
MATHEMATICS OF COMPUTATION 
Volume 67, Number 223, July 1998, Pages 1001-1021 
S 0025-5718(98)00953-3 

EFFICIENT RUNGE-KUTTA INTEGRATORS FOR INDEX-2 
DIFFERENTIAL ALGEBRAIC EQUATIONS 

J. C. BUTCHER AND R. P. K. CHAN 

ABSTRACT. In seeking suitable Runge-Kutta methods for differential alge- 
braic equations, we consider singly-implicit methods to which are appended 
diagonally-implicit stages. Methods of this type are either similar to those of 
Butcher and Cash or else allow for the importation of a final derivative from 
a previous step. For these two classes, with up to three additional diagonally- 
implicit stages, we derive methods that satisfy appropriate order conditions 
for index-2 DAEs. 

1. INTRODUCTION 

This paper is concerned with the use of diagonal extensions to singly-implicit 
Runge-Kutta methods for the solution of index-2 differential algebraic equations 
(DAEs). The methods we discuss fall into two main classes. The first of these is 
based on the use of an n x n singly-implicit block to which are appended m further 
diagonally-implicit stages, as in Butcher and Calsh [6]. In that paper, since stiff 
problems were the intended application, the appending of additional diagonally- 
implicit stages was motivated by a wish to include all stage abscissae within the 
overall step, but at the same time to preserve A-stability. In the DAE context, 
assuming that there is no stiffness, there is no need to demand good stability in the 
left half-plane but only at infinity. Hence, our aim here is to add the diagonally- 
implicit stages only for the purpose of improving performance of the method as a 
DAE solver. 

In addition to standard singly-implicit methods, we consider a slight generaliza- 
tion originally proposed by Butcher [5]. In this generalization, the derivative of the 
solution used at the end of a previously completed step is used to obtain an order 
n + 1 for the approximations produced in the n x n singly-implicit block with which 
the step commences. This is formally equivalent to regarding the method as having 
a first stage with zero abscissa placed before the n x n singly-implicit block. For the 
purposes of our search for methods for index-2 DAEs, we will add m further stages 
after the singly-implicit block. If we interpret the method as having a preliminary 
explicit stage with abscissa 0, this will make a total of n + m + 1 stages. 

In Section 2 we explore in more detail the structure of the methods we are 
seeking and the order conditions that will be imposed. Section 3 contains a survey 
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of properties of Laguerre and generalized Laguerre polynomials that are needed in 
the later parts of the paper. Section 4 reviews some known properties of singly- 
implicit methods and their generalization. In Section 5 we derive the details of 
the extended singly-implicit methods satisfying appropriate conditions for index-2 
applications. A similar analysis is carried out in Section 6, but based on generalized 
singly-implicit methods. Finally, in Section 7, we consider the transformations of 
the method coefficients necessary for efficient implementation. Those elements of 
the coefficient matrices, not already evaluated in Sections 5 and 6, are derived as a 
by-product of the use of transformations. 

2. STRUCTURE AND ORDER CONDITIONS 

It is widely accepted that a high stage order is a desirable property of Runge- 
Kutta methods for the numerical solution of stiff ordinary differential equation 
systems and differential-algebraic systems. We consider methods (A, b, c) for which 
the stage order is n and for which the step size is wh. Since we will be considering 
singly-implicit, and closely related methods, it is convenient to use the scale factor 
w so that we will be able to normalize the repeated eigenvalue of A to 1. With this 
assumption, stage order n will mean that B(n) and C(n) each holds, implying that 
the classical order is also at least n. By the condition B(n) in our normalization, 
we mean that 

ew 

(1) bTP(c) = j P(x) dx, 

for any polynomial P of degree less than n, and by C(n) we will mean that 
c 

(2) AP(c)= j P(x) dx, 

also for any polynomial P of degree less than n. Note that in (1) and (2) the 
evaluation of a polynomial with a vector argument is to be interpreted component- 
by-component. 

In applications to index-2 DAEs of the form 

Y= f (Y, z), 
0 =g(y), 

Hairer, Lubich and Roche [9] have shown that a method having stage order q with 
a nonsingular A and a stability function R(z) with JR(oo)I < 1, also has order q in 
both y and z. Furthermore, their results also enable conditions for higher order to 
be deduced given the stated assumptions. In particular, it is shown in [3] and [7] 
that to achieve order q + 1 in y requires B(q + 1), and order q + 1 in z requires the 
additional conditions 

(3) bTA-lCq+l _Wq+ 

(4) bTA-2Cq+l= (q + l)wq, 

while order q + 2 in y requires the classical order conditions, B(q + 2) and 

(5) b q Wq+2 

(q +1)(q?+2)' 
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as well as (3) and 

(6) bTCA-lq?l =q +q wq2 
q+2 

If q = 1 the condition bT(A-lc2)2 = 4w3/3 is also needed for order 3 in y. 
Stiff accuracy is also a desirable property of Runge-Kutta methods in applica- 

tions to index-2 DAEs besides stiff ordinary differential equations. Since the last 
stage value is the same as the update the algebraic constraint is automatically satis- 
fied. Advantages of the property, bT = eTA, where s is the number of stages, include 
the result for a nonsingular matrix A that bTA-lc = w3 for all j = 0, 1, 2 .... In 
particular, R(oo) = 1-bTA-le = 0 so that R(z) = -bTA-2e/z+O(z-2) as z -+ oo, 
and the condition (3) is automatically satisfied. 

In seeking efficient methods for index-2 DAEs we develop singly-implicit blocks 
that have a one-point spectrum, normalized to unity for convenience, and append 
diagonally-implicit stages with unit diagonal entries. The extended methods we 
seek have the form 

a,,, al, ? - 0 bi X1 

anj, ... an,n 0 ... 0 bn Xn A = 00*. b= C 
an+l,l ... an+l,n 1 0 bn+l Xn+l 

an+m,l ... an+m,n an+m,n+l *-- 1 _bn+m Xn+m- 

The reason for appending the m stages to the standard sinigly-implicit scheme is 
to improve the overall performance. Implementation costs increase with n and it 
is hoped to obtain some of the advantages of higher order without increasing the 
stage order. Thus, we are looking for similar advantages in the use of diagonally 
extended methods for differential-algebraic equations as are claimed by Butcher and 
Cash [6] for stiff ordinary differential equations. We also impose stiff accuracy so 
that an+m,j = bj for j = 1, .-. , n + m - 1, and bn+m = 1. As a useful consequence, 
we have R(oo) = 0. However, in seeking diagonal extensions of singly-implicit 
methods with the property of stiff accuracy and having scaled abscissae contained 
in the interval [0, 1], we would require the abscissa for the last stage to be the 
largest. 

Similarly, we consider a generalization of the extended methods having the form 

(7) A= [~~~~ao A' b [' cJ 

where ao = [a1,o,... ,an+m,o]T, and A, b and c are as prescribed along with stiff 
accuracy including an+m,O = bo. The idea is to obtain a stage order one higher 
than the standard method. However, an important difference is that because the 
matrix A is singular, stiff accuracy does not imply that R(oo) = 0. In this case, 
R(oo) = 1 - bTA-2c, and R(z) = R(oo) - bTA-3c/z + O(Z-2) as z -> oo- Thus, 
R(oo) = 0 requires the additional condition bTA-2c = 1. 

In actual implementation, the evaluation of the derivative at the first stage would 
not take place because it would already have been evaluated along with the corre- 
sponding stage value as the last stage in the previous step. 
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It is convenient to reformulate some of the order conditions that will be used in 
the subsequent analysis. With w = bTe we define 

C*(q) if ck= kAck-i, k =2,...,q, 

B*(p) if Wk = kbTCk-l, k = 2, ... ,p. 

It is easy to show that C* (q) is equivalent to 

(8) A(p(c) = j (p(x) dx + (p(O)(Ae -c), 

for any polynomial (p(x) of degree less than q, and that B*(p) is equivalent to 
w 

(9) bTp(C) ( p(x) dx + (p(O)(bTe- 

for any polynomial (p(x) of degree less than p. 

Theorem 1. If A is nonsingular, C*(q) (respectively C(q)) is equivalent to 

A(p (c) = (p'(c) + p'(O)(A-c - e) 

+ (p(O)A-1e (respectively (p'(c) + (p(O)A-1e), 

for any polynomial so(x) of degree q or less. 

Proof. If C*(q) holds, then ck = kAck-l or, if A is nonsingular, A`lck = kck-I for 
k = 2,. .., q. Let S(x) = ELO dkxk so that 

q q 

A' p(c) = E dkA-Ick = Z dk (kck-l) + (p'(O)A c + (O)A -e 
k=O - k=2 

= (p(c) + p'(O)(A-lc - e) + (O)A-le, 

and the result also follows if C(q) holds, for then A-1c = e. Conversely, if 
A-1p(c) = (p'(c) + p'(O)(A-lc - e) + (p(O)A-1e (respectively A-1I(c) = (p'(c) + 
(p(O)A-1e) holds for a polynomial (p(x) of degree q or less, then (p(c) = Ap'(c) + 
'(O)(c - Ae) + (p(O)e (respectively (p(c) = Ap'(c) + (p(O)e) holds in particular for 

9p(X) = xk, k = 1, . .. , q. This yields C* (q) (respectively C(q)). O 

Corollary 1. Let C*(q) (respectively C(q)) hold with stiff accuracy. If A is non- 
singular and p(x) denotes a polynomial of degree q or less, then 

bT A 2(c)- = (w) - p(O)R(oo) 

+ p(O)bTA2e (respectively p'(w) + p(O)bTA2e), 

and, if in addition B*(q + 1) (respectively B(q + 1)) holds, then 
w 

bTcA-l(p(c) = w(P(w) - j p(x) dx + (p(O)(bTcA-lc - w2/2) + p(O)bTcA-le 

(respectively = w~O(W) -j p(x) dx + po(O) bTcA-le) 

Proof. Since C*(q) holds, it follows from Theorem 1 that 

A-2 ( c) =A- 1 '(c) + p'(O) (A-2c - A-1e) + (o(O)A 2e, 

bTA 2p (c) = bTAUPI (C) + o'1(O)(bTA2C - bTAle) + p(0)bTA e 

= 9'(w) - p'(O)R(oo) + p(O)bTA-2e. 
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The result for C(q) follows since it is equivalent to C*(q) and C(1) with the latter 
implying that R(oo) = 0. If B* (q + 1) holds in addition to C* (q), then Theorem 1 
and (9) yield 

bT cA-l(p(c) = bTc(pI (c) + (p'(0) (bTcA-lc - bTc) + (p(O)bT cAle 
w 

j xo'(x) dx + '(0)(bTcA-1c - W2) + p(0)bTcA-le 
o~~~~~~~~~~~~ 

w 

W9O(w) -j (p(x) dx + 'p'(O)(bTcA-lc - w2) + p(O)bTcA-le. 
o~~~~~~~~~~~ 

If B(q + 1) holds in addition to C(q), then A-1c = e and the coefficient of (p'(O) 
vanishes giving the result in this case. D 

In this paper we seek stiffly accurate extended methods (respectively their gen- 
eralizations) for the cases m = 1, 2, 3 having stage order n (respectively n + 1) with 
order n + [(m + 1)/2] (respectively n + m) in y and order n + [m/2] (respectively 
n + 1 + [m/2]) in z for index-2 DAE applications. 

The analysis involves substantial use of the properties of Laguerre polynomials. 
These properties as well as those of the generalized Laguerre polynomials are sum- 
marized in the next section for convenience of later reference. The details are given 
in the sections that follow. 

3. REVIEW OF LAGUERRE POLYNOMIALS 

In this section, we survey some properties of the Laguerre polynomials Ln and 
the generalized Laguerre polynomials Ln$. In each case these polynomials are 
defined with degrees n = 0,1, 2, .. ., by the orthogonality conditions 

j Lm(x)Ln(x) exp(-x) dx j L$(1) (x)L$ ) (x)x exp(-x) dx 0, m -7 n, 

and by the normalizations 

Ln(0) = 1, L(l)(0) = n +1. 

All the results are standard (see, for example, [1] or [8]) or are easily derivable from 
standard results. They are presented here for easy reference in the later sections 
of the paper. They are organized for convenience as collections of closely related 
formulas in the form of theorems and corollaries stated without proof. 

Theorem 2. The polynomials Ln and L(1) are given by 

(10) Ln(x) = E ) (i ) 

( 11 ) Ln9(x) E ( (x+ = ) i 

Corollary 2. The squared norms of Ln and LW1) are given by 
r00 

j Ln?(x)Ln?(x) exp(-x) dx = 1, 

j L$1) (x)L$1) (x)x exp(-x) dx = n + 1. 
n n 
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Theorem 3. 

(12) nLn(x) + (x-2n + l)Lnl(x) + (n-1)Ln2(x) = 0, n =2,3, ... 

(13) nrL()(x) + (x-2n)L($)i(x) +nL1) 2(x) =0, n =2,3,..., 

(14) xL'(x)-n(Ln(x)-Ln_l(x)) = 0, n = 1,2,..., 

(15) xL ()'(x) -nL )(x) + (n + 1)L') 1(x) = 0, n = 1, 2 ... 

(16) l(x)-Ll- (x) + Ln- (x) = O, n =1, 2, .. 

(17) L$L )/(x) (x) + L(1) 1 (x) = 0, n = 1, 2,. 

Theorem 4. 
x 

(18) Ln (t) dt Ln (X) -Ln+ (X) 

x 

(19) j L()(t) dt = 1 + L(')(x) -L(1)x 

x 

(20) j tLn (t) dt = (x - 1)Ln(X) + (2 - x)Ln+l(X) -Ln+2(X), 

x 

(21) j tL() (t) dt = (x - 1)L(1) (x) + (2 - x)L(1) , (x) -L(1) 

j t2Ln () (t) dt (x2 - 2x + 2)L(l) (x) + (-x2 + 4x - 6)L(l$ (x) 

(22) + (-~x + 6)L1+2((x) - 2L$1+3(x). 

Theorem 5. For n-1, 2, . ... 

n-I 

(23) (y - x) E Lk(x)Lk(y) = n(Ln(x)Ln-i(Y) -n(y)Ln- (X) 
k=0 

(24) (y - x) k L k (x)Lk (y) = L(1)(x)L()1 (y) - L()(y)LL(1) (x) 
k=0 

Corollary 3. Let Xli X2... Xn denote the zeros of Ln (respectively L(1)). The 
inverse of the matrix with (i, j)-th element given by Lj1 (xi) (respectively 

xiL(1) (xi)/j) is the matrix with (i,j)-th element given by xjLi-(xj)/n2Ln-1 (Xj)2 

(respectively L 1), (xj)/(n + 1)L 1) I (xj)2). 

4. SINGLE IMPLICITNESS GENERALIZED 

Consider an n-stage Runge-Kutta method, 

~a,,,.. al,n- -bi -X1 
A ~ ~ ai] b= [ C] - T 

anj 
... 

an,n_ bn- XSn 

If the stage order is n and the abscissae distinct, the matrix A is determined by C(n) 
and the vector of weights b by B(n) in terms of w = bTe. For if V = [e, c, ... , Cn-1] 
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and C = diag(xi,. .. I, xn) then 

AV = [c, I C2) I. . .I Cn] = CVdiag(l, I) . .) 

bTV = [w, IW2, ... I ln. ] 

and the nonsingularity of A follows from that of the Vandermonde matrix V. 
The method will be generalized by importing to the current step the derivatives 

computed in the previous step. This is equivalent to the Runge-Kutta matrix 
having a first row of zeros. The generalized method (A, b, -) thus formally consists 
of n + 1 stages and is partitioned according to (7), where ao = [a1,o,... , an,ofT. It 
is constructed slightly differently to give a stage order one higher than the standard 
method but implementable at little additional cost. With stage order n + 1, the 
matrix A is now determined by C* (n + 1), the vector ao by C(1), the weight vector 
b by B*(n + 1), and bo by B(1), for 

ACV = [C1 c2IC3 ... I 1 Cn+l] = C2V diag(Q 23* * 1*)) 

aO = c-Ae, 

bTCV = [-W2 W3 ...1 wn+l 

bo = w - bTe, 

and A will be nonsingular if the components of c are distinct. 
If A has a one-point spectrum, the singly-implicit (respectively generalized singly- 

implicit) method will be completely determined in terms of a single parameter 
w = bTe (respectively w = bTe) as a consequence of the following theorem. 

Theorem 6. Let the matrix A have an n-fold eigenvalue 1. If C(n) (respectively 
C* (n + 1)) holds, then the abscissae Xi.... , Xn are the zeros of Ln (x) (respectively 
Ln (X)) 

Proof. If C(n) holds, then (I - A)Lk(c) = Lk(c) -JfLk(x) dx = Lk+1(c) for all 
k < n, and hence Ln(C) = (I - A)n Lo(c) = 0. If C*(n + 1) holds, then by (8), 
Theorems 4 and 3, we have 

(I- A) (cL 1) (c)) = cL(1) (c)-j xL(1) (x) dx 

- L(l)(c) + (c - 2e)L(l 1(c) + L(2(C) 

k + 2k+ 
=k + 2 kcl( (c), k < n, 

cL ) (c) = (I-A) (cL= )1I(c)) - = (I- A) (cL(1) (c)) = O [ 

Let the n zeros of Ln(X) (respectively L$l)(x)) be ordered according to xi < 
x2 < ... < xn. If the choice w = xn is made we will have stiff accuracy for then 
bT = enTA (respectively bT = enTA and bo = enTao). Furthermore, the eigenvalue 
when scaled is given by l/Xn and all the abscissae will be contained in the interval 
[0,1]. In the case of the singly-implicit method, R(oo) = 1 -bTA-le = 0 follows 
and the method is unique with stage order n, and order n in both y and z for 
index-2 DAEs. The (n + 1)-stage stiffly accurate generalized method is also unique 
with stage order n + 1 and will have order n + 1 in both y and z for index-2 DAEs 
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provided that lR(oo) < 1. However, R(oo) = 1 -bTA-2c is determined as in the 
following theorem. 

Theorem 7. For the stiffly accurate generalized singly-implicit method (A, b, -) 
with n + 1 stages and stage order n + 1, R(oo) = Ln(W). 

Proof. Since C* (n + 1) holds, application of Corollary 1 gives 

bTA-2(cL () (c)) = (w-L ) (w))'-(n + )R(oo). 

Since L1)Y(c) = 0 by Theorem 6, we have bTA-2(cL() (c)) = 0 and (w L$)(w))' = 

wLn$I (w), and the result follows by applying the appropriate identities in Theo- 
rem 3. E 

Numerical computations show that Ln(w) is not bounded by 1 when w is the 
largest zero of L1) (x). Thus the stiffly accurate generalized method with n + 1 
stages cannot attain order n + 1 in either y or z for index-2 DAEs with all of 
its scaled abscissae contained in the interval [0,1]. This provides a motivation for 
appending one or more diagonally-implicit stages to the generalized method. 

Theorem 8. For the singly-implicit method (A, b, c) with n stages and stage order 
ni, B(n + 1) holds if and only if L 4) (w) = 0. 

Proof. Since B(n) holds, applying (1) with P(x) = Ln(x) - (-l)nxn/n! yields 

fW (-l)n( TT n_1 

bT Ln(C) = X)dx + --n ?bTCn- + 

Now since Ln (c) = 0 and fo Lnw(x)dx = L (w)-L +i(w) = wL$ (w)/(n + 1), the 
result follows as w O. 0 

B(n + 1) does not hold if stiff accuracy is imposed because L1) (x) 7 0 for 
any zero of Ln(x). Hence order n + 1 in y cannot be attained by such a stiffly 
accurate method. Without stiff accuracy an order n + 1 in y and order n in z can 
be attained if IR(oo) < 1 for w satisfying L1) (w) = 0. By Theorems 1 and 6, we 
have 0 = bTA-lLn(c) = Ln(w) - R(oo) and w would need to be chosen so that 
JLn(w)j < 1. 

It is natural to require that all the abscissae fall within the step. For both the 
singly-implicit method and its generalization this conflicts with the conditions for 
higher order, good stability behaviour at infinity and stiff accuracy. Hence, we 
consider the addition of further diagonally-implicit stages in the following sections. 

5. EXTENDED SINGLY-IMPLICIT METHODS 

We consider the construction of an (n + m)-stage singly-implicit method by 
appending m diagonally-implicit stages to the n singly-implicit stages and impose 
stiff accuracy for the cases m = 1, 2, 3. In this section we will always assume a stage 
order of nI, ( = , bT = eT+mA and R(oo) = O. 
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5.1. One appended diagonally-implicit stage. For m = 1, we have 

~a,,,.. al,n ? bi -X1- 

anj 
. an,n ? bn Xn 

b ... bn 1 1 w 
L i 01 [J c=[.] 

As in Section 4, the positive abscissae xi < ... < Xnare the distinct zeros of Ln(x), 
the aij are determined by 0(n), and the weight vector b by B(n). 

Theorem 9. B(n + 1) holds if and only if Ln+1 (w) = 0. 

Proof. By B(n), applying (1) with P(x) = Ln(x) -(-1)nxn/n! yields 

bT Ln(C) =0 Ln(x) dx + (-n bTCn - 
Wn+1 

Since bTLn (c) = Ln(w) and fw Ln(x) dx = Ln (w)- Ln+1 (w), we have 

Ln+1 (w) n= 
-_ b! (T n_ 

and hence the result. O 

If B(n + 1) holds we have a method of order n + 1 in y and order n in z for 
index-2 DAEs. By the interlacing property of the zeros of Laguerre polynomials, 
the largest is the only zero of Ln+? (x) greater than xn. Choosing w as this largest 
zero results in all the scaled abscissae lying in [0,1]. 

5.2. Two appended diagonally-implicit stages. In this subsection we consider 
the case m = 2 consisting of n singly-implicit stages with two appended diagonally- 
implicit stages, 

a,,, ... ai, 0 0 biXi 

A lla, - b l c -X1 

anj ... ann 0 0 b bn Xn 

an+1,1 ... an+l,n 1 0 bn+l v 

bi ... bn bn+l 1 1 w 

In addition to stiff accuracy, stage order n and (I - A)n+2 = 0, we will impose the 
conditions B(n + 1) and bTA-2cn+l = (n + 1)wn to obtain order n + 1 in both y 
and z with w as parameter and consider some choices of w. 

Theorem 10. 

nLn ('w) 
v = ?+ 1 - , ___ 

Ln+1 (W), 

Proof. By (1), B(n + 1) implies 
rw 

bn+Ln (v) + Ln (w) = bTLn(c) = j Ln(x) dx = Ln (w)-Ln+1 (W)v 

(25) bn+ Ln(v) = -Ln+1 (w)I 
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Applying Corollary 1 with o(x) = xLn(x)- (-1)nxn+1/n!, and bTA-2cn+l - 

(n + 1)Wn , we obtain 

-bn+lvLn (V) + wLn (W) = bTA-2cLn (c) = (wLn (w))' = wL' (w) + Ln (w)) 

(26) bn+,vLn(v) = nLn(w) -(n + 1)Ln+l(W). 

Hence (v-n-l)Ln+l (w) = -nLn (w). Since Ln+1 (w) 0 0, for otherwise Ln(w) = 0 
results in a contradiction, the desired result follows. E 

We remark that once w and v are known bn+l can be determined from (25). 
The choice w = xn leads to v = n + 1 and, except for the case n = 1, w > v so 

that all the abscissae are contained in the interval [0,1] when scaled by the factor 
1/w. 

The next theorem gives some other possible choices of the parameter w. 

Theorem 11. 

(a) bTAcn = ( + 1)(n + 2) if and only if Ln+2(W) = 0; 

(b) B(n + 2) if and only if (n + 1)Ln+2 (w) = nLn+1 (W); 

(c) bTA-2e = 0 if and only if L(1+1(w) = O. 

Proof. (a) By C(n) and B(n + 1), applying (1) and (2) with P(x) = Ln(x)- 

(-1)nxn/n! gives 

bTALn(c) = (xLnt) dt dx + (l)n (bTACn- n+ 
1)(+ 2)) n ! ~ (n?l(n 2 

Since bTALn(C) = 2bn+Ln (V) + Ln(w), and the integral evaluates to Ln(W)- 
2Ln+l(w) + Ln+2(W), use of (25) then gives 

n ! - (n + 1)(n + 2)) n 

and the result follows. 
(b) By B(n + 1), applying (1) with P(x) = xLn (x) - (-l)nxn+1/n! gives 

bT cLn(c) = xLn(x) dx + (1)n (bTCn+l - Wn) 

Since bTcLn(c) = bn+,vLn(v) + wLn(w), and the integral gives (w - 1)Ln(w) + 

(2-w)Ln+l(w)-Ln+2(w) by Theorem 4, we have by the use of (26) and Theorem 3, 

(_)n (bTCn+1 - n+2) =nLn+l(w) - (n + 1)Ln+2(w). 

The result then follows. 
(c) By C(n), applying Corollary 1 with o(x) = Ln (x) gives 

bTA-2L (c) = LX (w) + bTA-2e. 

Since bTA-2Ln(c) = Ln(W)-bn+,Ln(V) = Ln(W)+Ln+l(W) = L(1)>1 (w) -L1) 1(w) 
= L($1(w) + L'(w) by (25) and Theorem 3, the result follows. LI 
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It is desirable that w be chosen as the largest of the abscissae so that when scaled 
by the factor 1/w, all the abscissae are contained in the interval [0,1]. The theorem 
allows for such a choice of w with w > v and w > x?, where x?, is the largest zero 
of L (x). 

If Ln+2(w) = 0, then Theorem 3 gives (n + 1)Ln(W) = (2n + 3 - w)Ln+i(W) 
and, by Theorem 10, we have v = (nw - n2 _ n + 1)/(n + 1). Hence w - v = 

n + 1 + (v-1)/n = n + (w-1)/(n + 1). If w is the largest zero of Ln+2(X), then 
w > n + 2, the average of the zeros. Hence w > v > 0. It is also clear that w > xn. 

If (n + 1)Ln+2(W) = nLn+l(w) and Ln+2(W) is expressed in terms of Ln(W) 
and Ln+l(w), Theorem 10 yields v = (n(n + 1)w + 1 )/(n + 1)2 . Hence w-v = 

(w - /(n + 1))/(n + 1) = (v - /(n + 1))/n. The polynomial (n + 1)Ln+2 (x)- 
nLn+l(x) has alternating signs and n + 2 positive zeros with average 2 + n2/ 
(n + 1). Thus there exist values of w greater than v and if w is the largest zero, 
then numerical computations show that w > xn. 

If bA-2e = 0 which implies R(z) = O(Z-2) as z -) oo, then L($1(w) = 0. 
Hence Ln+1(W) = Ln+2(w) and, when Ln+2(W) is expressed in terms of Ln(W) 
and Ln+l(w), Theorem 10 then yields v = 1 + nw/(n + 1). Hence w - v = 

(w - -) / (n + 1) = (v - -) /n. Now if w is the largest zero of L$(+ 1 (x), 
then w > n + 2, the average of the zeros, so that w > v > n + 1. It is also true that 
w > Xnr 

Finally, we remark that the condition bT(cn+l - (n + 1)Acn) = 0 cannot hold 
because it can be shown to imply Ln+l(w) = 0 which gives a contradiction as 
Ln(W) = 0 is also implied. 

5.3. Three appended diagonally-implicit stages. We now consider the case 
m = 3 consisting of n singly-implicit stages with three appended diagonally implicit 
stages, 

a,1, ai, 0 0 0 bixi 

A = an,a ... an,n 0 0 0, b= bn c Xn 
an+1,1 - an+l,n 1 0 0 bn+l u 

an+2,l ... an+2,n an+2,n+1 1 0 bn+2 v 

L . bi ... bn bn+l bn+2 1 1 w 

In addition to stiff accuracy, stage order n and (I - A)n+3 = 0, we will impose 
B(n + 2) and some additional conditions to obtain order n + 2 in y and order n + 1 
in z in terms of w = bTe. A condition for order n+1 in z given by (4) and conditions 
for order n + 2 in y by (5) and (6). 

Theorem 12. bTA2e = L2(w)1 . 

Proof. A1 = En+2 (nij+3) (-l)'A'. Pre-multiplying by bTA-l and post-multiplying 
by e, the result follows from the conditions C(n), B(n + 1) and (5). 0 

In the remainder of this section we consider the determination of u, v, w, bn+li 
bn+2 and an+2,n+l. By B(n + 2), we have 

(27) 
w 

bn+2 (v- u)Ln (v) + (w- u)Ln (w) = bTC (c-ue) Ln (c) =/(x- u) Ln (x) dx. 
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Applying Corollary 1 with p(x) = (x - u)Ln(x) - (-_ )xnn+/n!, C(n), (4) and 
Theorem 12 yield 

-bn+2 (V -u)Ln(v) + (w - u)Ln(w) = bTA-2(C -ue)Ln(c) 

(28) = (w - u)L (jw) + Ln(w))- uL(+2(w). 

Theorem 13. 

u = + 1_ Ln+ i (w) 
Ln+2 (w) 

Proof. By adding (27) and (28) we obtain an explicit expression for u, 

wL' (w) + (1 - 2w)Ln (w) + j' xL, (x) dx 

Ln2 (w) + LI (w) - 2Ln(w) + n87 L7 (x) dx 

The result follows by use of the identities in Theorems 3 and 4. 0 

Similarly, by considering the polynomial (x - v)Ln(x) instead of (x- u)Ln(x) 
we obtain 

(29) bnl(U - v)Ln(U) -((n + 1)v - nw - 1)Ln+ 1(w) + Ln+2(W) 
n+l 

(bn+l- an+2,n+lbn+2)(u - v)Ln(U) 

((n + 1)v -_nw + n2 + n - )Ln+l (w) + ((n + 1)v - n(n + 2))Ln+2(w) 
(30) 

= 
n+ 1 

By considering the polynomiai p(x) = xLn(x)-(-_)nxn+l/n! in applying Corol- 
lary 1 to bTA-2,o(c) with C(n), (4) and the use of Theorem 3, we obtain 

(31) 
bn+2 (anu2n+ I uLn (u) -vLn (V)) -bn+ 1 uLn (u) = (n + 1) Ln+ 1 (w) - nLn (w), 

and a similar application to bTcA-l(c) with the condition (6) gives 

bn+2(w - v)(an+2,n+luLn(U) - vLn(v)) - bn+l(w - u)uLn(U) 

(32) = (1- w)Ln(w) + (w - 2)Ln+l(w) + Ln+2(w). 

Theorem 14. 
nw + 1 ((w - 1)L (w) + Ln+ ?1 (w))Ln+2(W) 
n + 1 n(n + 1)(Ln+l (w)2 - Ln(w)Ln+2(W)) 

Proof. Multiplying (31) by w - v and subtracting from (32) gives 

(nw - n2 _ n + 1)v - (n - 1)w2+ (n2- 4)w + 1 
bn+ I (u -v) uLn (U) =( ~ 1-Ln+l (w) 

(33) + n(n + 2)v - (n - 1)(n + 2)w - L 

Eliminating bn+l from (29) and (33) yields 

v((n + I)Ln+l (W)U - (nw - n2 n + )Ln+l(w) - n(n + 2)Ln+2(w)) 

= ((nw + I)Ln+i(W) - Ln+2(W)) - ((n -1)W2 - (n2- 4)w - 1) Ln+1 (w) 

-((n - 1)(n + 2)w + ? Ln+2(W), 

and substituting for u from Theorem 13 with the use of Theorem 3 gives the 
result. LI 
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Once w is chosen, u and v are determined by Theorems 13 and 14. Equations 
(27) to (32) can then be used to determine bn+?, bn+2 and a,+2,n+?. We consider 
a few possible choices of w that satisfy the inequalities w > x?, w > u and w > v 
so that all the abscissae will be contained in [0,1] when scaled by the factor 1/w. 

If w is chosen as the largest zero of Ln+? (x), then u = n+ 1 and v = w-(w-1)/n. 
This choice gives w > xn, w > u and w > v. 

If w is chosen as the largest zero of L(l1 (x), then we have Ln+1(W) = Ln+2(W) 
and it follows that u = 1 and v = w - (w - 2)/n. This choice also gives w > xn, 
w > u and w > v. 

The choice of w as a zero of LnL2(l ) gives the damping condition bTA-2e = 0 
by Theorem 12 which implies R(z) = O(Z-2) as z -* oo. Theorems 13 and 14 give 

u 1? + nw v 2(n + 2)(n + 3) + (n + 3)(n2 + n-4)w-(n-2)w2 
n+2' n((n+2)(n+3)-w) 

It can be verified numerically that if w is chosen as one of the two largest zeros of 
L(1+2x), then it satisfies the inequalities w > xn, w > u and w > v. 

The result L+3 (W) = 0 can be obtained by using (I - A) +3 = 0 and imposing 
the condition bTA2Cn= -wn+3/((n+1)(n+2)(n+3)) in addition to C(n), B((n + 1) 
and (5). It follows by evaluating bTA-le with A-1 = j=02 (in++7)(-l)'A'. Theo- 
rems 13 and 14 give 

nw-n2 - 2n + 2 

(n - 2)w3 - (n + 3)(2(n - 3)W2 + (n3 + 2nr2 + 2n + 12)w + nr2 + n -4) 
V = 

n(w2-(n+3)(2w +n2 +3n+ 1)) 

In this case it can also be verified numerically that w can be chosen as a zero of 
Ln+3(x) satisfying the inequalities w > Xn, w > u and w > v. For n = 2 an 
interesting choice for w is the third zero of L5 (x). With this choice the method of 
order 4 in y and order 3 in z is L-stable. 

6. EXTENDED GENERALIZED SINGLY-IMPLICIT METHODS 

In this section we consider the construction of an (n + m + 1)-stage extended 
generalized singly-implicit method by appending m diagonally-implicit stages to 
the n + 1 generalized singly-implicit stages and impose stiff accuracy for the cases 
m = 1, 2,3. We will always assume a stage order of n + 1, (I - A)n+ - 0, 
bT = eT+mA and impose bTA-2c= 1 so that R(oo) = 0. 

6.1. One appended diagonally-implicit stage. For m = 1, we have 

0 0 0 0 * 

ai,o a,,, ... al,n 0 1 

an,o anj ... an,n 0 
bo bi ... bn 1 
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b |-= [b]j, C= [c] 
1o w 

As in Section 4, the positive abscissae xi < ... < xn are the zeros of L(') (x) and 
the aij, i, j = 1, ...,n, are determined by C*(n+ 1), and aj,O, i = 1, ...,n, by C(1) 
in the same way. The weight vector b is determined by B* (n + 1), and bo by B(1). 

Theorem 15. R(oo) = Ln+l(w). 

Proof. By C*(n + 1), (8) gives (I - A)Lk(c) = Lk+l(c)- (Ae - c) for k < n. Hence 

L l(c) =(I- A)n+ 'Lo(c) + (I +(I-A) +(I-A)2+ + (I -A)n )(A - c) 

= (I - A)n+le + (I - (I - A)n+l)(e-A-1c) 

= (I - A)n+ A-1c + e - A-1c. 

Since (I - A)n+ = 0, it follows that Ln+1(W) = bTA-lLn+l(c) = 1 - bTA-2c = 

R(oo). E 

The choice of w as the largest zero of Ln+1 (X) gives a value greater than xn 
and a unique method of order n + 1 in both y and z for index-2 DAEs with scaled 
abscissae contained in [0,1]. 

6.2. Two appended diagonally-implicit stages. In this subsection we consider 
the case m = 2 consisting of n + 1 generalized singly-implicit stages with two 
appended diagonally-implicit stages, 

0 O * O O ? bo 0 0 
al,o a1,, ... a, 0 0 bi XI 

an,O an1 ... 
an,n 0 ? bn Xn 

an+l,o an+1,1 ... an+l,n 1 0 bn+l v 

bo bi ... bn bn+1 1 1 w 

Again we consider the partition given by (7). In addition to stiff accuracy, stage 
order n+1, and (I-A)n+2 - 0, we will impose the conditions B(n+2), bTA-2c = 1, 
and bTA-2cn+2 = (n + 2)wn+l to obtain a unique method of order n + 2 in both 
y and z for index-2 DAEs. It turns out to be possible to have all the scaled 
abscissae contained in the interval [0,1]. With stiff accuracy, stage order n + 1 
means aO = c - Ae and C*(n + 1). 

Theorem 16. R(oo) = Ln+2 (w) 

Proof. As in the proof of Theorem 15, C*(n+l) implies Ln+i(c) = (I-A)n+1A-lc+ 
e -A-1c. By (8) with o(x) = Ln+l(x) -(-)n+lXn+1/(n + 1)!, we obtain 

Ln+2(c) = (I - A)Ln+1(c) + Ae - c + (l)n+2 Cn+2- (n + 2)ACn+l 

(n 
+ 2)! 

(cT 

+2 2)Ac 

)? 

. 

(I - )+ (_l_ 
n 

2_n___ A A-c +e - -lc+ ( + (2cTh?2 -_(n + 2)ACnh1) 
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Since (I - A)n+2 = 0 we have Ln+2(w) = bTA-lLn+2(c) -1 -bTA-2c = R(oo) 
by B*(n+2). I 

Now if w is chosen as a zero of Ln+2 (X), we have an explicit formula for v given 
by 

Theorem 17. 
nw + n + 2 

v = - _ 
n + I 

Proof. By applying Corollary I with (p(x) = x(x - v)L($) (x) -(-_)nxn+2/n! and 
the conditions C*(n + 1) and bTA-2cn+2 - (n + 2)wn+1, we obtain 

bTA-2(C(C - ve)L$() (c)) = (w(w -v)L ) (w))', 

w(w - v)L() (w) = w(w - v)L$(1)'(w) + (2w - v)L$() (w). 

The result now follows by applying the identities in Theorem 3 with the use of 
Ln+2(w) =0. L 

As a corollary, w-v = (w-n-2)/(n + 1) = (v-n-2)/n. Now the zeros 
of Ln+2(x) have sum (n + 2)2 and average n + 2. Hence if w is the largest zero, 
then w > n + 2 and it follows that w > v > n + 2. By the interlacing property of 
Laguerre polynomials, w is greater than the largest zero of Ln+1 (x) which, in turn, 
is greater than the largest zero of L'+1(x). Since L(1)(x) = -L'+1(x), we have 
that w is greater than the largest zero of L$1)(x) and hence that all the abscissae 
scaled by the factor 17w will be contained in the interval [0, 1]. 

The coefficient bn+l is determined from the-relation (n + 2)bn+,vL(l) (v) = 
-(n + 1)wL(l$I(w), obtained by applying (9) with the use of B* (n + 2), so(x) = 

xLW1)(x) and the identities in Theorems 3 and 4. 

6.3. Three appended diagonally-implicit stages. We now consider the case 
m = 3 consisting of an (n + 1)-stage generalized singly-implicit block with three 
appended diagonally-implicit stages, 

0 0 ... 0 0 0 0 
al,o. 1,1 0 0 0 

A = an,o an,1 *.. ann 0 0 0 

an+?,o an+1,1 ... an+l,n 1 0 0 

an+2,o an+2,1 ... an+2,n an+2,n+1 1 0 

bo bl ... bn bn+l bn+2 1 

bo ~~0 

b- bn c = n 
bn+l u 

lbn2 w 
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and partitioned according to (7). In addition to stiff accuracy, stage order n + 1 
and (I - A)n+3 = 0, we will impose B(n + 3) and some additional conditions to 
obtain order n + 3 in y and order n + 2 in z in terms of w = bTe. These include a 
condition for order n + 2 in z given by (4) and conditions for order n + 3 in y given 
by (5) and (6). 

Theorem 18. R(oo) = Ln+3(w). 

Proof. By C*(n + 1), application of (8) with 

(p(x) = Ln+2 (X) ( 1)2!X+2( ) (n + 2)xn (n ? 2)! (n ? 1)!(n?)x1 
yields 

Ln+3(c) = (I - A)Ln+2 (c) + Ae - c + (1) (n+3 - (n + 3)ACn+2) 

-(nl) + (+ri?2 - (n + 2)Acn+ ) 

Substituting for Ln+2 (C) from the proof of Theorem 16, the result follows from 
evaluating Ln+3(W) = bTA-lLn+3(c) with the use of (I - A)n+3 = 0, and the 
conditions B*(n + 3) and (5). E 

With w chosen as a zero of Ln+3 (X) greater than the largest zero of Ln1) (x), we 
now consider the determination of u, v, bn+l, bn+2 and a,+2,n+1 

We first present some results for ease of reference in the proofs of the two main 
results that follow. They all assume that Ln+3(W) = 0 and can be verified with the 
use of Theorems 3 and 4. 

(2 
- (3n + 7)w + (n + 2)(n + 3) (34) wL(1) (w) = Wn 2n?2 

(35) (wL(1)(w))' = w2 (4n + 8)w + 3n2 + 12n + r 11L 

w 2~~~n? 
(36) j xL(1) (x) dx = w L(2n?6)w?n?3L?(w) 

(37) x2L) (x)2dx = w - (2n + 7)W2 + (2n + 8)w -2 
(37) x L(1) (x) dx?2 Ln+2(w). 

By B*(n + 3), application of (9) with (o(x) = x(x - u)L(l)(x) yields 

bn+2V(v - u)L$l)(v) + w(w - u)L$11)(w) - bTc(c - ue)L(l)(c) 

(38) = j x(x - u) L()(x) dx. 

Similarly, applying Corollary 1 with ,o(x) = x(x-u)L(1) (- (-1)xnn+2 /n! and 
the conditions C* (n + 1) and (4) gives 

-bn+2V(V- u)L$l)(v) + w(w - u)L$l)(w) = bTA-2c(c- ue )L(1)(c) 

(39) = (w-u)(wL )(w))' ?+ wL$ ) (w). 

Theorem 19. 
nw + n + 4 

n ?2 
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Proof. By adding (38) and (39) we obtain an explicit expression for u, 

w(wL(1) (w))' + (1 - 2w)wL(l) (w) + fW x2L( 1) (x) dx 

(wL(1) (w))' - 2wL(1) (w) + fw xL(1) (x) dx 

and the result follows by use of the formulae (34) to (37). C 

Applying Corollary 1 with so(x) = x2L(l) (x) - (-l)nxn+2/n! and the use of the 
condition (4) yields 

- bn+lU2L(1) (u) + bn+2 (an+2,n+lu2L () (u) - v2L$() (v)) + w2L$() (w) 

(40) = bTA-2C2L$(l) (c) = (W2-(1) (w)) 

while the use of the condition (6) gives 

(41) 

bn+l (U - w)u2L($) (u) + bn+2 (w- v) (an+2,n+l 2L$() (u) - v2L() (v)) + w3L () (w) 
rw 

= bTCA-lC2 L() (c) = w3 L() (w) - x2L() (x) dx. 

Multiplying (40) by w - v and subtracting (41) from the result gives 

bn+l(v - u)u2L)(u) + (W - v)w2L() (w) 

(42) = (w -v) (w2 L(1) (w)' ?+ J 2L () (x) dx. 

Furthermore, applying (9) with so(x) = x(x -v)L() (x) and the use of the conditions 
B*(n + 3) and (6) yields 

bn+l (u- v)uL(l)(u) + w(w -v)L(l) (w) bTc(c - ve)L(1) (c) 

(43) = x(x - v)L(1)(x) dx. 

Theorem 20. 
(n-2)w 3- (n3+ 4n2 + n- 18)W2 -2(n2+ 8n + 18)w + 4(n + 3) 

V = 
n(w2- (n2 ?5n+8)w+n+3) 

Proof. Multiplying (43) by u and adding to (42) gives an explicit expression for v 
in terms of u and w in the form v = P/Q, where 

p = u (jW x2L(1) (x) dx - w2L l) (w)) + (1 - w)w2LL() (w) + w2 (wL(?) (w)) 
rw 

? j x2L$(1 (x) dx, 

Q= ( xL(1)(x) dx-wL($1)(w)) + (1-w)wL(1)(w) + w(wL(1)(w))'. 

Applying (34) to (37) now gives v = N/D, where 

N = u(nw 2- (n2 + 3n - 2)w -2) - (n - 1)w3 + (2n2 + 2n - 9)W2 

+ (n2?+ 7n + 14)w-2, 

D = u(n+? 1)(w - n -3) - nw2 + (2n2 + 4n - 2)w + (n + 2)(n + 3). 

Substituting for u from Theorem 19 then yields the result for v in terms of w. O 
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With w chosen as a zero of Ln+3 (x), and xn denoting the largest zero of L(1) (x), 
u and v are respectively determined by Theorems 19 and 20. With the use of (34) 
to (37), the coefficient bn+2 can be determined by (38) and (39), bn+l by (42) and 
(43), and an+2,n+l by (40) and (41). If w is the largest zero of Ln+3(X), then it 
is clear that w > xn and w > u. Numerical computations also show that w > v. 
Hence all the scaled abscissae will be contained in the interval [0,1] for this choice 
of w. It can also be verified numerically that these inequalities hold for 1 < n < 10 
if w is the second largest zero of Ln+3 (X). 

7. TRANSFORMATIONS 

For the methods derived in Section 5 (respectively Section 6), explicit fomulas 
have been given for the elements in columns n + 1, n + 2, ..., n + m (respectively 
n + 2, n + 3, ..., n + m + 1) of the A matrix. In this section we derive formulas 
for the remaining elements making use of similarity transformations. Although 
implementation details will not be discussed it will be shown in a later paper that, 
as for standard singly-implicit methods, these transformations play a central role 
in the practical implementation of the methods. 

7.1. Transformations for the extended methods. For the methods of Sec- 
tion 5, define the matrix V by 

V = [Lo(c), Ll(c),... , Ln 1 (c)), en+ ?, en+2 en+m] 

Theorem 21. For the methods-of Section 5, A is given by 

A VAV-1, 

where 

A FAll 0 ] [All 01 
A-A21 A22J' A=A21 A22J' 

with 

1 0 0 0 O 0 0 0 0 * -Ln (Xn+1) 
-1 1 0 ... 0 0 0 0 0 0 * -Ln (Xn+2) 

All = - 0 1 ... 0 0 A210 - 0 0 ...0 -L (Xn+3)| 

0 0 0 *-- 1 1 0 0 0 0 -Ln (Xn+m)j 

Proof. We will prove the equivalent result that AV = VA. By the conditions C(n), 
column i of AV (i < n) is given by f i L- 1(x) dx = Li-1(c) - Li(c) which equals 
the corresponding column of VA. The remaining columns of AV and VA are each 
the same as for A. El 

To simplify the computation of the elements of A, the next result gives explicit 
formulas for the elements of V-1. 
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Theorem 22. The (i,j)-th elemnent of V-1 is given by 

xjLi (x)) i<n, j<n, 
r2L (Xj)2' 

0, i <n, j >n, 
xjLn (xi) i nj<n 

n(xi - x)nlX) 
ij, i>z n, j3 n. 

Proof. Write the matrix V in partitioned form 

F V1i 01 
V=[V21 IO 

where Vil is n x n. The inverse in partitioned form is 

[- = - 1 0 V1- [V21 V1]. 
The elements in the (1, 1) block are given by Corollary 3 and the (1, 2) and (2, 2) 
blocks are trivial. It remains to prove that for i > n, j < n, the (i - n, j)-th element 
of -V21V 751 is as claimed. To evaluate this element, use (23) to give the result 

n 
LL k l(xj)xj -j 

n 

ELk-1k (Xi)2L( x2 -n2L(X )2 ZLk1(xi)Lk_1(xj) 
k=1 n2Lnlxj,2 n2Ln\l, k=1 

xi n 
=-n2 L 1 (Xj )2 xZxj (Ln (x, )Ln - 1 (Xi) -Ln (xi)Ln- 1 (Xj) 

xj Ln (xi) 
(xi -xj)nLnl(Xj)' 

where we note that Ln(xj) = 0. D 

7.2. Transformations for the extended generalized methods. For the meth- 
ods of Section 6, we will carry out a similar analysis. First we deal with the vector 
ao defined by c - Ae. 

Theorem 23. The elements of ao are given by 

+1 (1 + L(1) (i) i < n, 

a%o { : I (1 + L(1) t:j- L() (x)-Ej>i aijL(1)(xj) ) i>n 

Proof. By C*(n + 1), application of (8) with so(x) = L(l)(x) gives 
rc 

(n + l)ao = j L(1)(x) dx -AL()(c) 

and the result follows by use of the various identities in Theorems 3 and 4. Z 

To evaluate the first n columns of A, form the tranformation matrix V given by 

v = [cLo1)(c),2cL(1)(c),..., vcLn$)1(c), en+li, en+2,. . , en+m] 

We then have 
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Theorem 24. For the methods of Section 6, A is given by 

A VAV-1, 

where 

A-[All 01 A l[Al 01 
A21 A22] [A21 A22] 

with 
1 0 0 0 0 

-1 1 0 ... 0 0 

0 -1 1 00 O, 

Al - 

0 L0 0 0 
0 0 0 0 _ n+1 L(n(Xn+l) 

O O ? .. * * ? X-n+2 L(') (Xn+2) 

A2 = 
_ 

OX *? -n+3 L(l) (Xn+3) A21= 0 0 0 0 + 

0 0 0 0 * Xn+m L(1) (Xn+m) 

Proof. This is proved in a similar way to Theorem 21. E 

We now give explicit formulas for the elements of the inverse of the new trans- 
formation matrix. 

Theorem 25. The (i,j)-th element of V-1 is given by 

L(1) (x ) 
| i-lk(z3) i < n, j < n, 
(n +?1)L$1111 (Xj)2'i? ,<r 
O, i?<n, j>n, 

i ni(l (xi) 

(xi - xj)(n + 1)L L) (x1)' ) 

aiji, i> n, j>n. 

Proof. This is proved as for Theorem 22. D 

CONCLUDING REMARKS 

This paper has concentrated on the derivation of a large range of possible meth- 
ods which we believe will be effective for the solution of index-2 DAEs. If we re- 
quired only a single method, without error estimation capabilities, then the method 
presented in Subsection 6.3 would be particularly attractive. Although error esti- 
mation and other implementation issues could not be included in this paper, it 
is intended to discuss them in a later publication. At the same time, results of 
numerical tests will be presented. 
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