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CHAOS IN THE LORENZ EQUATIONS: 
A COMPUTER ASSISTED PROOF. 

PART II: DETAILS 

KONSTANTIN MISCHAIKOW AND MARIAN MROZEK 

ABSTRACT. Details of a new technique for obtaining rigorous results concern- 
ing the global dynamics of nonlinear systems is described. The technique 
combines abstract existence results based on the Conley index theory with 
rigorous computer assisted computations. As an application of these meth- 
ods it is proven that for some explicit parameter values the Lorenz equations 
exhibit chaotic dynamics. 

1. INTRODUCTION 

In [13] an outline of a computer assisted proof that the Lorenz equations, 

(11 )S(X2-X1), 

1 X2 R X1-X2-X1X3, 

X3 = X1X2 -qX3 v 

contain chaotic dynamics for a prescribed open set of parameter values was pre- 
sented. In this paper we provide the details of this proof. 

Recall that if X is a metric space, f: X -> X is a homeomorphism and N C X, 
then the maximal invariant set of N is defined by Inv(N, f) {x E N I V n 
Z, f n(x) E N}. 

The precise statement of the theorem we prove is as follows 

Theorem 1.1. Let P {(x1,x2,x3)i = 53}. For all parameter values in a 
sufficiently small neighborhood of (s, R, q) (45, 54, 10), there exists a Poincare 
section N. C P such that the Poincare map g induced by (1) is Lipschitz and 
well defined. Furthermore, there exists a d E N and a continuous surjection p: 
Inv(N, g) -? Z2 such that pogd = c op where au: -2 Z 2 is the full shift dynamics 
on two symbols. 

Since the full shift dynamics on two symbols is equivalent to the dynamics of 
the Smale horseshoe [26], this theorem implies that for some iterate the dynamics 
of the Poincare map g is at least as complicated as that of the horseshoe. 

On the one hand, this theorem comes as no surprise. Simple and standard 
integration of the Lorenz equations at the parameter values (45, 54, 10) strongly 
suggests the existence of horseshoe dynamics of the Poincare map in the rectangle 
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FIGURE 1. Numerical indication of the existence of horseshoe dynamics 

[-8, 8] x [-6, 6] on the Poincare plane P. Indeed, let R0, R1 be the two parallelo- 
grams on the plane P indicated schematically in Figure 1 by a set of small marked 
squares in their boundary. Integrating numerically from the centers of the squares 
one obtains the set of points pointed out with small diamonds and corresponding 
marks. One can notice that the bottom side of R1 is strongly compressed and 
mapped to the right bottom diamond and the top side of R1 is mapped to the right 
top diamond. Similarly, the bottom and top sides of R2 are mapped respectively 
to the left bottom and top diamonds. Thus, Figure 1 provides an almost textbook 
picture of the G-horseshoe. Unfortunately, this simple integration cannot provide 
us with the constants of hyperbolic expansion and contraction, nor the geomet- 
ric [26] or analytic [16] transversality conditions which are necessary to prove the 
existence of a conjugacy with a horseshoe. 

What is perhaps more surprising, given the central role that the Lorenz equa- 
tions have played in the development of the theory of strange attractors, is that 
this theorem is, to the best of our knowledge, the first rigorous demonstration of 
the existence of chaotic dynamics for this system of ordinary differential equations. 
Since the announcement of our result, two independent proofs demonstrating the 
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existence of chaotic dynamics for the Lorenz equations have appeared. The first, 
which is, also, a computer assisted proof is due to B. Hassard, S. Hastings, W. Troy, 
and J. Zhang [5] and is, in spirit, quite similar to our result. An abstract topolog- 
ical condition (obtained by Hastings and Troy [6]) which guarantees the existence 
of shift dynamics is verified using interval arithmetic. It should be noted that the 
abstract theorem is essentially a "shooting" method, and hence, on the topologi- 
cal level involves a question of connectedness. The advantage of this approach is 
twofold: first, the level of topological machinery required is minimal and second, 
the required computation time is small. The disadvantage is that these methods 
do not lend themselves to generalizations for problems in which the topological 
constraints are more subtle as is typically the case in higher dimensional settings. 
The second rigorous result is due to X.-Y. Chen [2] who analytically demonstrated 
the existence of a transverse homoclinic point within a certain range of parameter 
values. Obviously, this is a highly advantageous result. Unfortunately, it depends 
on estimates which are not valid for all parameter ranges, in particular, those of 
this paper. This difficulty is, of course, not unique to Chen. In fact, obtaining the 
necessary estimates is the central obstacle for most of the non-linear analysis. In 
both the result we report here and that of [5] the computer was used to overcome 
this obstacle. 

This last comment should raise questions. After all, it is absolutely clear that 
computers can be used to obtain estimates and, as was alluded to earlier, the 
geometric or analytic estimates required to guarantee the existence of a horseshoe 
are well known. Why wasn't the computer used much earlier to obtain such results? 
The difficulty is that in order to obtain conjugacy results it is necessary to have 
estimates not only along orbits, but also on the derivatives along the orbits. This 
results in a tremendous demand on computing resources. An attempt to prove chaos 
in the Lorenz equations via checking in a numerical computation the existence of a 
transverse homoclinic point was undertaken by H. Spreuer and E. Adams in [27]. 
The authors have found the power of the present day computers not sufficient to 
perform this task rigorously. A successful computation of this type but for different 
equations has been carried out recently by T. Rage, A. Neumaier, and C. Schlier 
[23]. The cost of their computation was 2000 hours CPU time on an IBM 3090-18. 

The difficulty in the rigorous numerical treatment of chaos in the Lorenz equa- 
tions lies in the fact that the chaotic set is located very close to the stable manifold 
of the origin, where the Poincare map is discontinuous. As a consequence the 
Poincare map exhibits expansion which goes to infinity when the stable manifold 
is approached. This causes an unusually strong wrapping effect (see [21]). A rela- 
tively strong compression in another direction is not very helpful, because it always 
stays bounded. 

To overcome this problem we introduce the technique of intermediate sections, 
which resembles the multiple shooting used in the numerical treatment of boundary 
value problems (see [1]). However, our technique. is also substantially different. The 
most important difference is that it is not localized to an area around one trajectory 
like in the BVP, which causes that several technical difficulties have to be overcome 
to guarantee that the intermediate Poincare maps are well defined. 

The technique let us perform the necessary computations in 33 hours CPU time 
of a SUN SPARC 10 workstation. Let us mention that recently P. Zgliczyn'ski (see 
[28]) performed a similar proof of chaos in the R6ssler equations, where the Poincare 
mapping is continuous and therefore there are no problems with extremely strong 
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wrapping. This let him complete the necessary computations in time similar to 
ours but without the need of using the intermediate sections technique. 

Obviously at this early stage our approach should be treated only as an indica- 
tion that there is an alternative and possibly very fruitful road towards successful 
rigorous numerics of dynamical systems. Definitely the approach is very far from 
being optimized. The employment of advanced numerical techniques like the back- 
ward error analysis, the Lohner algorithm [8] or an improvement on logarithmic 
norms [22] should significantly speed up the proposed approach. There is also a 
significant potential for improving the algorithms via better utilization of the the- 
ory we use. We go in that direction in [15], where stronger results, obtained with 
essentially smaller computational effort and in particular for the classical case of 
the Lorenz equations (R = 28, s = 10, q = 8/3) will be presented. 

Another important aspect of the techniques which will be reported on in this 
paper is that in principle they are applicable to a wide range of problems in dy- 
namics (not only chaos) since they are based on Conley index theory [3],-[24], [10], 
[11]. Moreover, the reader should not be misled by the fact that the Poincare map 
studied in this paper is two-dimensional. On the theoretical level there are no con- 
straints due to the dimension of the problem. In particular the Conley index theory 
is applicable even in an infinite dimensional setting. 

To summarize this discussion, while we feel that Theorem 1.1 is of interest in 
itself, the main purpose of this paper is to attract the attention of readers to 
a new technique for obtaining rigorous results concerning the global dynamics of 
nonlinear systems. There are at lkast three new aspects of this technique. It applies 
to concrete differential equations, it can provide a relatively strong description of 
global dynamics (in terms of semiconjugacies), and the necessary computer assisted 
computations are small enough to be performed on currently available computers. 

2. AN OUTLINE 

The goal of our computations is the verification of the hypothesis of an abstract 
algebraic topological result, since this result guarantees the existence of chaotic 
dynamics. However, the emphasis of this paper is on the computational aspects of 
the problem. Thus, for many of the points we hope to express, an understanding 
of the Conley index theory is not necessary. Having said this it is, nevertheless, 
perhaps best to start our discussion by recalling the fundamental topological result 
which needs to be verified. We begin with the briefest of reviews of the Conley 
index theory for maps as developed in [17]. 

A compact set N is an isolating neighborhood if Inv N C int N. If N is an 
isolating neighborhood, then the set InvN is an isolated invariant set. A pair 
P = (P1, P2) of compact subsets of N is called an index pair in N if Pi n f 

- (N) C 
f-1(Pi) for i = 1,2, P1 \ f1(N) C P2 and InvN C int(Pi\P2). The map f 
induces an endomorphism Ip H* (P1, P2) - H* (P1, P2) of the Alexander-Spanier 
cohomology of (P1, P2) (see [17]). The cohomological Conley index of an isolating 
neighborhood N under f is given by Con* (N, f) := (CH* (N, f), X* (N, f)), where 
CH* (N, f) is the graded module obtained by quotienting H* (P1, P2) by the gen- 
eralized kernel of Ip and X* (N, f) is the induced graded module automorphism on 
CH* (N, f). One can show (see [17]) that this construction does not depend on the 
choice of the index pair. 

Turning now to the special setting which is of interest for this paper, let N = 
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NOUN1 be an isolating neighborhood under f where No and N1 are disjoint compact 
sets. For k, 1 = 0, 1, let Mkl = Nknf (N1). Let Nlk := MkkUMklUMII. The following 
result is a reformulation of a special case of [12], Theorem 2.3 (cf. also [18]). 

Theorem 2.1. Assume Mij for i, j E { 0,1 } are disjoint compact sets such that 
N := Moo U Mol U MAo U Ml is an isolating neighborhood under f. Furthermore 
assume that Ni := Mio U Mil satisfy 

(2) N n f(Ni) c Moi U M1i, 

(3) Con n(Nk,f) - (Ql,id) if n= 1, 
0 otherwise, 

and X* (Nik, f) is not conjugate to X*(Nk, f) D X* (Ni, f). Then, there exists a 
d E N and a continuous surjection p: Inv(N, f) -> Z2 such that pofd = cop where 
u 2 -- 2 is the full shift dynamics on two symbols. 

The idea of the computer assisted proof proposed in this paper rests on verifying 
the assumptions of this theorem when applied to the Poincare map g and the four 
parallelograms Moo, MO,, Mlo, MI, on the plane P indicated in Figure 1 by solid 
lines. To an individual schooled only in algebraic topology it is clear that when 
Theorem 2.1 applies, its hypothesis must be numerically verifiable. The reason for 
this is the simplicial approximation theorem [20], which states that the cohomol- 
ogy of a reasonable space and any reasonable continuous map can be computed 
via a piecewise linear approximation of the space and map. Unfortunately, the 
simplicial approximation theorem appears to be extremely inefficient to implement 
computationally. For this reason we turned to the theory of multivalued maps. 

The assumptions of Theorem 2.1 make sense,- also, for multivalued maps and, 
more importantly, if they are satisfied for a given multivalued map, then they 
are also satisfied for any selector of that map (a single valued map enclosed by 
the multivalued map). A more intuitive restatement of this comment might be 
as follows. The Conley index is invariant under continuous perturbations. More 
precisely, given Con* (N, f), there exists e > 0 such that if g differs from f by less 
than e in the CO topology, then Con* (N, f) = Con* (N, g). Let us now define a 
multivalued map F by F(x) = BE(f (x)). Obviously, if h is a selector function for 
F i.e., h(x) E F(x) for all x, then N is an isolating neighborhood under h and 
Con* (N, h) = Con* (N, f ). 

Thus, to prove Theorem 1.1 it is sufficient to verify the assumptions of Theorem 
2.1 for a well chosen multivalued map. Of special interest are these multivalued 
maps which admit some finite coding, because then the verification of the assump- 
tions reduces to a finite (combinatorial) computation. And exactly such maps are 
provided by numerical methods combined with rigorous error bounds. 

The procedure is roughly as follows. The domain of a single valued Lipschitz 
map f is covered by a finite number of compact sets. A point is selected in each 
set and an appropriate numerical method is taken to find a ball where the value is 
located. Then, a Lipschitz constant of the map is used to get a larger ball enclosing 
the image of each compact set in the covering. Finally, the required multivalued 
map F at a given point x is defined as the intersection of the enclosures of all 
sets in the covering to which the point x belongs. Obviously, the map obtained 
this way admits finite coding. It is also lower semicontinuous, convex-valued and 
f is a selector of F. In such a situation we will also say that F is a multivalued 
representation of f. 
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FIGURE 2. An index pair for N = Moo U Mo, U Mlo U M1I. P1 = 

N and P2 is the shaded area. The line shows schematically the 
intersection of the stable manifold of the origin with the Poincare 
plane P 

As one can guess (see Section 3 for details), checking if a given set is an isolating 
neighborhood for a given multivalued representation of f and finding an associated 
index pair is a purely combinatorial task. Thus it also may be performed rigorously 
by computer. Figure 2 shows an index pair (PI, P2) obtained this way for the 
Poincare map g and the isolating neighborhood N = Moo U Mo, U Mio U M11. 
Of course, one cannot expect that an arbitrary multivalued representation of the 
Poincare map will fulfill the required assumptions. In fact, the smaller the values, 
the larger is the chance that the assumptions will be satisfied. 

The maximal diameter of the values of F (the size of F) is determined by the 
bounds on the following factors: 

(1) the rounding errors, 
(2) errors introduced by the numerical procedure, 
(3) the Lipschitz constant. 

Bounds, bad or with luck good, of all the above factors may be relatively easily 
found for the t-translation operator of the flow generated by a differential equation. 
The easiest way to find a multivalued representation of a Poincare map is to estimate 
from the representations of the t-translation operators the point of intersection of 
the trajectory with the cross-section. This introduces the fourth factor influencing 
the final size of the representation of the Poincare map. 

Finding a representation of the Poincare map with sufficiently small size may 
mean an enormous amount of computations in general. One of the purposes of this 
paper is to show that at least for some interesting problems the task of finding a 
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representation of the Poincare map with sufficiently small size may be relatively 
easily achieved with the help of presently available personal computers. 

3. PRELIMINARIES 

We denote the sets of reals, nonnegative reals, integers, nonnegative integers, nat- 
ural numbers and rationals by JR,R+, Z, Z+, N, Q, respectively. Reals and integers 
supplemented by negative and positive infinity will be denoted by IR, Z respectively. 
For any set X the notation P(X) will stand for the family of all subsets of X. A map 
F: X -* P(Y), where X, Y are two arbitrary sets, will be called a multivalued map 
from X to Y. The set dom F:= { x E X I F(x) 7 0 } is called the domain of F. For 
A c X, B c Y we define the image of A under F by F(A) U { F(x) I x E A }, 
the weak preimage of B under F by F*-1(B) { x E X I F(x) n B & 0 } and the 
strong preimage of B under F by F-1(B) := {x E domF I F(x) c B}. In what 
follows we will use multivalued maps both in the topological setting and in a purely 
set theoretical setting. In the first case we assume that X, Y are metric spaces and 
we say that F is upper semicontinuous (usc) if F-1(U) is open for any open set 
U c Y and F is lower semicontinuous (lsc) if the set F*1 (U) is open for any open 
set U c Y. For N c domF we put diamNF:= sup{diamF(x) I x E N}. The 
diameter of F over its domain will be called its size. 

If X is a metric space and A c X, then we denote the boundary, the interior 
and the closure of A respectively by bd A, int A and cl A. 

Let o: IR x X -* X be a flow. Essentially, in this paper we restrict our attention 
to X = IR3 but since several lemmas are purely topological and may turn out to be 
useful in other applications we begin with the general setting. For x E X we will 
denote the trajectory (positive trajectory) of x by so(x), (fp+(x)). If y E O+(x), 
then there is a minimal non-negative t E R+ such that y = 5o(t, x). We will denote 
it by t(x, y). The notation [x, y] will stand for the set { 5o(t, x) 0 O < t < t(x, y) }. 
For a fixed t > 0 the map pt: X 3 x -* 9p(x, t) E X will be called the t-translation 
operator of p. 

If X = Rd, then we assume that the flow fp is induced by a differential equation 

(4) x = V(x), 

where V-: Rd , Rd is a C1-vector field on R d. Let R11 jd , R+ be a fixed norm 
on RId. Forx E d, AcR d andr>Oweputdist(x,A) :=sup {Hx-yl H yEA}, 
B(A, r) := { y E PRd I dist(y, A) < r } and B(x, r) := B({ x }, r) . We will mark the 
distance and the ball with the sup subscript when they relate to the supremum 
norm given by lxlsup:=max{ x I i = 1,... ,d}. If A: R d ,l Rjdis a linear map, 
then IJAII := sup { IAxlI I x E jRd, IIXII < 1} will denote the operator norm of A. 

4. DISCRETIZATION OF SPACE AND MAPS 

Our aim now is to show that the assumptions of Theorem 2.1 may be translated 
to the language of multivalued maps which admit some finite description. The first 
step is the construction of an appropriate discretization of the space. Given A c 

P(X), x E X, and K c X, let AI:= U{AI A A}, A(x):= {A A xE A} 
and A(K) := {AAI A nOK 0}. A grid in X is a family of sets g c P(X) 
such that any element of g is equal to the closure of its interior, any two different 
elements of g have disjoint interiors and for any compact set K c X the family 
g(K) is non-empty and finite. A subfamily of a grid is called a subgrid. Let y > 0. 
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The standard -y-grid in Rfd is the collection 

gd := ! := [ni-y, (n, + I)-y] X .. 
**X [nd-Y, (nd + I)-Y] I (nl,.... nd) EZd } 

The elements of a given grid will serve as quants of space and sets will be represented 
by finite families of such sets. In the quantized space the concept of a minimal 
neighborhood makes sense and can be formalized as follows. If g is a grid and 
A c g, then A* := A*:= { G E g 13A E A such that G n A : 0 }. 

A compact set K C X is representable over a grid g if K is a finite union of 
intersections of some subgrids of g. K is strongly representable over g if there exists 
a grid g0 c g such that K = Igo Since such a g0 is then unique, we will denote 
it by g (K). 

Assume g and g' are grids in X. A multivalued map F: X -+ P(X) is 
representable over the pair (g, g') if dom F is a representable set over g, for ev- 
ery x c dom F the set F(x) is representable over g' and A(x) = A(y) implies 
F(x) = F(y). Let U c X and let f: U -* X be a single valued map. A multi- 
valued map F: X 7P(X) is a representation of f over the pair (g, g') if F is 
representable over (g, g') and f is a selector of Flu, i.e. U c domF and for every 
x E U we have f(x) CF(x). 

In order to obtain appropriate multivalued representations of single valued maps 
we will use the concept of a combinatorial multivalued map i.e., a map F: g -- 

7P(g') such that dom? is finite and for any G E dom? the family F(G) is finite. 
The map F will be called a representation of f over the pair (g, g') if U c I domFJ 
and for every G E dom? and x E c7 n G we have f (x) E ?T(G) 1. The diameter of ? 
(denoted diam F) is the maximum of diameters of ?T(x) over all x E dom . With 
a combinatorial multivalued map- F we associate the following two multivalued 
maps 

LTj: JAI 3 x 'n {K (A) I I A E A(x) } E cP(A'D), 

FT] 1JI 3 x 'U { F(A)H | A C A(x) } E cP(A') 

One can easily prove the following theorem (cf. [18]). 

Theorem 4.1. The map [?j is lsc, the map FT1 is usc and both maps are repre- 
sentable. Moreover, if TF is a representation of f: U -* X, then fiT and FT1 are, 
also, representations of f. 

Now we are ready to start discretizing the assumptions of Theorem 2.1. Let I be 
an interval in Z with 0 E I. A single valued mapping o-: I -* X is a solution for F 
through x E X if o (n + 1) C F(of(n)) for all n, n + 1 E I, and oo(0) = x. Let Inv N 
denote the set of x E N such that there exists a solution o-: Z - N for F through 
x. The following concepts were introduced in [7]. A compact subset N c X is 
called an isolating neighborhood for F if BdiamNF(Inv N) c int N and an isolating 
block for F if BdiamNF(F*- '(N) n N n F(N)) c int N. It is straightforward to 
verify that every isolating block is an isolating neighborhood. 

Let N be an isolating neighborhood for F. A pair P = (P1, P2) of compact 
subsets P2 c P1 c N is called an index pair if F(Pi) n N C Pi for i = 1, 2, 
F(P1\P2) c N and Inv N c int(Pi\P2). It turns out that under certain conditions 
called admissibility, multivalued maps induce maps in cohomology (see [7],[18] for 
purposes of this paper it is enough to know that lsc or usc convex-valued maps are 
admissible). Thus, as in Section 3, one can define the index map and the Conley 
index Con(N, F). 
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for Moo, Mo1, M1o look practically the same. Figure 3 explains how the index pair 
in Figure 2 was obtained. 

Note that a theorem analogous to Theorem 4.3 may also be proved for FT] (see 
[18]). The advantage of LFT over VT] lies in the fact that if T is a representation 
of a single valued map f, then diam LT] < diam T but diam VT] < 2 diam F. Thus 
one expects that verifying if a given set is an isolating block may be more expensive 
in the case of [F1. 

5. POINCAREP MAPS 

As we mentioned in the introduction the successful verification of the assump- 
tions of Theorem 2.1 requires constructing a representation of the Poincare map of 
relatively small size. This may be a problem, because error bounds grow exponen- 
tially with time. In order to avoid lengthy integration, some intermediate sections 
were introduced, multivalued representations were computed for the intermediate 
Poincare maps and the required representation of the full Poincare map was taken 
as the composition. 

We will explain now the theoretical background of the intermediate sections 
approach. 

Let Z c X be compact. For x E Z define wz(x) sup{t E R+ Ip ([0,t],x) c 
Z}. The set E C X is a local section in Z if for every x c Z there is 

card{t c [0, z (x) | (p(t, x) < 1. 

To define a Poincare map with respect to one needs to know how points cross 
the section. To do this, given a 0 C E, define a partial map on X by Te,o(x) := 
sup{s c R+ I p([O, s), x) n 0 = 0}. Observe that Te,o (x) represents the first time 
that the forward orbit of x intersects the section in E0. The actual point of 
crossing is returned by another partial map given by domxFJ9,0: domTe9,0 and 
'Te,o(x) = p(Te,o(x),x) for x E domTe9,0. Denote E(Z,) {x n ZOdomx=,o I 
p([0,TB,o(x)],x) c Z}. Assume A c X is compact and put fB(A) := {y ] 3x C 
A n dom T6, 0 such that y E W( [0, T-, o (x)], x) X} We will say that A precedes E if 
there exists a compact set W c X such that is a local section in W, A C 
E(W, ) and there exists a T > 0 such that T1,o(x) E (0, T) for x E A. 

Lemma 5.1. If A precedes , then TB,oIA and TE,0IA are continuous. 

Proof. Let { xn } c A be such that xn -- x E A and tn I TE,0(Xn) t C [0, x]. 
Choose W c X such that is a local section in W, A c E(W, E) and there exists a 
T > 0 such that T-,o(x) C (0, T) for x C A. It follows that t < xc. Since is closed, 
we get p(t,x) E E, and consequently T=,0(x) < t. It cannot be that TB,o(x) < t, 
because p([0, t], x) c W and is a local section in W. Thus t = TB,o(x), which 
shows that T,o IA is continuous. The continuity of 1E,0 IA follows immediately from 
its definition. C: 

Observe that given x E ED c , Te,o(x) = 0. Thus, in order to obtain a first 
return map we define Te (x) = sup{s E 1R+ I card { o([0, s), x) n o } = 1}. In the 
sequel we are interested in the partial map Te, given by dom T9 = dom T? and 
'I'e(x) := (T,(x), x) for x E dom Te. We will call it the Poincare map associated 
with 0). The following lemma shows how the Poincare map can be glued together 
from small pieces. 
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Lemma 5.2. Assume N c E C E and E1,... , = , Zl,... ,Zn for some 
n > 1 are compact subsets of X such that is a local section in Zi and Zi n E = 0 
for i = 2,3, ... , - 1. If Ai C X for i = 0, 1, 2,.. n,r are compact sets such that 
N c AO, Zn n . C O E , J!Bi,O(Ai-,) c Ai, for i = 1, 2,.. .,n and 

(6) Ai-1 precedes Bi and (Ai-1) c Zi for i = 1,2, ... n, 

then 

(7) Ji'EI,o Ai are continuous for i = 1, 2, ... n, 
(8) N c dom T',, 

(9) 81IN = (iOIAij 0 ... 0 '=i,OIA0)INN 

and 19e IN is continuous. 

Proof. Property (7) follows immediately from Lemma 5.1. To prove (8) take x E N. 
Put to := 0, xo := x and for i < n define recursively ti := ti-i + T_i,o(xi_1), xi := 
0(TAi,o(xi-i),xi-i). Then 0 = to < t1 < ... < tn and p(ti,x) E zi n Ai for 
i = 0,1,... ,rn. In particular (p(tn,x) E Zn n c E 0. This shows (8). To prove 
(9), first observe that the domains of maps on both sides of (9) are equal and the 
right-hand side evaluated at x E N is (tnx). To show that this is also the left- 
hand side at x it is sufficient to prove that (p(t, x) 0 ( for 0 < t < tn. For this 
end select i E { 1, 2, ... , n I} such that ti-i < t < ti. If i E { 2, ... , nr-1 }, then by 
(6) (p(t, x) = (p(t - ti-, xi-) E W= (Ai-1) c Zi and consequently (p(t, x) 0 0. If 
0 < t < t1, then (p(t,x) 0 0,) because x = p(0,x) E N c 0) c E, o([0It],x) C Z1 
and is a local section in Z1. Similarly, if tn-1 < t < tn, then (p(t,x) , and 
in particular p(t,x) , ED, because (p(tn,X) CE 0([t,tn1,X) C Zn and = n is a 
local section in Zn. Finally the continuity of 'J4 IN follows immediately from (7) 
and (9). O 

6. REPRESENTATIONS OF POINCAREP MAPS IN IRd 

Let (o J: x IRd f' Rjd denote the flow generated by (4). Let Z c R d be a compact 
subset. For s > 0 denote Z, := {x E Z I ([O,s],x) c Z}. 

The main tool in obtaining multivalued representations of Poincare maps are 
multivalued representations of t-translation operators along the flow. The first step 
in constructing such representations is a way of rigorously enclosing the t-translation 
operator at a given argument. This may be obtained via the following theorem. 

Theorem 6.1 (see [19]). Assume the flow (o is generated by (4), where V is a 
polynomial vector field. Let 1: R x R d - Rd be an explicit Runge-Kutta method 
for (4) (see [4]) and let (I) denote its machine evaluation (see [19]). Then for 
every h > 0 and x E Zh 

Ikp(h, x) - (I(h, x) ? Isup -< E' (h), 

where E"](h) is a polynomial depending on T and explicitly given in [19]. 

The formula for the polynomial Ez (h) is lengthy so we omit it here. The in- 
terested reader may consult [19]. Finding the function Ez from these formulas is 
an elementary task but, typically arduous or even practically unrealizable without 
the use of a computer. Even if V is a polynomial of degree 2, as in the case of 
Lorenz equations, the computation of Ez involves polynomials of degree 14. We 
used MATHEMATICA to find the formula for Ez for the Lorenz equations. 



1034 KONSTANTIN MISCHAIKOW AND MARIAN MROZEK 

Theorem 6.1 allows one to find an enclosure of the t-translation operator at a 
given point. In order to be able to construct a multivalued representation of the 
t-translation operator, we need to extend the estimates given by Theorem 6.1 to 
nearby points. For this end let us introduce the following definitions. 

If A is a matrix (aij)i,J=1,.,d, then a(A) will stand for the logarithmic norm 
of A (see [4], Definition 10.4). In particular, in case of the supremum norm 
asup(A) = max{ aii+ ji aij }, (see [4], Theorem 10.5). Let DV(x) denote 
the linearization of V at x E Rjd and let L, E IRi+ be a constant such that 
Ju(DV(x)) - o-(DV(y))I < L x - ylI for x,y C Rd. Note that in case of the 
Lorenz equations and the supremum norm one can take L, = 2. Let Z C IRd 

be a fixed compact subset. In the sequel we assume that Mz, Lz E R+ are cho- 
sen so that Mz > sup{ IV(x)JJ x E Z} and Lz > sup{ IIDV(x)|1: x E Z}. Let 

- = Dv: Rd X IR -- Rd, E = Ez R+ - R+ denote the Runge-Kutta method and 
the error estimate as in Theorem 6.1. 

Lemma 6.2. If r > 0, s > 0 and x E Z are such that dist(x, bd Z) > Mzs + r, 
then 

(10) ([p0 S], B(x, r)) c Z. 

Moreover, if u < 1, then 

(11) (p(s, B(x, r)) c B (Q(I(s, x), r(1 + U + U2) + Ez(s)), 
where u s(La,(Mzs + r) + a(ThV(x))). 

Proof. To show (10) take y E B(x, r) and let so := sup{t C [0, s] I (p([O, t], y) c Z}. 
Then so < s and 

(12) 1kp(t,y)-X11 < ? k(t,y)-Y 1 + IY-xH < Mzs + r 

for t E [0, so] and y c B(x, r). It needs to be shown that so = s. If so < s, then 
p(so, y) E bd Z and we get from (12) dist(x, bd Z) < p p(so, y) -xli < Mzs + r, 
a contradiction. This proves (10). 

Now define Dl0c(x, r, s) := U { so QO, s], y) I y E B(x, r) }. It follows from (12) 
that Dioc(x, r, s) c B(x, Mzs + r). For z E B(x, Mzs + r) we have 

ac(DV(z)) < Iuf(DV(z)) - u(DV(x))l + a(DV(x)) 
< LjllX - zil + o(DV(x)) < L,(Mzs + r) + o(DV(x)). 

To prove (11) take y E B(x, r). Then from ([4], Theorem 10.6) 

fp(s,y)- 1(s,x)H < j lp(s,y)- ((s,x)H + 1 lpf(s,x) x)l 
< res(L,(Mzs+r)+a(Dv(x))) + Ez (s) = reU + Ez (s). 

Property (11) follows now from the fact that for 0 < u < 1 the estimate eu < 
1 + u + u2 is satisfied. D 

For a, b E RP let ab {a + (1-A)b I A E [0,1] } denote the segment in RP 
joining a, b. The following lemma will let us find a representation of the Poincare 
map. 

Lemma 6.3. Assume h > 0, a, b E RP and a, 3 > 0 are such that x E Zh n B(a, a) 
implies (p(h,x) E B(b,/3). Then, for any t E [O,h] and x E B(a,a) we have 
p(t, x) E B(ab, max(a, 3) + LzMzh2). 
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Proof. We have 

dist(( (t, x), ab) < Ijlp(t, x) - (a + -(b -a))ll < I Ifp(t, x) - (x + V(x)t)ll 

+ Il(x + V(x)t) - (x + =(Qp(h, x) - x))lJ 

+ I x + G(p(h,x) -x) - (a + (b-a))IH. 

Using a Taylor expansion we get for some 0, 01 E [0, h] 

dist(p(t, x), ab) < H11 (p2 0(0t, x) ''t2 + 2| 1t2 p(01h, x)hlit 2 a9t2 ' +j0~ 2(1 )H 
+ lIx(1 - + t (&p(h, x)) - [a(1 - + t b] 

Now, since x E Zh, the derivative a2 ~p may be estimated by LzMz, i.e. 

dist(p(t, x), ab) < L I 12 a2(01h, x) 2 2 92 2 

+lIx-al (1-h)+H(lp(h,x)-bl]h < LzMzh2 +max(a,/3). 

The above lemma implies that if a point p(x, t) on the trajectory of x is con- 
tained in a ball B(a, a) which lies entirely on one side of a surface and 0(t + h, x) 
lies in a ball B(b, 3) entirely on the otheri side of the surface, then the 
trajectory of x intersects the surface and the point of intersection lies in the ball 
B(ab, max(a, i3) + LzMzh2). In order to be sure that the point of intersection is 
actually the value of the Poincare map we need some way of guaranteeing that this 
is the first point of intersection. We will need another lemma for this purpose. Let 

be an oriented affine hyperplane in Rd given by := {x CE Rd I X. = CA}) 
where vA cE Rd is a vector orthogonal to and indicating its orientation and c= E R1 
is a constant. 

Lemma 6.4. If V(x) vA 7& 0 for x E W, then - is a local section in W. 

Proof. Assume the contrary. Then there exists a point x E W and a t > 0 such 
that p([O,t],x) c W and x, (t,x) E -. Consider the function T: [0,t] D s -* 

((7(s, X)) * - cA E IR. Since T(0) = T(t) = 0, there exists an s E [0, t] such that 
0 = T'(s) = V((7(s, X)) v VA, a contradiction. C 

Although the above lemmas are valid for any norm, the supremum norm is 
easiest to implement in our algorithms. In order to make use of Lemma 6.3 we 
need formulas, which we shall now present, for the distance in the supremum norm 
from a point to a line and a plane. 

For x = (X1,X2,... ,Xd) c Rd let Sgn x :- (sgnxl,sgnx2,... ,sgnxd). We will 
say that an x E IRd lies above (below) the hyperplane if x v. > c. (x * VA < CA ) 
We define the oriented supremum norm distance from x E Rd to by 

( distsup (xI I ) x lies above , 

ordistsup(x,) = distsup(x, x lies below , 

ol O,otherwise. 
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Lemma 6.5. The oriented supremum norm distance and the supremum norm dis- 
tance from the point x E IRd to the hyperplane E are given by 

(13) ordist (A) ( XXV C distsu(x) (VXIC1 

Proof. Obviously it is sufficient to prove only the right equation in (13). Let x Ez 
be such that distsup(x, ) = Ilx-x lsup. It is easy to see that x may be chosen so that 
x -x = aSgn(vB) for some a E IR. Since x Ewe have (x+aSgnv=) vB -c_ = 0. 
It follows that x -CA =-aHlvA111 and | x--xl|SUP = lal| Sgn V= SUP = lal = 
I x* v-cl c: 

Let 1 be a line in Rl&3 given by I {Pi + tvl I t E RI}, where Pl, vl E cR3. 

Lemma 6.6. The supremum norm distance from the point x E IR3 to the line 1 is 
given by 

(14) distsup(xI 1) = max { distsup(7r(x), ir(l)) I 7r C Proj3 }, 

where Proj3 denotes the set of the three canonical projections of Ri&3 onto R2. 

Proof. Since every canonical projection is 1-Lipschitz in the supremum metric, the 
left-hand side of (14) is obviously greater or equal the right-hand side. To prove 
the other inequality select Ez I to be such that distsup(x, 1) = I Ix-xl |SUP and put 
w := (wI,w2,w3) := x-x. It is-easy to observe that x may be chosen so that 
among the numbers { Iw11, Iw21, Iw31 } at least two are equal and the third is not 
greater than the other two. This mreans that among the three canonical projections 
we can select one, denoted by ir, such that distsup(ir(x),r(l)) = 17r(X) - ir(X))|SUP 
It follows that 

distsup(x, I) = w sup= 7r(w)Hlu = r -x)lsup = distsup (r(x), wr(l)) 

< max{distsup(7r(x),wr(l)) I 7r E Proj3 } 

7. INTERVAL ARITHMETIC AND LUKASIEWICZ LOGIC 

In this section we briefly recall the main ideas concerning the interval arithmetic 
and Lukasiewicz logic. The set of intervals over A c JR is defined as 17(A) 
{ [a-,a+] a-,a+ c A, a- < a+}. The set of real numbers may be viewed as a 
subset of 17(R) via the natural embedding JR D x - [x, x] c 1Z(JR). In the opposite 
direction, one has the two functions xlower: T(JR) D [a-, a?] - a E JR and 
upper: T(JR) D [a-, a?] - a+ E JR which select the lower and upper bounds 
of the interval. In the sequel we will treat the minimum and maximum of two 
numbers x, y E JR as a binary operation on JR denoted by x A y := min(x, y) and 
xVy max(x, y) respectively. Let o E {+,-, *, 7, A, V}. The arithmetic operations 
are extended to I,J I I (JR) by I o J {a o b a E I, b E J}. Let JR c JR be a finite 
set of real numbers satisfying the 64-bit IEEE standards. We will call this set the 
set of representable numbers. Intervals over the set of representable numbers are 
called representable intervals. If I E 2T(JR), then the smallest representable interval 
containing I will be called the representation of I and denoted by I (1). One then 
defines the machine arithmetic operations on representable intervals I, J E I(JR) by 
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I(o)J := (I o J). Note that I (I o J) may be easily found from the endpoints of 
I, J. 

If Q R d -- R is a rational function, then replacing the standard arithmetic 
operations by the corresponding machine operations on intervals one obtains a 
function Q: I()d - I() (note that such a function need not be unique because 
the machine arithmetic operations on intervals are not associative). We will call 
such a function Q an interval representation of Q. The usefulness of intervals lies in 
the following proposition which one can easily prove by induction on the complexity 
of Q. 

Proposition 7.1. If Q(xI,... xn) is a rational function and I1,.. n. E I() 
are intervals such that xi E li, then Q(xl.... ,xn) E Q(11, In) 

It is essential to be able to guarantee that whatever is proved for intervals is also 
true for any selection of numbers in the intervals. To make it work we need to extend 
the two classical logical values: 0 (false) and 1 (true). Following Lukasiewicz [9], 
we add the third value 1 and we define the basic logical operations (conjunction, 2 
alternative and negation) for p,q E {?, 1 } by pAq min{p,q}, pVq 
max { p, q } and -p : 1 - p. To avoid confusion with the standard logic and to 
emphasize the meaning in our approach of the three logical values 1, 1, and 0, we will 
call them proved, open and disproved, respectively. Equipped with the three- 
valued logic we define the following relations between intervals I = [xo, x],J = 

[Yo, y, ] Ez l(R1) 

(proved if Xi < yo, (proved if x1 < yo, 
I < J := disproved if Yi < xo, I < J := disproved if Yi < xO, 

open otherwise, open otherwise. 

We will also need a function which translates the three-valued logic to the standard 
two-valued logic. We define for v E { proved, disproved, open } 

rtrue if v = proved, 
carnclaim(v) := 

false otherwise. 

Again an easy induction argument proves the following proposition. 

Proposition 7.2. Assume p(Xl,... I Xn) is a sentence built out of the logical op- 
erators A, V, - and relation operators <, <. Then for any intervals I1, I In 

can-clail(P(I11, . . . I In )) =>~ P(X1 , . . . I Xn ) 

for any numbers x1,... I Xn such that xi E 1i for i = 1,... I, n. 

8. PROOF OF THEOREM 1.1 

Algorithms and data structures used in our computer assisted proof are presented 
in this section in a PASCAL-like style with comments embedded between (* and *). 
The standard dot notation is used to extract components of compound structures. 
REAL denotes the type representing a fixed set of representable numbers IR C R11. 
Minimum and maximum of x, y E IR are denoted respectively by x A y and x V y. 

Let i E {2, 3}. Our basic structures are 
POINTiD = array[l: i] of REAL; 

SBALLiD = record x: POINTiD; r: REAL; end; 
BOXiD = record x7 , : POINTiD; end; 
AFFFORM = array[1 4] of REAL; 
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The structures POINT2D and POINT3D are used to represent vectors in R112 and jR)3. 
If x, y are two structures of type POINT3D, then l(x, y) will denote the line through 
these points i.e., I(x, y) C R& 3. The structures SBALL2D and SBALL3D are used 
to represent balls in R1 2 and Rl&3 in the supremum metric with x and r denoting 
respectively the center and the radius. Given b a variable of type SBALL2D(SBALL3D), 

the actual ball in JR2(1R 3) represented by b will be denoted by Ibl. The structures 
BOX2D and BOX3D are used to represent rectangles in JR2 and cuboids in Rl&3 with 
x-, x+ denoting the corners with minimal and maximal coordinates respectively. If 
c is a variable of type BOX2D or BOX3D, then Icl will denote the actual rectangle in 1R2 
or cuboid in JR)3 represented by c. The structure AFFFORM is used to represent an 
affine form in JR3. If is of type AFFFORM, then ((x) : [1]xx? + [2]x2 +?[3X3-][41 
for x = (xl, X2, x3) R JR)3 will denote the value of the associated affine form at x, 

O1 := {X E JR)3 1 ((x) = 0} will stand for the associated affine plane in IR 3 and nr 
will denote the normal vector to 1j. 

The structure 
IMVMDATA = record 

(: BOX3D 

z: POINT3D; (*z[i] := max{ lxii I x E C(i }*) 

A: set of SBALL3D (* a grid *) 
(, ,u, v : AFFFORM; 

h, M, L: REAL; 

end; 

collects all data needed to compute the intermediate map. It includes (, the domain 
in which all estimates are valid, (, the surface approached, h, the step of the 
numerical method chosen for this domain, M and L, the estimates of the vector 
field and the Lipschitz constant and two coordinate forms ,u, v used to efficiently 
represent the values. 

We will say that the structure A of type IMVMDATA is well set for the vector 
field V if A.M > sup{ |IV(x)HIsup I X E1 }A , A/L > sup{ |dxVIHISUp I x Ez 1A/\< } 

and jjp(s,x) - ((sx)jjsup < E",;(s) for x c IA<(lS and s > 0 (here E ,; is 
the polynomial introduced in [19]). Since the Lorenz vector field is polynomial, 
it is straightforward to find the appropriate upper bounds for L and M and by 
Theorem 6.1 the required error estimate is always satisfied if Eb is taken as in 
[19]. Therefore without loss of generality we may assume that in the sequel the 
structure A is always well set up for the Lorenz vector field. 

The combinatorial multivalued maps are stored as sets of pairs of the form (argu- 
ment, value), such that for any two different pairs their first elements (arguments) 
are different. To optimize the algorithms it was convenient to appropriately code 
the values to avoid long lists. For the same purpose we have chosen two different 
structures to represent the (argument,value)-pairs for the intermediate multivalued 
maps and for the final multivalued map. 

The structure IAVPAIR iS used to represent the argument-value pair of the in- 
termediate map. The argument is stored as a 3-dimensional ball in the supremum 
metric. The value is stored by providing the minimal and maximal values of the 
1t and v forms. The actual value is the collection of boxes with ,u, v coordinates of 
their centers within the given limits. The intermediate map is stored as a list of 
argument-value pairs. 

IAVPAIRrecord 

b -SBALL3D;(* argument*) 
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[to, /ti, Vo, v 1: REAL; (* value *) 
end; 
IMVMAP = set of IAVPAIR 

If F is a variable of type IMVMAP, then we define the combinatorial multivalued 
map TA :dom := { q.bI q ETJ} -- A.A by dom,FA := { q.bJ I q Ez-F} and 

.FA(q.b) := { c E A.A q.to < A.tt(c) < q.ul, q.vo < A-v(c) < q.vl }. 

The structure AVPAIR iS used to represent the argument-value pair of the Poincare 
map. The Poincare map itself is stored as a list of argument-value pairs. 

AVPAIRrecord ae, w: SBALL2D; end; 

MVMAP = set of AVPAIR 

Since the value w is a strongly representable set over a fixed grid g22, we can 
associate with a variable H of type MVMAP a combinatorial multivalued map Hg2 
given by 

dom lg2 ={ q.a I q E HI, Hg2 (q.a) g2 (q.w). 

In the algorithms presented in this section it is assumed that all arithmetic ex- 
pressions evaluated within the upper or can-claim functions are evaluated in the 
interval arithmetic and using Lukasiewicz logic. Note that all arguments in such 
expressions are always representable numbers not intervals. Thus, it is assumed 
they are converted to intervals just before the expression is evaluated. Also, the 
value returned by the function upper is always a representable number. This means 
that we do not need variables of type interval. Intervals are used only in course of 
evaluating expressions as temporary objects. It should be emphasized that expres- 
sions other than those mentioned above are evaluated in a representable arithmetic. 
This does not influence the rigor of proofs based on these algorithms, because the 
results of expressions evaluated this way are used only as choices. Any other choice 
would be legitimate, but it could increase the chances that the algorithm would 
fail. In what follows it is assumed that V denotes a fixed rational vector field in 
R3, uSp(DV(x)) is the logarithmic norm of DV(x) corresponding to the supremum 
norm, all variables A\ are set for the vector field V, 1 is the classic fourth order 
Runge-Kutta method (see [4], [14]). Furthermore, we assume that g52, g53 are two 
fixed grids in R2 and R3 respectively. 

We begin the description of the algorithms we use with the following one, which 
finds an upper bound on the image of a 3-dimensional box under the h-translation 
map of the flow. 

Algorithm 8.1. 
function MOVE(b: SBALL3D, A\: IMVMDATA, h: REAL): SBALL3D 
with b, \ do 
begin 

var b: SBALL3D; (* Declare bl to be of structure type SBALL3D*) 
var u: REAL; 
if can-claim(dist,up (x, bd () > Mh + r)-then exit( "Failed"); 
if-ican_claim(V(x) ve > (r + Mh)Lllv lll) then exit("Failed"); 
b'.x (1)(h, x); (* New center point *) 
u := upper((La(Mh + r) + a,.p(DV(x)))h); 
if can-claim(u < 1) then exit( "Failed"); 
b'.r := upper(r(1 + Ch5 + cF(z)); (* New error bound *) 
return b'; 

end; 
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Proposition 8.2. If Algorithm 8.1 does not return "Failed", then y(h, Ibl) c lb' 
and y([0, h], Ib ) C I/\. 1. Moreover, V(y) vf > 0 for any y E p[0, h], Ib ). 

Proof. If the algorithm does not return "Failed", then dist,up(x, bd Jz\.() > Mh+r. 
Thus the assumptions of Lemma 6.2 are satisfied, and hence the first statement 
of the proposition is true. To prove the inequality take y E y([0, h], Ibl). Then 
IIy - x < r + Mh and IIV(y) - V(x) I < L(r + Mh). Thus, under the assumption 
that the algorithm does not return "Failed", we get 

V(y) vf = V(x) * v- (V(x) -V(y)) vf 

> V(x) * v - IV(x)-V(y)llsupllv|11| > V(x) v v -L(r + Mh)llv|11 > 0. 

The next algorithm is used to compute the intermediate multivalued map. It is 
assumed that on entry the grid Ao contains the domain in which the map is to be 
computed. For the most part, when computing the intermediate multivalued maps, 
we use a fixed step Runge-Kutta method. However, in order to get the enclosure of 
the Poincare map it is necessary to adjust steps in such a way that at the moment 
of crossing the section we have first the whole ball enclosing the point on trajectory 
close to the section but entirely below the section and in the next step the whole ball 
above the section. Moreover, we want the last step as small as possible in order to 
minimize the final size of the multivalued map enclosing the Poincare map. Thus, 
the last two steps i.e., the one before and during the crossing, are determined by 
means of the following two functicrns 

function SELAPPRH: REAL; function SELJUMPH: REAL; 
The computations of these steps need not be rigorous, because the steps are just 
choices. A bad choice may cause Algorithm 8.3 to fail or produce an inefficient 
enclosure. The algorithm used to find the possible optimal steps is just the standard 
bisection method with some safety margin to minimize the risk that Algorithm 8.3 
fails. Since the algorithm is well known, we do not include it here. Note that on 
exit the structure F contains the computed multivalued map and the structure Z\.A 
represents the domain for the next multivalued map. 

Algorithm 8.3.: 
procedure FINDIMVMAP (Ao: set of SBALL3D, var \: IMVMDATA, varYF: IMVMAP) 
with A\ do 
begin 

var a: SBALL3D; 
A := 0;F := 0; 
for every a E A0 do with A, a do 
begin 

var c, c', c, a : SBALL3D; p: IAVPAIRC : set of SBALL3D; 
c':= p.b := a; 
if can-claim((c', below ()) then exit("Failed!"); 
repeat (*Move step by step until the section is reached *) 

C := C/; Cl := MOVE(C, /\, h); 
until - can-claim((c', below()) 
(* Select step h_ to come close but entirely below the section *) 

h_ := SELAPPRH(C, ); C := MOVE(C, A, h_); 
if -can-claim((c, below ()) then exit("Failed!"); 
c :=c; 
(* Select step h+, possibly small, to move entirely above the section*) 

h+ := SELJUMPH(C, (); C := MOVE(C, A, h+); 
if -canclaim((c, above()) then exit("Failed!"); 
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C+ := C; 

(* The set ICI encloses the value of the Poincare map*) 
C := Ia E - I -ican-claim(((a, below()) V ((a-, above ()) V 
distsup(a, l(c-.x, c+.x)) > c-.r v c+.r + LMh+)}; 
(*To save memory and time enclose ICI by a rectangle*) 
(* in the ,u, v-coordinate system*) 
p.,u : min { ,(a.x) I -a E C }; p.[l : max { [L(a-.x) I -a EC }; 
p.vo := min{v(a-.x) I -a E C};p.viu max{Iv(a-x) I -a E }; 
F:=Fu {p};A:= AuC; 

end; 
end; 

Theorem 8.4. Assume Algorithm 8.3 stops and does not return "Failed". Then 

on return dom LFAi = IAoI precedes I L?1 and 

(15) (PIA. I(jAol) C 1\.(1, (po .s,(JAoj) C 1A.Al1 

(16) 0 (x) E FzA ]j(x) for every x dom .FA. 

Proof. We will write ( instead of A\.( and we put := Assume the algorithm 
stops and does not return "Failed". Let q be a fixed element of A0. Let Kq denote 
the number of calls to function MOVE with variable a = q. Since the algorithm stops, 
Kq < oo. Let bo q and for n = 1, 2, ..., Kq let hq denote the last argument in 
the n-th consecutive call of MOVE and bq the value returned. For n = 0,1,... , Kq 
set Hq{ :=141n, W~n := 0([,hj],HqH1) and tq := hl + h2 + h. Also put 

Wq=Wl U. ** Kq I W:= U {Wq I q E Al}, t= -tq and T:= max { tq I q E Al. Wq:=W 'U WK tqcA}. 
It follows from Proposition 8.2 and the definition of W that (p(hq, Hn_l) C Hq for 
n = I,..., Kq, W C IA.(l and 

(17) V(y)r n > O for any y EW. 

An easy induction argument shows that for any n = 1,... , Kq, 

(18) 'y(tq, Hoq) c Hq, (p([O, tq], Hoq) c Wlq U ... U w c A 

Property (17) and Lemma 6.4 imply that is a local section in W. Now, Hoq lies 
q below _andi HKq lies above _., because otherwise the algorithm would have returned 

"Failed". Thus, by (18), also (P(tKq HOq) lies above E. Consequently Hoq C dom yR 
and 

(19) 0 < t?(x) < t < T for x E Hoqj, y(0, t?(x)], x) c W for x E Hoq. 

Property (19) shows that dom.FA = U{Hoq I q E P} = Ao c E(W,E) and 
dom.FA precedes 

Since W c IA<(I, the first inclusion in (15) follows immediately from (19). Let 
Cq denote the value associated with the variable C when a takes value q and let 
r-q := max(bKql .r, bKq .r) + LMh 2 . Then 

(20) O n Bsup([bKq-1.X IbKq.X], -q) C ICq.l n I A - A C JFA(q.b)I. 

Now take x E dom.FA. Then x E Hoq for some q E A and ?(x) = o(t,y) for 
some y E HKq-1 and t E [0, hKql* It follows from Lemma 6.3 and (20) that 

(21) y?(x) _ n Bsup([bKq-1.X,bKq.X1jrq) c Y1F(q.b)j 0 . 

This, in particular, proves the second inclusion in (15) and since (21) applies to any 
q E A such that x E Hoq we get from the definition of L.FA i that ? (x) E L.FAi (x). 
Thus (16) is proved. LI 
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The next algorithm is used to compose two consecutive multivalued maps. Ex- 
actly speaking, it computes only an upper bound on the composition, determined 
by the ,u, ii forms. Finding the exact composition would require searching lists, 
which is rather expensive. 

Algorithm 8.5.: 
function COMPOSE(, F': IMVMAP, A\: IMVMDATA): IMVMAP; 
begin 

var F: IMVMAP;p,p, q: IAVPAIRC: set of IAVPAIRc: BOX3D 
F := 0; 
for every p E F do 
begin 

p.b := p.b; 
C := {q E zF' I p11o < Z\./(q.b.x) < p/li, p.vo < /\.v(q.b.x) < p.vl}; 
P.[Lo min{q./po | q E C}; p.l: max{q1-pi I q cE C}; 

P.V0:=min{q.vo Iq E C}; pj.Vj max{q-q.vi I q e C}; 
.F := F U { p} 

end _ 

return F; 
end 

One can easily verify the following proposition. 

Proposition 8.6. If F denotes the value returned by function COMPOSE, then the 
domains of TA,, and FA coincide and .FT, (.FA.(x)) c TFA (x) for any x E dom.FA. 

Our next algorithm computes a multivalued enclosure of the Poincare map. The 
Poincare section is chosen to be a subset of the plane { (X1, X2, X3) X3 = R - 2} 
which actually is the standard choice for the Lorenz system. 

Algorithm 8.7.: 
procedure FINDIMVPOINC (var H1: MVMAP, n: INTEGER, JA set of SBALL2D1, 

A: array[1: n] of IMVMDATA, -y, hmax REAL) 
begin 

var p: IAVPAIR i: INTEGER; b: SBALL2D; c: SBALL3D; 
F, F: IMVMAP; Ao: set of SBALL3D; 

Ao :=0; 
for every b E JV do 
begin 

c.x[l] := b.x[l]; c.x[2] := b.x[2]; c.x[3] R - 1; 
c.r := b.r; Ao := Ao U { c }; 

end; 
(*Find the enclosure of the first partial Poincare map*) 
FINDIMVMAP(Ao, /[1], ); 
(*Step by step compute the following enclosures and update the composition*) 
for i := 2 to n do 
begin 

FINDIMVMAP(A[i-1].A, A[i], F); F:= COMPOSE(Y, F, A[i-1], A[i]); 
end; 
(*Translate the computed enclosure from three to two dimensional coding*) 
1I := 0; 
for every p E F do 
begin 

var q: AVPAIR x , x+: POINT2D; C: set of AVPAIR 
q.(:xx[l] := p.bx[l]; q.a:.x[2] := pAbx[2]; q.a:.r := p.br; 
C := {a EE 

g I p.11o < /I(a.x) < p.1j, p.vo < v(a.x) < p.vl }; 
x- [0] := min { k-y2 V Vc E C nry2 < c.x[O] - c.r ; 
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x- [1] :min{k-y2 Vc E Cn-y2 < c.x[1]-c.r}; 
x+ [O] :max{ ky2 Vc E C n-y2 < c.x[O] + c.r}; 
x+[1] :max{k-y2 Vc ECny2 < c.x[1]+c.r}; 
q.w.x[O] := (x- [O] + x+ [0])/2; q.w.x[l] := (x- [1] + x+ [1])/2; 
q.w := (x+ [O] -x- [O] v x+ [1] - x [1] )/2; 

:=flU {q}; 
end; 

end; 

Theorem 8.8. Assume Algorithm 8.7 is called with its arguments satisfying the 
following two conditions 

(22) 1A/ C 1c 1 C I\[n].(l and I\[n].(j is a local section in /[1]4, 

(23) JA\[i] (I noE = 0 for i = 2,... , n- 1, 

where 0 is a given compact set. If the algorithm stops and does not fail, then 
N := IVfI C dom A, W)IN is continuous and pE(x) E [Hg2 j(X) forx E N, where 
H denotes the multivalued map returned by Algorithm 8.7. 

Proof. For i = 1, 2, ... , n, let Ai-1 denote the value of the first argument in the i-th 
call to FINDIMVMAP and let An := { q.w I q c H }. The construction of Algorithm 
8.7, Theorem 8.4 and conditions (22), (23) imply that the sets Ai := lAil and 

- satisfy the assumptions of Lemma 5.2. Thus N C dom 'p and dom iS 

continuous. Put := IA[i].(I. Let Fi denote the combinatorial multivalued map 
associated with the i-th consecutive value of variable F and / [i]. An easy induction 
argument based on property (16) of Proposition 8.4 and Theorem 8.6 shows that 

=j_j|Aj_1 ? * ? -lA,, W) I-Fi I(X). 

Thus, by property (9) of Lemma 5.1 we have 

(~~~ N(X) = .. 0 -l~Ox [ 
Yix Hg2j(x). D f0 IN (X) =pln- ?0 lA,, (X) E _E n [Ln ] (X) c 52 ()O 

Our last algorithm is used to verify if an isolating block was found and to con- 
struct the corresponding exit set. 

Algorithm 8.9. 
procedure ISONBHD(F: MVMAP, var : set of SBALL2D) 
begin 

var Jg, Cl, C2: set of SBALL2D; T, a: REAL; p: AVPAIR a SBALL2D; 
IF:=C1 :=C2 0; r :=0; a:= oo; J\:= domF; 
for every p E Ydo with p do 
begin 

T := V 2w.r; 
if g22(w) At then E:= E U {c4}; 
if g22(w) n AX 0 then Ci := Ci U { a }; 
C2 :=C2UW*; 

end; 
for every a E Ci n C2 do or :a A distsup (a, bd IArl); 
if - can-claim(a > r) then exit ("Failed") else exit (" Success"); 

end; 

Theorem 8.10. If the above algorithm succeeds, then N I dom FI is an isolating 
block for F := J.F] and on return the value of the variable ? represents the set 
E := 1?I such that the pair (N, E) is an index pair for F in N. 
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Proof. It follows from the construction of C1, C2 that .F*- 1 (f) n F(Pv)* = C1 n C2 
and ? = A\J \- 1 (A/). Thus 

distsupt(IYF* 1 (A/) n Y(A/) * I, bd lAfl) > distsupt(IC n C2 ,bd N) = a > T = diamYF 

and the thesis follows from Theorem 4.3. LI 

Remark 8.11. If J.A C g52, where -Y2 is a representable number, then the compu- 
tation of distsup(a, bd 1AX1) may be performed exactly but may be lengthy if JVA is 
large. In our application to the Lorenz system we used the fact that J.A was taken 
as a covering of a set of 4 parallelograms (see the next section). In such a case an 
interval estimate from below of this distance may be obtained by means of Lemma 
6.5. We then compared with T this estimate instead of the exact distance. 

We are finally ready to turn our attention to the Lorenz equations. First observe 
that the Lorenz equations are equivariant with respect to the symmetry 

p: R3 3 (X1, X2, X3) - (-X1, -X2, X3) E JR3. 

Let p be the flow generated by the Lorenz equations (1) with (s, R, q) = (45, 54, 
10). Take M1o, M1l to be the two parallelograms as indicated in Figure 2 (see [14] 
for exact definitions of M1o, M11). For i, j = 0, 1 let 

41,j := {a E g1500/22o -can-claim(distsup(a,Mi,i)) > 0}, 

AMo,i :={ p(a) I a E M1,1_ }, Af:= Moo U Mol U A41o U A411, 

Mi,j := gj, - 1,No MooU Moi, N1 Mio U A11, N No U N1, 

_:={(Xl,X2,X3)R EJ X3 =53}, : = [2,17] x [2, 4] x.{ 53}. 

Lemma 8.12. The Poincarer map is well defined on N, i.e. N C dom IE) and 
Te IN is continuous. Moreover, if E denotes the shaded region in Figure 2 (more 
precisely: if E := 151, where ? is the output produced by Algorithm 8.9), then (N, E) 
is an index pair for Toli, the Alexander-Spanier cohomology of the index pair is given 
by 

H (N, E) = 

otherw'se, 

and the associated index map is 

I 0 0 0 1 0 0 0 

1 0 0 0 1 0 0 0 

0 1 0 0 0 1 0 0 

(24) I(N,E) 0 0 1 0 0 0 1 0 0 

O 0 1 0 0 0 1 0 

O O 0 1 0 0 0 1 

L O 0 1 0 0 0 1 

Proof. Take an arithmetic complying with the 64-bit IEEE standard (see [29]). 
Take 1 to be the classic 4-th order Runge-Kutta method for (1) (see [4], [14]). Let 
n = 23. For i = 1,2,..., n, initialize the variables A [i].(,Aj [i]./,,Aj [i].z 
as in Tables 1-4 in the Appendix of [14] (The precise binary values of these numbers 
may be fetched from http://www.ii.uj.edu.pl/mrozek/lorenz.html or delivered via 
e-mail on request send e-mail to mrozek@ii.uj.edu.pl). Take g3 300, 

220 
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g500, hmax 1?2? and start Algorithm 8.7 twice for j = 0, 1. In both cases it stops 
22020 

and does not fail. Let H - (j = 0,1) be the multivalued map returned by Algorithm 
8.7. Put HI := HIo U HI1 and extend this map to a map HI on JV using the symmetry 
p. It is now an easy exercise to verify that the assumptions of Theorem 8.8 are 
satisfied. Thus N c dom 'E), "'eIN is continuous and 'E3 (x) C L-I (x) for x E N, 
This shows that T"E is a selector of LHi. 

Algorithm 8.9 started with F = H succeeds and returns ? as in Figure 2. 
(Though this does not belong to the proof, the final values of variables a and 
T we obtained were 0.058 and 0.046 respectively.) Thus the rest of the assertion 
follows from Theorem 8.10 and Theorem 4.2. D 

Proof of Theorem 1.1. Let N, E be as in Lemma 8.12 . Using the form of the index 
map in N given by (24) and arguing as in the proof of Theorem 2.3 in [12] one 
can easily check that the assumptions of Theorem 2.1 are satisfied. The thesis 
follows. LI 

9. ACKNOWLEDGMENTS 

Both authors gratefully acknowledge Luca Dieci's advice regarding the numerical 
computations necessary in this work. It is a pleasure of the second author to thank 
Colin Sparrow for several conversations held many years ago which turned out to 
be crucial in the choice of the Lorenz equations as an illustration of the presented 
method. 

REFERENCES 

[1] U. Ascher, R.M. Mattheij and D.R. Russell, Numerical Solution of Boundary Value Problems 
for ODEs, Prentice-Hall, Englewood Cliffs, N.J., 1988. MR 90h:65120 

[2] Xinfu Chen, Lorenz Equations, Part III: Existence of Hyperbolic Sets, preprint 1995. 
[3] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. Math., 

no 38, AMS, Providence, R.I., 1978. MR 80c:58009 
[4] E. Hairer, S.P. N0rsett and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff 

Problems, Springer-Verlag, Berlin Heidelberg 1987. MR 87m:65005 
[5] B. Hassard, J. Zhang, S. Hastings, and W. Troy, A computer proof that the Lorenz equations 

have "chaotic" solutions, Appl. Math. Letter 7 (1994), 79-83. MR 96d:58082 
[6] S.P. Hastings and W.C. Trloy, A shooting approach to the Lorenz equations, Bulletin (New 

Series) of the American Mathematical Society 27(1992) 298-303. MR 93f:58150 
[7] T. Kaczyniski and M. Mrozek, Conley index for discrete multivalued dynamical systems, 

Topology & its Appl., 65(1995), 83-96. MR 97d:54066 
[8] R.J. Lohner, Computation of Guaranteed Enclosures for the Solutions of Ordinary Initial and 

Boundary Value Problems, in: Computational Ordinary Differential Equations, J.R. Cash, 
I. Gladwell Eds., Clarendon Press, Oxford, 1992. CMP 96:12 

[9] J. Lukasiewicz, 0 logice tr6jwartosciowej (On three-valued logic), Ruch Filozoficzny 5(1920), 
169-170. 

[10] K. Mischaikow, The structure of isolated invariant sets, Contemporary Mathematics, C. Mc- 
Cord ed.,AMS, (1993), 269-290. MR 94k:58083 

[11] K. Mischaikow, The Conley index theory: some recent developments, CIME Lectures, 
preprint. 

[12] K. Mischaikow and M. Mrozek, Isolating neighborhoods and Chaos, Jap. J. Ind. & Appl. 
Math., 12, 1995, 205-236. MR 96e:58104 

[13] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. 
AMS, 32(1995), 66-72. MR 95e:58121 

[14] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof. Part 
II: Details, preprint CDSNS95-222. 



1046 KONSTANTIN MISCHAIKOW AND MARIAN MROZEK 

[15] K. Mischaikow, M. Mrozek and A. Szymczak, Chaos in Lorenz equations: a computer assisted 
proof. Part III: The classical case, in preparation. 

[16] J. Moser, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press (1973). 
MR 56:1355 

[17] M. Mrozek, Leray Functor and the Cohomological Conley Index for Discrete Dynamical Sys- 
tems, Transactions of the American Mathematical Society 318(1990) 149-178. MR 90f:34076 

[18] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs in dy- 
namics, Computers & Mathematics, 32(1996),83-104. MR 97h:58144 

[19] M. Mrozek, Rigorous error analysis of numerical algorithms via symbolic computations, J. 
Symb. Comp., 22(1996) 435-458. CMP 97:06 

[20] J. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984. MR 85m:55001 
[21] A. Neumaier, The wrapping effect, ellipsoid arithmetic, stability and confidence regions, 

Computing Supplementum, 9 (1993), 175-190. 
[22] A. Neumaier, Global, rigorous and realistic bounds for the solution of dissipative differential 

equations Part I: Theory, Computing 52 (1994), 315-336. MR 95f:65098 
[23] T. Rage, A. Neumaier, and C. Schlier, Rigorous verification of chaos in a molecular model, 

Physical Rev. E, 50 (1994), 2682-2688. 
[24] K.P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer Verlag, 

Berlin Heidelberg 1987. MR 89d:58025 
[25] M.R. Rychlik, Lorenz attractors through Sil'nikov-type bifurcation. Part I, Ergodic Theory 

& Dynamical Systems, 10(1989), 793-821. MR 92f:58103 
[26] S. Smale, Differentiable dynamical systems, Bull. AMS 73 (1967), 747-817. MR 37:3598 
[27] H. Spreuer , E. Adams, On the strange attractor and transverse homoclinic orbits for Lorenz 

equations, J. Math. Anal. and Appl. 190(1995), 329-360. MR 96h:58119 
[28] P. Zgliczyniski, Computer assisted proof of chaos in the R6ssler equations and in the H6non 

map, Nonlinearity 10 (1997), 243-252. CMP 97:07 
[29] The IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754,1985. 

CENTER FOR DYNAMICAL SYSTEMS AND NONLINEAR STUDIES, SCHOOL OF MATHEMATICS, GEOR- 
GIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA 30332-0001 

E-mail address: mischaikfmath .gatech. edu 

CENTER FOR DYNAMICAL SYSTEMS AND NONLINEAR STUDIES, SCHOOL OF MATHEMATICS, GEOR- 
GIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA 30332-0001 

Current address: Instytut Informatyki, Uniwersytet Jagielloniski, Krak6w, Poland 
E-mail address: mrozektii . uj . edu.p1 


