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DISCRETE GAUGE INVARIANT APPROXIMATIONS OF 
A TIME DEPENDENT GINZBURG-LANDAU MODEL OF 

SUPERCONDUCTIVITY 

QIANG DU 

ABSTRACT. We present here a mathematical analysis of a nonstandard dif- 
ference method for the numerical solution of the time dependent Ginzburg- 
Landau models of superconductivity. This type of method has been widely 
used in numerical simulations of the behavior of superconducting materials. 
We also illustrate some of their nice properties such as the gauge invariance 
being retained in discrete approximations and the discrete order parameter 
having physically consistent pointwise bound. 

1. INTRODUCTION 

The phenomenological model of Ginzburg and Landau and its various general- 
izations [25] have been widely used in numerical studies of the vortex phenomena in 
both the low TC superconductors as well as the recently discovered high TC super- 
conducting materials. The mathematical analyses of the numerical methods used 
to solve the Ginzburg-Landau models are mostly confined to the conventional fi- 
nite difference methods in one space dimension [20] and the finite element methods 
in two and three dimensions [2], [6], [7], [8], [9], [10]. In practice, a very popular 
discretization of the Ginzburg-Landau equations is the gauge invariant difference 
approximation defined on a rectangular grid [3], [4], [14], [15], [16], [17], [18], [19], 
[21]. Retaining the gauge invariance at the discrete level is analogous with preserv- 
ing certain conservation laws and physical principles in the discrete approximation. 
It is often a property favored by physicists who have been using these models in 
studies of superconductivity. Numerical evidence suggests that the gauge invariant 
approximation is a valuable approach, but few rigorous mathematical analyses have 
appeared. 

In this paper, we present a mathematical theory for the convergence of a gauge in- 
variant difference approximation of the two dimensional time dependent Ginzburg- 
Landau model. The well-posedness of the initial boundary value problems for such 
a model, the long time asymptotics of solutions and the gauge invariance properties 
have all been studied in, for example, [5], [11], [13], [24] and the references cited 
therein. The finite element approximations have also been discussed by various 
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authors [2], [6], [7], [8]. However, due to the nonlinear coupling, an important 
pointwise estimate for the discrete finite element approximation is missing from all 
the analyses. In order to have a meaningful physical interpretation, such an esti- 
mate must hold, and indeed, it holds for the exact solution of the time dependent 
Ginzburg-Landau equations [5]. We show that, for the gauge invariant approxima- 
tion, the pointwise estimate can be obtained naturally at the discrete level, and 
rigorous convergence theory as well as error analysis can be established without 
any unjustified a priori assumption on the numerical solution. 

The paper is organized as follows. In section 2, the time dependent Ginzburg- 
Landau model is first presented, followed by a description of some useful notation 
and terminology. Gauge invariant difference approximations for the time dependent 
Ginzburg-Landau equations are presented in section 3. In section 4, we discuss the 
properties of the discrete schemes, establish certain a priori estimates and provide 
an error analysis. Some additional remarks are given in section 5. 

2. THE TIME DEPENDENT GINZBURG-LANDAU MODEL AND THE 
DISCRETE VECTOR FIELDS 

2.1. The time dependent Ginzburg-Landau model. Let r be the Ginzburg- 
Landau parameter, r1 a given positive relaxation parameter, (0, T) the time interval 
of interest and Q C Rf2 the region occupied by the superconducting sample. For 
simplicity, we assume that Q is the unit square and the applied magnetic field H is 
either a constant or a linear function of the spatial variables. The primary variables 
used in the time dependent Ginzburg-Landau (GL) model are the complex scalar- 
valued order parameter ob, the real vector-valued magnetic potential A, and the real 
scalar-valued electric potential kt 

In a non-dimensional form, the time dependent GL model is given by 

(2. 1a) f +iKq>o + (iV +A) -+f2 0 in Qx (O, T), at 
(2. lb) 

1( , + V@) + curl curl A = IQ2 V -* V) 112A in Q x (O,T) at /2iK 
- 

where 0b* is the complex conjugate of 0b. The boundary conditions are 

(2.1c) (-V,b+A,b).n=0 on]fx (0,T), 

(2.1d) curlA=H onFx(0,T), 

(2. 1e) r1(A+ Vq)) n = J * n on IF x (0, T), 

where the given applied current J is constant in space and satisfies J -curl H. 
The initial conditions are: 

(2.1f) g6(x,0) = boo(x) and A(x,0) = Ao(x) in Q. 

We assume that ob0 E A (Q) (the space of complex-valued functions whose real 
and imaginary parts are in the standard Sobolev space H1(Q)) and Ao E H1(Q) 
(the space of R2-valued functions whose components are in H1(Q)). In addition, 
we assume that J)ol I 1, divAo = 0 a.e. in Q and A. n = 0 on F. 
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It is convenient to introduce an auxiliary variable 4Da (x, t) - (J * x) /r and de- 
fine ( - 4>-a so that the boundary condition (2.le) may be replaced by the 
homogeneous boundary condition 

(2.2) at +V)* n=O on 1. 

FYom now on, we use (AL, A, (D) as the primary variables for the time dependent GL 
equations and still call 4 the electric potential. Note that the equations (2.la-b) 
can be written as 

a + iw;p'o =-,,(9 A), 

(2.3) a(A ag 

where 5 is the Ginzburg-Landau energy functional ([7], [25]): 

(1 ~ ~ ~~~21 
(2.4) 5(,A) - -V+A b + - L2)2-1-curlA - H dQ. 

4 2 (!v A) 4( 2 H 

The time dependent Ginzburg-Landau equations (2.1a,b) with the prescribed 
boundary conditions are gauge invariant in the sense that if (sb, A, 4) is a solution 
to the equations, so is ( 0, Q, 3) where e = ,iKf, Q = A + Vf, and E = D-f 
Questions related to the well-posedness of the above equations and the fixing of 
gauges have been studied in [4], [11], [13], [24] and the references cited therein. 
The gauge invariance has been a very desirable property for physicists who have 
proposed and who have been using these models.. It is also favorable to maintain 
such an invariance property at the discrete level where numerical approximations 
are made. 

2.2. Meshes and discrete vector fields. In order to simplify the presentation 
and the analysis of the approximation schemes, we now describe a pair of primal 
and dual meshes (or commonly referred to as a staggered grid). Let the primal 
mesh E be a uniform partition of the square Q with No vertices {xj }, N1 edges 
that are denoted by {Sjk} connecting xj, xk and N2 square cells that are denoted 
by {rjklm} having four counterclockwise labeled vertices xj, xk,x1 and xm. The 
centers of the cells are denoted by {Xjklm}. Let h be the mesh size. A dual mesh 
Y' is formed by shifting each cell by one half of the mesh spacing in each coordinate 
direction from the primal mesh (see Figure 1). Centers of the cells in E become 
vertices of E' and vice versa. The cell in E' containing xj is denoted by < and its 
area is IrjI. h> denotes the length of the edge in Z' that bisects Sj,k. hj'k = h 
unless both xj, xk are on the boundary of Q. In the latter case, the dual cell - in 
E' containing the boundary vertex xj is to be modified to only include the portion 
of the cell inside Q so that h k= h/2. 

The gauge invariant discretization of the time dependent Ginzburg-Landau equa- 
tions requires variously defined discrete vector fields. For a vector field vY E U = RNO 

defined by its component vj at each vertex xj, we use the norm 

(2.5) IIihIu,p = (S lvj JPIrII)1/P 1 < p < oc and llvllu,co = max lvj I 
31 
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Tjklm 
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FIGURE 1. A rectangular grid and its dual. The pictures (from left 
to right) are for interior vertices, boundary vertices and vertices at 
corners. 

where the sum 

stands for the sum over all possible vertices xj. We let (, ) be the inner product 
corresponding to the norm fl * ||u,2- 

For a vector field f defined by its value fjklm at the center of each primal cell 
Tjklm having four vertices x3,Xk,Xl,Xm which are labeled counterclockwise, we use 
the convention that fjklm =-fmlkj if the vertices are labeled clockwise and denote 
the set of all vectors with this convention by V. V is a vector space isomorphic to 
RN2. On V, we also define the norms by 

flfl,P = (S jfjk1Mj jrjk1mj)/, 1 p < oc , and flfflv,OO =max lfjklml 
jklm jklm 

where the sum Zjklm stands for the sum over all primal cells Tjklm with vertices 
labeled counterclockwise. The inner product (., .)v corresponds to the norm 11 - 11v,2 

For a vector field A defined at the midpoint Xjk = (Xj + Xk)/2 of each edge Sjk, 

its component ajk represents a tangential vector ajktjk. Here, tjk = (Xk -xj)/h 
is a unit vector in the direction XjXk. We use the convention that ajk = -akj 
and denote the set of all vectors with this convention by W. W is a vector space 
isomorphic to RfN. On W, the norms are defined by 

jfAlfw,P = ( lajklPhhJk)'/, 1 < p < oc, and jlAfljWoO= max ajkj 
jk 

where the sum Zjk stands for the sum over all edges Sjk. The inner product (., )w 
corresponds to the norm || - fvw,2. 

Some discrete operators and discrete inverse inequalities concerning these dis- 
crete norms are also useful. For ui E U, we define W'= Vui E W by 

(2.6) Wjk (VU)jk h h 

on each edge Sjk. 

For g E V, we define w = V'L E W by 

(2.7a) Wjk = (V'1 )jk = gjklm - gjkl'm' 
hk 
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on the common edge Sjk of two neighboring cells Tjklm and Tjklim' and 

(2.7b) Wjk (V'lV)jk h -gjklmn 

on the edge Sjk between two boundary vertices of a boundary cell Tjkim. Obviously, 
we have 

Lemma 2.1. For 2 < p < oc, there exists some generic positive constant c, inde- 
pendent of h, such that for any ui E U, 

(2.8) Iu1i u,p < ch2/p-1 1u,2 

The same inequalities hold when the space U is replaced by V and W. 

In addition, we also have the following discrete analog of the standard interpo- 
lation inequalities in Sobolev spaces. 

Lemma 2.2. For 1 < p < oo, for any e > 0, there exists a positive constant 
c = c(e) independent of h such that for any il E U, 

<,E6ll,p 7Vtl2,12 + C(C)IIUl2,12 

By identifying u7 with a continuous piecewise linear function uh on triangular 
meshes obtained by dividing each primal cell along a diagonal, the above inequality 
follows from the continuous version due to the equivalence of norms between iUl p 
and IIUhiiLP(Q). 

3. GAUGE INVARIANT DIFFERENCE APPROXIMATIONS 

We present a systematic derivation of the gauge invariant difference approxima- 
tions for the time dependent Ginzburg-Landau equations in this section. 

3.1. The discrete variables. The discrete representations of the primary vari- 
ables as well as physically interesting variables are defined at the following loca- 
tions: 

order parameter _b - vertices {xj}, 
electric potential 1 -_ vertices {x;}, 

(3.1) magnetic potential A' midpoints of edges {Xjk}, 

induced magnetic field c5 center of cells {Xjkim}, 

electric current J midpoints of edges {Xjk} 

Let A c W be a vector field defined at the midpoint of each edge. The circulation 
in a typical cell Tjklm with four vertices X3,Xk, XI, xm is given by 

(3.2) Cjklm := (ajk + akl + aim + amj)/h. 

The above can be rewritten in matrix terms: 

(3.3) CA =c, 

where C may be viewed as an approximation of the operator curl. We approximate 
the divergence on each dual cell T; containing the vertex xj by 

(3.4) dj : 1 >~I ajkh k 
3T k --j 
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where the sum Ekj stands for the sum over all neighboring vertices Xk of xj. We 
again have the matrix form 

(3.5) DA = d 

where D may be viewed as an approximation of the operator div. 
A few technical results concerning the discrete approximations of div and curl 

are needed for later discussions. First, direct calculation gives a discrete analog of 
the integration by part formula and the orthogonality of vector fields: 

Lemma 3.1. Let ui, v7 E W, D, C be matrices defined as in (3.3),(3.5), and V, V' 
defined as in (2.6), (2.7a-b). Then 

(3.6) (Du,f)u=-(u, Vf )w V f E U, 

(3.7) (u,) = 
uVf7 

Vg -E V, 

(3.8) CVf = O VfEU and DV'g= V EV. 

Next, the following inequality can be verified using similar arguments given in 
[22], [23] (the discrete operators are the dual versions of those defined in [22], [23]; 
see also [12] for similar results for unstructured triangular grids): 

Lemma 3.2. Let 2 < p < oc. For small h, there exists a positive constant c 
independent of h such that 

(3.9) LudII,p < c (IIDiZIlu,2 + IICiiIlv,2), V i E W. 

3.2. The approximation of the energy functional. The crucial point in main- 
taining the gauge invariance in the approximation is to approximate the integral of 
'V,0 + AV)j2 on a primal cell r1234 by 

h2 
(3.10) 2 0?212 + ?a2312 + ?a3412 + l12 

where 

(3.11) C ~jk 
i 

exp(-iwajkh) -j 
K ~~h 

and exp(-iIajkh) is often called a link variable [1], [14]. Coupling (3.2), (3.11) with 
the use of a one-point integration rule for the integral of (1 - lJ 12)2/4 over each 
dual cell 7j, we arrive at the following discrete formulation of the GL functional: 

gh(7 A) = -1 z k | kexp(-iIajkkh) - 2 
2 K ~~~h 

(3 12) ,jk 

+ E (1- _I'j 2) + 2 (ajk ?akl + alm + amj - Hjklmh)2 
j jklm 

where Hjklm is the component of H e V which is equal to the value of H at the 
center of the cell Tjklm with vertices xj, Xk, Xl, Xm labeled counterclockwise. 
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3.3. The semi-discrete gauge invariant approximation. For all vertices {x;} 
in , let Dj = 4j + -[- a (Xi, t). The semi-discrete gauge invariant difference approx- 
imation is defined by 

(3.13a) /+ ZKjj0j = - af (f,A) at f7~aloi 
at all the vertices {Xj} in E, and 

(3.13b) I (a3k - + 1 agh(,A) 
~at?hh hh aajk 

at the midpoints {Xjk} of all edges in E. The initial conditions are defined as 

(3.13c) oi(O) = V)o(xj) or Xi (?) = 4, o j go(x)dx 

at all vertices and the components of A(O) form the solution of 

(3.13d) CA(O) = c*(O) E V 

and 

(3.13e) DA(O) =-O e U 

where the components of c(O) are defined by 

(3.13f) Cjklm(O) = j curl AOdT, 

in all the cells and C and D are matrices defined as in (3.3) and (3.5). 
Given a discrete vector field f(t) E U for t in a given time interval [0, T], the 

above scheme is invariant under any discrete gauge transformation Tf defined by 

Tf (Q, A, @) = ((, Q, 6) where the components of (, Q, 0) are given by 

(3 =p fe- iKfj qjk = ajk + 
fk 

- 
j and E)j = 4)j - a) fj h and 

at the vertices or edges. 

3.4. The fully-discrete gauge invariant approximation. There are various 
discrete-in-time schemes, for example, the explicit forward Euler methods have been 
used in many simulations. Here, we present a modified backward Euler method. 
Such a method has unconditional stability. 

For simplicity, we take a uniform time step size A\t on a given time interval 
[0, T], although the theory remains valid even if variable step size is allowed. Let 
4n = 4V + bn' where 4)' = - (xj, nAt) for all vertices xj at all time steps. The 
gauge invariant backward Euler scheme is given by 

(3.14a) n -3 -1exp(-iI'iAt)) _ 1 a n) 
At j ( 

ajk _ajk_k 1 aGh 
(3.14b) + - 

(1/,nI An) 
At hhhk &aJ4k 
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for n = 1, 2, ..., N -T/Z\t. The initial conditions are given by 

(3.14c) b = (xj) or 0 jj | o(x)dx 

and the components a.% of A0 form the solution of 

(3.14d) CA? = e(O) E V 

(3.14e) DAO = 0 E U 

where the components of c(0) are defined by (3.13f) and C, D are defined as in (3.3) 
and (3.5). Other interpolation techniques for the order parameter may also be used 
if we only have 0b0 E V1(Q). 

First of all, let us state the discrete gauge invariance property of the above 
scheme. Given f E [RfN]N, with f 0 for any j. Let f (,0,AI ) = (IQ 8) 

where the components of ((, Q, 0) satisfy 
fn _ fn-1 n fn 

(:j =bjeii = J and q7jk = 
ajk f 

at vertices or edges. Then, we have 

Proposition 3.4. For fn E RfNO for 0 < n < N with f 0o = O for any j. If (tb, A, b) 
is a solution of (3.14a-b) with initial conditions (3.14c-e), then so is hf (V, A,l ). 

When performing numerical -simulations, the gauge of the solution should be 
fixed. The above properties, however, make it flexible in selecting a suitable gauge 
for the convenience of a particular simulation. There are various choices to fix the 
gauge (see [5] for the continuous analog). A few possibilities are discussed below 
along with results on the existence of discrete solutions. 

3.5. The London gauge. The London gauge is obtained by letting the vector 
magnetic potential be divergence free, i.e., 

(3.15) E aJn hfl 0 
k--j 

or DAn =. In the London gauge, three variables (s, A, I) need to be solved 
and the computational cost is often increased. There is no existing numerical 
simulation of the time dependent models using the London gauge (even though the 
correspondilng Coulomb gauge is widely used in steady state simulations). We thus 
ignore further discussions of the London gauge. 

3.6. The zero electric potential gauge. For the zero electric potential gauge, 
we require bn = 0, i.e., (Dn = O for all n, j. This can be achieved by letting 

ffn _ fn-_ 

At N 

with f? 0. Note that this implies n =a(Xj). 
In actual implementation, the solution in the zero electric potential gauge at the 

n-th time step may be obtained by solving for the global minimizer of the following 
variational problem: 

(3.16) min gi ) ( 



GAUGE INVARIANT APPROXIMATIONS 973 

where 

(3-17) ghn(j3 A) gh(t/3v A) + - 2 + At2 

for any (b,A) E U x W and be defined by 

(i = 07n 
- 

exp (- (Dn A\t) 

It is obvious that gh.n is continuous and bounded below by 

II1 1l- (1 u2 + 71 
IA-An- II w,2v At - +At A 

so the minimum is achieved in a bounded set for given h and At. Consequently, we 
have 

Lemma 3.5. Given h, At and ( b-',A--')I there exists at least one solution to 
the gauge invariant difference approximation in the zero electric potential gauge. 

Naturally, the above result implies the existence of solutions to the fully-discrete 
scheme under any gauge choice by applying proper gauge transformations. 

3.7. The Lorentz coupled potential gauge. The Lorentz coupled potential 
gauge is the gauge for which the discrete vector potential and the discrete electric 
potential are to be related by bn = ADAn, or 

(3.18) j n- A n 

KTilI \k kj} 

where A > 0 is a given constant. This includes both-?3.5 (A = oo) and ?3.6 (A = 0). 
Using similar ideas as in [5] for the continuous case (see also [13] for related 

discussion), the construction of the gauge transformation hT is given by 

( )n AkZ fk 
n 

.n 1 n 
(3.19) Eh 

j + A ZaJkhJk 

and f? = O. The case A = 1 is often referred to as the Lorentz gauge. We take this 
gauge as an -example for our theoretical studies given in later sections. 

Using gauge transformations, any solution of the gauge invariant approximation 
(3.14) can be transformed into a solution in the Lorentz gauge, so it follows from 
Lemma 3.5 that 

Lemma 3.6. Given h, At and (,bn-1, An-1), there exists at least one solution to 
the gauge invariant difference approximation in the Lorentz gauge. 

4. ANALYSIS OF GAUGE INVARIANT DIFFERENCE APPROXIMATIONS 

We analyze the convergence of the fully-discrete approximation in the Lorentz 
gauge. The key steps include the derivation of an a priori pointwise estimate and an 
energy estimate. For an interesting comparison with their continuous counterparts 
as well as their finite element versions, one may consult, for example, [5], [6]. Here, 
we focus on the modifications necessitated by the discrete approximations. The 
stability estimates are obtained by comparing solutions with perturbations which 
in turn imply the convergence and error estimates. 
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4.1. A pointwise bound on the fully-discrete solution. The time dependent 
GL equations presented in (2.1a-f) are non-dimensionalized; it can be shown [5] that 
the magnitude of the order parameter, 1[1i, remains between 0 and 1 with-+ = 0 
representing the normal state and [ I1b= 1 representing an ideal superconducting 
state. Here, we prove the discrete maximum principle which is presented as a 
property of the gauge invariant scheme (3.14a-e), that is, it holds for solutions in 
any given gauge. 

Lemma 4.1. Let (IbTh, A') satisfy (3.h14a-e). If 1i?0(x)I < 1 for almost all x E Q, 
we have I 1,0' I I < 1 for all n > 0. 

Proof. By the construction of the initial approximation, we have 11kb0ju,co < 1. 
Assume that = H4'lv,OO for some n,j and 1> while 14,kH1v,oo < 1 for all 
k < n. Notice that (3.14a) has the following form 

fb7 - 1 k exp(-iri7At) - 3 

At 
-3 (1- ,nb1.) Vb7 (4.1) 1 h' /'I/n exp(-irnan h)_ V)n 

+ U~~~k (k'k3 ) 

Multiplying the above equation by A\t+jb* and rearranging terms, we get 

(1 + At(k|2 - 1) + SE j n = tb7l * exp(-is33ib t) 

/\t Ehjk OknOn* exp(_iKajn h) 
kT j Vh 

J 

Note that for any j, 

(4.2) 1 hk 4 
I 'T j I h h2 

By the assumption on [i7J , we get 

( 1? 4t) lfpn|2< At hl'k 

(4-3) h71Kkb 
j 

Z-+ K 

Remark. T above r ? 

+ 4,t 

el ? 

12 

Thus, 1,0n < 
kOjn-b 

l < 1. This contradiction proves the lemma. C] 

Rernark. The above result insures that the magnitude square of the discrete order 
parameter has proper physical interpretation as the density of superconducting 
carriers. The same estimate holds for solutions of (3.14a-e) in any given gauge as 
well as the semi-discrete approximation presented in (3.13a-b). 

4.2. A priori estimates for approximation in the Lorentz gauge. Given the 
solution (Sn- A,An- 1) of the n - 1 time step and setting n =-DATn in (3.14a)- 
(3.14b), the difference approximation in the Lorentz gauge at the n-th time step is 
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given by 

jb7 - ~b~i exp(-i,((Dn, + d'n)At) 

(4.4a) ~~~At =(-b~)b 
(4.4a) h n?1 (4exp(-i?an h) _,O) 

( )(a;k an-i) - (V n)jk ( k 

?-I { hif* bexp(ia,kh)} 

where 

(4.5) dn =DAn, and n=CAn 

and V, V' are defined as in (2.6) and (2.7a-b). The initial conditions are defined 
in (3.14c-e) as before. 

The existence of solutions of (4.4a-b) follows from Lemma 3.6. We show later 
that the solution is unique if we take small step size A\t. Similar to [7], [12], in 
order to study the properties of the above scheme, we define the following modified 
free energy functional: 

(4.6) dFh 
nh=Ah)=g5(4 ,Ah)+ 

2 ( 
ajkhakV 

Then, one may rewrite (4.4a-b) as 

(4.7a) +7- //Liexp(-i,i(+dfl)At)) j1k 

and 
n n-i 

(4.7b) '\ t hh[An)- 

To establish the energy bounds, we have 

Lemma 4.2. There exists a positive constant c, which depends on the given pa- 
rameters n, q and the final time T, but is independent of h and At, such that for 
small At, 

( Fhbn vAn) + Z + { Ilm - ,-lu2 + Am - Am 1i,2} 

(4.8) m=i A 

< cFh(#, A?) + cIJ12 

Proof. We consider 

Fhn(An An) - yhQ4n-1 n- 1) 

(, n An)(n _ n-l) + (n An) (An n-1) 

4OAn 
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term by term. First of all, by Lemma 3.1, we have 

- + H2CA _- H2- 2IDA ,2 - IICA1 - H ,2) 

+ (Vdn, A - An - ( - A - 
A- 

-2 ( AD( - 
A jU2 + IIC(Ah A 

-2 

Next, since (1 + Z2)2 is a convex function of z, simple calculation gives 

21 
[(1I- -Ojnl2)2 _ (1 _ -n-I - f{(1 _ -Onl2)1n(n* _ n-l*)I] 

1<T I IOjgn _ n-112 

The term that needs some calculation is 

hhlk F n/exp(-ina kh) _/fj12 I_ n1exp(-icaQ nh) O- 
121 

jk jkl bj 

2 hJk {( exp(-isaJkh) - b7) ( h2* 

+ hj k R{i,V)*,V)7nexp (i,4;aAkh) (a^ k- aJk) } 
jk 

By expanding terms, we get 

2 E hs2 [j k 1| jk (V 2{n xtia )jn* pjlfn-l* lfn- 
h K[~/n2 +h/~ ~-~~ 

jk 

+ 2~R{+kb1 extiakh+ + 2Ri{'V4n extiaJk)j }- 2|k|2 

- ~{'V4 p(ifaJh+ + 2lR{Ib7jbl/j-*} + 2~R{'+b exp(i n kh>)b*} 

- kL4 22R{+j/ exp(iNaJnk h)+kV-l* } + 2R{bnfbn1* } 

? 2~R{ifiIL*nb fj epianh(Xk- aj1)h}] 

Combining like terms, we have 

I= 1 k [2 {+ 1 12 7 - 12Rn* (exp(-ina wnh) -exp (in rwnk h) ) } 
jk 

+ 2n-I {i'nab exp(ih;an2kh)s;(ak jni- a1 )h} 

o exp -i n 
) exp(-is ,a .k h)-(q/jn I_b fl ex1 )n h2 I 
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Rearranging the terms, we get 

jk L=h 
( -exp(-in(an -agn-l)h)) } 

{b71b71 (- exp(-irc(a k )- -nh)-i (a 
n 

a k)h) } 

-~{ ( 'V{ exp (-isia k h) - ~b) <n* s(an k- aXJ) } 

1 (I( -) j jexp(-ijakk h)jk 
2 h -)k3 

where we have used {i +*}= 0 and ={+ 01^-*-.- It follows that 

E hhjk [|/+n exp(-i,Ma~j1h) - |IiiaJk -a 
1 + ,62|an -a) 

+ |k exp(eixaikah) -j KJa_a1] 

z hhj 2 + 2 h 

jk 

+ ~t (lfk xp i1j h-j ? /4nexp(-irKajkh) -/7jn2'\ 

? _ _ ep_ in n h e (-ii a 1 ) - ~ __ _ _ __ _ _ 

Therefore, 

,FhQi,n ,An) _ yh(g;n-l,2in-l) + 1- {Ikbn _ /-lH2u2 +iA ?lAH-nllw,2} 

4<~ (Fth (4,/n,An )?+Fh (4, n-l,An-l )) ? (1 l ) ljA A -AI -l 12 

+ k( - 
k n-1 ;n-1 - n-a ) 

where Q,n-l is given by 

n _ expt(-iK(k + d )t) 

Since 

2-t 1 ne inaIu2 < cnJ1 2dt ?V)nex ian/\1 

< clJj2dt ? hQlbn, Wn)z\t, 



978 QIANG DU 

we have for At small enough, 

(1- -- 2 )rh(n,7n) (1+ _)_ n An 

+ 1 ln _ V)n- 1l An _A-n-I 112W C|jj2At - 
?2At {Hiv - 'VH 2 ? 7+ All 2}?cJAt 

By the discrete Gronwall's inequality, we may conclude that there exists a positive 
constant c, independent of h and At such that for any 1 < n < N = T//t, 

(4.10) FhQ,2bn An) < cFhQVP ) + cIJI2 

Summing the equation (4.9) over n and using (4.10), we get the estimate (4.8). CL 

To complete the estimate, we note that with (3.14c-e) and Lemma 3.2, it is easy 
to show that for h small, 

Fh(/O, AO) < C 

for some positive constant c, depending only on the initial data and the given 
parameters i, and H. So, we have 

Corollary 4.3. Given the initial data and the parameters s, 71,J, H and T, for 
2 < p < oo, there exists a generic positive constant c, independent of h, At and n, 
such that for h, At small, we have 

NAT( _# 2 2. 

E At A + At <C 
n=1 ~ 't 

u,2 
At 

w,2 

(4.11) IICAAn 11v,2 + JIDAn 11u,2 < C 

jjAnjjW,p < C 

IIVn 11w,2 < C, 

11n11ju,oo < 1. 

Proof. The first inequality in (4.11) follows from (4.8). Since 

Fh `n,An) ? C 

the second inequality in (4.11) follows from the definition of yh* In turn, the 
estimate in the p norm for An follows from Lemma 3.2. 

Note that 

Izhh' n 
2exp(-inaAnh)-,Ojn - 2 

jk j 

< 2FhQV7 An) + 211A wl,2, 

we get the bound on |IV+IOw,2. 
Finally, the last inequality in (4.11) follows from Lemma 4.1. 

Remark. The corresponding version of (4.8) in the zero electric potential gauge 
(see ?3.6 and replace Fh by gh) is much easier to be verified due to (3.16)-(3.17). 
Nevertheless, it would take more work to establish the estimates similar to (4.11) 
in that gauge. 
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4.3. The comparison of solutions. FoI a pair of vectors (fn, j) E U x W, we 
consider the pair (('P,Q2n) E U x W that satisfies 

- -P;1 exp(-ihz ; +a, )t (1_,nll)pn 

(4.12a) + 
i, h>k ((P exp(-ijakh 

- + f7 X 

A/($,t jt ) Vnik(l 

(4.12b) n7n) n 

+r + R {ih'pk exp(iKajkh)} +% k f 

where jn = D2tn and ,d = C2Vt. 
Assume that (fi, 2t7) satisfies the same estimates given in Corollary 4.3 for 

(/fl, An) (with the same generic constant c that is independent of ZAt and h). Let 

+ 

-ril 
K2' h j- 

k n n =,-1_g 

(4.12b)~e: At_. 

I n dn ~ n 
+ ~k~3 expiK,'k)+g 

We then have 

Theorem 4.4. Gven the initial data (sam, esi) and (gi,v) and the parameters 
nc, nJ, H,wT, there exists a generic constant c > 0, independent of h,A t and ni, 

such that for h, LAt small and 1 <i n N I = T t,we have 

+ (71 + c/\t)II|e IIw,2 + tlflu2+ /\tii llw 2 

Proof. Subtracting the equations for the corresponding variables, we get 

n n-i~~~~n 

%En _ OEn - % exp(-i, njn + d)n )t) 

z~t 

=ton-i 
/ ep flAi\; Xt ( exp(-i60jZit) -exp(-isd>n/t)'\ 

+ ( 1 - - 2 2 ) n ( d1 - on 

(4.14a) + 1 E h_ t (2 <exp(-iICatkh) 7% ) 

143 ( exp (-i eCkh1) 1ni2e n k ) tj exp(-icajkhj) 
IT;I 2 1e +,2 e tllf -,2 w i 

irn- 1 hXp ;kie7sO nP(i/hakh t-) 
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and 

At (ejk- e'k) = (V8T)jk -(V T 

+ 
I 

R {ian*pj exp(inajkh) + io n* ac exp(iaj7kh)} 
(4.14b) + 1 {/)*_ / ,) (exp(inajnkh) - exp(ia7nk h)) } 

+-J {kia* (aj exp(inajkh) -ka) }- k. 

Multiplying (4.14a) by J-r jlao*, taking the real part, and summing over j, we gel 

(4.15) 

ll&nilHU,2 -ll H1uv2 2 Z I7jl la-' - a'1 exp(-i(n + dn)dt)|2 
2At + 3 i j 

3 

1 e exp(isnZAt) -exp(indjnAt))} 
E |r'|R l fn-l~~~an'* exp(-iecn . t) \)| 

+ S I j? {[(i I )0n- (1 _ I 
#On12) pn]3n*} 

j 

+ hjk n{ ( exp(-inankh) -ajn) } 
j k-,j 

+ z z hx { (exp(-iien4kh)- 1 + isenk ) 

3hh,k 3 {i fj kn exp(expjkh) jk j k- 

J J 

=:Ill +112 +11I3 +114 +115s+11I5 +116 +117 . 

We note that 

I1 z z hik { (aknexp(-isfainkh) -ayn )n* } 

hhjk |kn exp(-inajnkh)-j jn2 
3-E ,g,2| h h 

jkk- 

Moreover, 

_ hhJk |ah exp(-i neakh) _-an 12 

K2 h 3h 
jk hh' a epinanh 

~ 

< k jk ak | +32hh- kc a7k|a 

jk jk 
_ + 8&~~~~H~~4HA kaH'lk j 
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Using the uniform estimate on IIA11,w,4 in Corollary 4.3 and the inequality in 
Lemma 2.2 with some appropriate c, we get 

8 11T au,4 IA Tw,4 - 20 a Vnllw,2 a+ C uaTh,2 

for some generic constant c. Thus, 

Ii? E hh'k a4nexp(-ina nkh)-aJ 
a 

12 < 
2 K2 ~~~h 20~ Va H14,2 +Ca u,2. 
jk 

Concerning other terms in the equation (4.15), we have 

2 
n-1 a sJ { '-ar* exp(-i,/An.At) 

(exp(-iniZAt) - exp(-isdjnAt)) } 
<S Toj |3 4 |7 ? H u 2 + HaI u,2 

The estimate -< 1 is used in the above. Next, using monotonicity, we have 

113 S ~E {[(i _ I ljn12)ojn _ (1 _ 
Ipn12)pn]an*} < 0 

j 

Noting that lac'l < 2 and lWnl < 1 we have 

II4 
55 f 

| 
(exP 

2)S? 

x(-iseKh) 1) }i~1h\:ALi2~ 

< S hh~ejk en 2 &?jn < 4H1eHn ,2. 
3 kk j 

Also, 

h5 zz hhejk |inenkho _exp( i_ajkh)ie - *} 

142 h' (Pk expiaj`haexp(-isaikh)-oj| 

?5 n52 CeJ~ I YJn h1 

.i k-k 

hhn - A)12gl nn exp(-najnh) j 

Using the uniform bound on jFh((p, 2(a) and the inequalities in Lemmas 2.2 and 
3.2, we get for some generic constant c(> 0, 

115 k h 3 

6s2 | |V?tn || v,2 + 4H |I I u,2 + 4V -||Hn||v,2 + C | |an | | 2. 

In addition, we have 

j kj* 

TIIh : n i2 1+ n n - IV2 lt l,n 2 + ll6b l 1.1_n12uCl,n2 
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and 

117 ' j 
j{finn*} ?2 !&u 2 + 2fn u2 

By the above estimates, (4.15) implies 

2t a u ,2 - 11-1112) + 32 |V | a w,2 

1 hh'k an exp(-ina nkh)-caY 2 

(4.16) 2ty ek ak hi 3 

jk 

(4 .172 + - 4on 1_1 2 2 1 
?: C I,2 + 4 w,2 + 211U2 + 4IY IIv2 + 211 . 

Meanwhile, multiplying eYkhhjk to the equation (4.14b) and summing over all 
edges Sjk and using summation by parts (see Lemma 3.1), we get 

2At (H wH, 2 - 1e* 11w,2 + He - eH 2) + 11U, + IIYnIIv,2 
- h : k = { ia n*n exp (iKajnk h) enk + iso,n*jn exp(inaJk h) enk} 

jk 

(4.17)K+S hhk { el- )exp(i/an h) - exp(i/ n}h) 

(41) + z hhk {i(afnlOn_ * (Y ,x(ix,h)- j)eki ahh~kge n 
jk h~~~k 3jkj 

jk 

jk jk~ ~ 

1 6 11 
, 1112 + j111 4u,2 + 4IVY Hi,2 +CH&2Hl,2 

by the derivation given earlier. Using the pointwise estimates k/{7l ? 1, 'fkl K 1, 
No t 2 and t k ? 2, we get 

"'2 E R h ian* - apn* ajn) (exP(iKaknh)- exp(inank h) e) 

jkLI ) 

? 5Hleni2 ,2. 
Also, 

1113 : hh> R {i(nn*) (i7 exp(ijjkh kh) - n) ek }| 

? 2ll nll2 + 5 hh?k aiexp(-iKajkh)-agj2 

i k-i~~j 
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Clearly, 

Z:Ehhjk |g7kejk ? < le ,ll2 + w,2 
jk 

Thus, (4.17) implies 

(11 (|| 
2 
11w 2-n||- 11|2W2 + |1 -n _ e n-1 112 2)+3 llb l2 +3 1ll2 e 

L,2 - eflW1,2 + e~f n HW2) + 1 ni 2+ 
- 
VYHiv,2 

(4.18) < 61le- |2 + _||9 Iw 2 + 6 2IIVdi||w,2 + C|| ||u,2 

+ EZ hhk an exp(-inankh)-aan 2 

jk 

Finally, combining (4.16) with (4.18), we have 

(4.19) At- k2 
a 

Ku2) + At (Ie |,2 - He H 2) 

? Cfl&1 u,2 +CHeThw,2 + 1if lLu,2 + ll3 11w,2 

for some constant c, independent of A\t and h. Hence, 

(1 -_Ctt)11&n Il2 + (_Ct)lln11 w2 

CA(1 ? t) 1i1 11 ,2 + (7q + CAt)I|1n 1 2 2 + itiifn2 + Atll12 

We see that (4.13) is valid for small h and A\t. D 

It follows from the discrete Gronwall's inequality that 

Corollary 4.5. Let the initial data (fb?, A?) and (p0, %1?) and the parameters K, 7, 
J, H, T be given. For h, A\t small, there exists some constant c > 0, independent of 
h, A\t and n, such that for any 1 < n < N = T/zAt, we have 

(4.20) 
n 

II6njI2 2 + 11enII2w 2 I<C a(-0112U 11-0112 2 
+ 

C 1\t n11 lu2 +13i 2 ) IIH,2 +IeIw,2 ? C( II UI,2 + IIOI,2) +cU (fi,2 + IrI1K2) 

Remark. One may view the estimate (4.20) as a stability property for the fully- 
discrete schemes in the Lorentz gauge. The result is independent of the regularity 
estimates on the solution of the continuous system (2.1a-f). 

4.4. Uniqueness of the discrete solution. The comparison estimates obtained 
previously have a number of consequences. First of all, we have the uniqueness of 
the fully discrete solution in the Lorentz gauge. 

The6rem 4.6. For small A\t and h, the scheme (4.4a-b) has a unique solution. 

Proof. Let f n = , = . Assume that for some n > 1, -n-1 = 1n - and 
= An-. If both (, n,QV) and ( bTh,At) are solutions of the fully-discrete 

scheme, then we have from Theorem 4.4 that 
-l?nn pnl 2 + -n _Ai2w II_m - iu,2 + IA _ -n11w,2 < 0 

Thus, V)n = (pn and An = 9JLn. Thus, the solution is unique. El 

The above result indicates that the Lorentz gauge is indeed a valid gauge choice 
in the sense that with this gauge choice, there exists one and only one solution to 
the discrete approximation scheme. 
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4.5. Error estimate. In the following, we assume that the exact solution ('b, A) of 
(2.1a-f) in the Lorentz gauge is sufficiently regular. At tn = nA\t, let the components 
of f n be defined by 

(4.21a) (,0 : )(xj, tn) 

and the components of 2JJn be defined by 

(4.21b) ajk jA((1 - S)X + SXk, tn) * tjk ds 

Using a priori estimates for the time dependent GL equations (2.1a-f) similar to 
the ones in [5], we can easily verify that, by properly choosing (or redefining) the 
generic constant c, (,Fn,%2n) satisfies the same estimates given in Corollary 4.3 as 
its gauge invariant approximation. Let Jn = D2n and A = C2n. Then, direct 
calculation shows that 

-7j _ n- l exp(-i,(,,nJ + D j ) At) 

(4 . 22a) I > h j S ( (9n exp(-iPajnkh) _n ) +fn 

(4.22b) 2 ( At ) = (VD )jk - (V'(Fn - 
H))jk 

+ + R {i kn 'p exp(inajkh) } + gjkt 

for some fn and !T which satisfy 
n 

(4.23) 
n 

\t (HP H2u2 + <gH1,2) ? c(L\t2 + h4) , for n = 1, 2, ..., N, 

where c is a positive constant depending only on the appropriate norms of the exact 
solution (,b, A). One may consult [5], [13], [24] for the regularity estimates for the 
weak and strong solutions of the time dependent GL equations in various gauges. 

Using a similar error estimate as those given in [22], [23], we have 

(4.24) 111P - A? jjw,2 < ch2JjAoj|2,QX 

for the initial data Ao E H2(Q). By Corollary 4.5, we get from (4.23) and (4.24) 
that 

Theorem 4.7. There exists a positive constant c which depends on the norms of 
the exact solution (,b, A) and the given parameters ,, 77, J, H and the final time T, 
but is independent of h and A\t, such that if (,b, A) is sufficiently smooth and A\t 
and h are sufficiently small, then for any 1 < n < N, we have 

(4.25) _ |Vn - 91ju,2 + IA _- nj w,2 < c(Z\t + h2) 

where (Fn, An) is defined from (b, A) by (4.21a-b). 

When variable time step is used, similar estimates may be derived. Error es- 
timates may also be obtained for approximations in other gauges as well as the 
semi-discrete gauge invariant approximation. 
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5. CONCLUSION 

The discrete gauge invariant difference approximation is a popular method used 
by physicists and mathematicians to study the vortex phenomena in supercon- 
ductors. The above discussion provides a rigorous mathematical theory for this 
method. The techniques presented here may be applied to analyze other types 
of fully-discrete schemes, such as the explicit time-stepping scheme used in [17] 
and other more efficient implementation of the nonlinear coupling. By generaliz- 
ing the ideas given here and [12], one may also develop and analyze a covolume 
approximation for the time dependent GL equations on general triangular grids. 
The numerical implementation of the discrete gauge invariant approximation has 
already been used in simulations of three dimensional problems (e.g. [3], [16]). One 
may also try to generalize the theory to such cases. In addition, the pointwise 
estimate on the order parameter / proved here has not been shown for the finite 
element approximation of the time dependent Ginzburg-Landau equations. The 
above discussion may provide some hints on how to modify the standard finite ele- 
ment methods by using proper coupling of the nonlinear terms and the quadrature 
formula to insure the validity of the pointwise bound on the finite element approx- 
imation of the order parameter /. Further studies of the above issues are under 
way. 
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