we obtain finally 

max (e |I| w + ?tI 2 1W) 

< Kh( IEJ H1(O,T;(Wl,P(Q))3)+ ? HI H (0,T;(W 1P(Q))3)), 

and this proves (5.8). g 

6. ON RECTANGULAR MESHES 

The covolume scheme can be extended to rectangular meshes. In this case both 
primal and co-face are rectangles and orthogonal to each other. All the duality 
relations discussed in Section 2 are preserved. This method is the standard Yee 
scheme [18]. 

Motivated by [11], we will show in this section that on nonuniform but rectan- 
gular grids (a.k.a. graded grids) with maximum size h the covolume approximation 
of tangential components of electric field E and normal components of magnetic 
field H are second order in space in w * I'w and I 11 w, respectively. Here we only 
need (E, H) in (L1(O, T; (H3(Q))3))2. This improves the norm used in [11], where 
(E,H) in (L1(O,T; (C3(Q))3))2 was assumed. 

Using Lemma 1 and the error functions introduced in Section 4, we can rewrite 
(4.9) as 

l d 2 2 
(6. 1) - 

dt (I I C H I w + I I NE I WIW') = (~EE , E) WI - (eH, 6H ) W W h t l t a e ts(6.1).2dt 
We need here two technical lemmas to estimate the terms on the right side of (6.1). 
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Lemma 4. There exists u(t) E Rf" such that each component of u is a continuous 
linear functional of the magnetic field H and 

(6.2) (eH, 6H)W (eH, U)W 

with 

(6.3) max( lul w, |u|tlw) ?Kh21 IHI |(H3(Q))3 

Lemma 5. There exists vl (t) E RMl, V2 (t) E RFF such that each component of vl 
and v2 is a continuous linear functional of the electric field E and 

(6.4) (6E,r7E)W' = (i&,7E) WI + (eH,i2)W 

with 

(6.5) 1011 wi < Kh2I E I(H3(Q))3, max( Ii2I w, IIv2 Iw) < Kh2 IH II(H3(Q))3. 

Assuming these two lemmas we can prove 

Theorem 3. Suppose that (E, H) E L1 (O, T; (H3 (Q))3)2 satisfies (2.1)-(2.5), and 
denote by (E, H) the solution of (4.3)-(4.4) on nonuniform grids with maximum 
grid size h. Then 

(6.6) 

max ( (E - Ee)(t) w ? (H-Hf)(t)| w) ? Kh2 I(E, H) II(L1(O,T;(H3(Q))3))22 
0<t<T 

tII +IH-Hft)I <K 

Proof of Theorem 3. Substituting (6.2) and (6.4) into (6.1) and integrating from 0 
to t1, 

1(I I 2H I W + I | KE)I I)(tl) (6H, U- 
-(~ot 61 w?i2W( 2 

+ 

Jt(Vb,qrE)W,(T) 

dT 

+ 
J 

(CH 

- 

v, 
2)w (T) 

dr. 

Applying Lemma 4, Lemma 5 and Cauchy's inequality proves (6.6). 
CH 

The method of proving Lemma 4 is to notice that if h1 # h2, the quadrature rule 
rh2 

j f (x) dx (h1 + 
h2) f (0) 

. h, 

is exact for constant functions, but after adding the correction term 

I 
(h2f (h2) - h2f'(-h,)) 

it is exact for linear polynomials. In the proof below we will manipulate these first 
order correction terms to make them a discrete gradient. 

Proof of Lemma 4. For primal face Ki, (6H)i, the difference between the average 
of H 'ni over the face Ki and the average of the same quantity along the co-edge 

00 = ?' orthogonal to the face Ki (see Figure 2), vanishes for the constant field 
H. So we write (6H&)i as 

(6.7) OO/(6H)11 00 ui + ii, 

where the first order correction term ?ii is 

ui := 2(0P1 23 i + 2- 2(1 
2 

2 - (OP1 H3z ? hxH1 ? h H2y) (O) - ( 1H3, ? h H,, ? h H2y) (O') 2 x 2 
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O1' P4 A 

p1 P2 
Q 

o .B 
P3 

z 

FIGURE 2 

and ui from (6.7) vanishes for piecewise linear pplynomial functions. We remark 
that iii was formed in the way indicated above since there are three co-edges ema- 
nating from the center 0. Note also that iii is a discrete gradient form, i.e., i = B 
for some 0 E Rt. Using (3.8) in Lemma 2, 

(eH, 6H)W = (eH, U)W + (eHj D, U)W 

=(eH , U) W + (H ,P 0) W 

- (eH, U)W + (DeH, 0) 

- (H, U)W. 

The last step follows from (4.8). Lemma 4 follows by a scale change argument for 
u as in the estimate (6.3). E 

Proof of Lemma 5. The proof is similar to that of Lemma 4. We note that the 
quadrature rule (see Figure 2) 

f (y, z) du f (Q)s 
a~~~~~~~~ 

is exact for constant functions f when the point Q is not the center of the rectan- 
gle O'OBA. By a Taylor expansion we can show that after adding the following 
correction term 

2[fy(p2)p2Q - fy(Pl)P1Q2] P3P4 + 2[fz (P4) P4Q2 - fz (P3) )P Q2 PlP2 
2 2 

the quadrature rule is exact for linear polynomials f(y, z). So on co-face N', we 
split (6E) j as 

(6.8) Sj(6E)j = SjVj V+V. 
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where V (C'v , i.e., V3 iS expressed as a discrete curl. Using Pi, i 1,.*.*, 4, 
Figure 2 shows how this discrete curl is formed in terms of 2: 

(6.9) v7? (P) : (h E2, (P1) + h E1Y (P1)) 

and vl is computed from (6.8) and vanishes for piecewise linear polynomial fields 
E. By summation by parts 

(6E,M7E)w' (V, 1,rE)w + (CV2, DqE) by (3.3) 
(irl'E)w + (D'i2,CT1E) by Lemma 1 

= (iV, iE)W + ?(D 2, SeH) by (4.6) 
(V1, E)wI + ?(i2, H)W by (3.1), 

and the estimate (6.5) follows from (6.9) and the fact that the continuous linear 
functional v. vanishes for linear polynomials E. g 
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