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ON A HIGH ORDER NUMERICAL METHOD FOR 
FUNCTIONS WITH SINGULARITIES 

KNUT S. ECKHOFF 

ABSTRACT. By splitting a given singular function into a relatively smooth part 
and a specially structured singular part, it is shown how the traditional Fourier 
method can be modified to give numerical methods of high order for calculating 
derivatives and integrals. Singular functions with various types of singularities 
of importance in applications are considered. Relations between the discrete 
and the continuous Fourier series for the singular functions are established. Of 
particular interest are piecewise smooth functions, for which various impor- 
tant applications are indicated, and for which numerous numerical results are 
presented. 

1. INTRODUCTION 

For various applications we may be concerned with functions w(x) given on 
the interval [0, 2ir], say, under circumstances where it is known that the otherwise 
smooth function w(x) has special features (e.g. -singularities) at a finite number of 
points x = -yj, j = 1, 2, ... , M, say. Of particular interest here are piecewise smooth 
functions which occur for instance in problems with shocks [9], [12], [13], but also 
in other important applications [8], [10], [11], [14]. For a piecewise smooth function 
w(x) we have in these earlier works found it advantageous for a given integer Q > 0 
to write w(x) in the following way on [0, 2ir] 

Q M 

(1) w(x) = wQ (x) + E A7Un (x- 
n=O j=1 

For each n = 0, 1, 2, ... , the 27r-periodic function Un(x) is here a piecewise poly- 
nomial of degree n + 1 given by 

(2) Unr(X) - (2)n> Bn+1 i(2) when 0 < x < 27r, 

where Bj(x), j = 1, 2,.. , are the Bernoulli polynomials, [10], [15]. The representa- 
tion (1) is a generalization of a representation utilized by Lanczos [20] for functions 
with one singularity in each period (i.e. M = 1 and 'Yl = 0), but apparently [18] the 
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basic idea was introduced earlier by A. N. Krylov. From (2) it follows that Un(x) 
is n - 1 times continuously differentiable everywhere, while the nth derivative of 
Un (x) suffers a jump discontinuity of magnitude +1 at x = 0, ?2ir, ?4wT .... Hence, 
if for each n = 0, 1, 2,.. , Q we let A'n be given as the jump in the n'th derivative 
of the function w(x) at the singularity location x = y 

(3) Ajn = dxt W( _ dm kj_) 
and if we include the point x = 0 among the singularity locations -yj whenever that 
is necessary [11], it readily follows from (1) that the 27r-periodic extension of the 
function WQ(x) is continuous and Q times continuously differentiable everywhere. 
We furthermore note that the Fourier coefficients associated with the function Un (x) 
are given by 

(4) (Un)0 = 0 
, 

(Un)k = 
27r(ik)n+l ; k ?1, ?2. 

In this paper we shall utilize the representation (1) further for piecewise smooth 
functions w(x), and in particular consider new ways of determining the jumps (3) 
when they are not known in advance. We note here that the lack of robust methods 
for jump-determination has been the main reason why this type of construction 
has not been extensively utilized earlier [21, p.101]. It may also seem natural to 
try to generalize the representation (1) to cover functions w(x) with other types 
of singularities than jump-singularities. Thus we shall consider the more general 
representation 

Q M 

(5) W(x) = WQ(x) + ZZA V n (x;vj), 
n=O j=1 

where the functions Vn(x;yj) are assumed to possess prototype special features 
(singularities) of the same kind that w(x) is known to have at the point x = -yj in 
such a way that for certain constants Ajn (i.e. strengths of the singularities), the 
function WQ(x) in (5) becomes less singular the higher we choose the value of Q. 

The assumed existence of the special feature functions Vn (x; yj) is crucial for the 
theory we are going to develop in this paper. In addition to the above properties, 
further properties will be specified in section 4 for these functions. We do not 
attempt here to give a theory for how the functions Vn (x; 'yj) can be chosen in 
general, but in section 3 we shall study in some detail a relatively large family of 
functions from which it is possible to choose the special feature functions Vn (x; -yj) in 
many important special cases. For various other cases, we suggest that asymptotic 
expansions near the singularities [3] may be a useful tool for the construction of the 
relevant special feature functions Vn(x; ( j). 

The primary purpose of the representation (5) in our context is its suitability 
for calculating integrals or derivatives of the given singular function w(x). When 
x / '71,... ,7M differentiation of (5) clearly leads to 

dm dm Q M dm 
(6) w(x) = dXmWQ (x) + E ZAnd Vn (X; j). 

dxm dxm n~~~r=0 j=1 
d. 

From this equation and the fact that the function WQ (x) is relatively smooth, we 
may conclude that derivatives of the singular function w(x) can be accurately cal- 
culated by standard methods if the special feature functions Vn (x; '7j) are explicitly 
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known and the quantities AX in (5) can be accurately determined for n = 0, 1, ... , Q 
and j = 1,... ,M. Analogous remarks hold for integrals of the singular function 
w(x). 

Thus, an important purpose of the present paper is to provide efficient, accurate 
and robust methods for determining the quantities AX in (5) when the relevant 
special feature functions Vn (x; yj) have been found. Utilizing properties established 
in section 4, this will be done in section 5. Fourier methods will provide the basic 
tools for our constructions, we shall therefore in section 2 describe the fundamental 
results needed from Fourier analysis. In section 6 we shall briefly discuss how the 
methods described in this paper can be efficiently utilized as tools both for numerical 
differentiation as well as for numerical integration in the one-dimensional as well 
as in the multi-dimensional case. In section 7 we shall give some numerical results 
obtained by the described approach, and, finally, in section 8 we shall give some 
concluding remarks. 

2. THE FOURIER METHOD 

To an integrable complex-valued 27r-periodic function u(x) we may for any given 
integer N > 0 associate the Nth-order truncated Fourier series 

N 

(7) PNU(x) -E Z k ikx 

k=-N 

where 
27r 

(8) Uk=y] u(x)e ikxdx; k = 0, ?1, ?2,. 
2 Jo 

An extensive theory for Fourier series is established in the literature [6], [17], [24]. 
The error involved when we approximate u(x) by the truncated Fourier series ex- 
pansion (7) is known to be strongly dependent on the smoothness of the function 
u(x). By introducing notations which differs slightly from the standard ones, it will 
be shown in this section that all the results we shall need from Fourier analysis can 
be established by elementary proofs only. The following class of functions will be 
seen to constitute a suitable basis for our theory. 

Definition 1. S2 is the class of all 27r-periodic integrable functions u(x) which 
are such that E+Z ? ,z(Ikl + 1)I2tkI converges for every /3< a. 

From this definition it readily follows that S2 c Sy whenever a > -y. If u E S2 
for some ae > 0, its infinite Fourier series limNO,0 PNU(X) is seen to be absolutely 
and uniformly convergent, and u(x) is consequently a.e. equal to a continuous func- 
tion. Similarly, we see that if u E S2 for some a > m, u(x) is a.e. equal to a 
continuous function which is m times continuously differentiable. Since we shall 
not distinguish between ordinary functions which are different only on a set of 
measure zero, we therefore have that S2 c Cm whenever a > m. By utilizing 
the Schwarz inequality, it is furthermore easily seen that the Sobolev space of 27r- 

periodic functions H5 c SC 7 2. When u' denotes the derivative in the sense of 
distributions, we see that u' E S2-1 whenever u E S2,. This can be used to ex- 
tend the above definition to also cover certain non-integrable functions as well as 
generalized functions. 
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From the above definition it clearly follows that if we have 

(9) uk = O(Ikl-K-') as k -? ?oo, 

then u E S2,. If in particular we assume that the 2wr-periodic function u(x) is 
continuous and mr-I times continuously differentiable everywhere, and that u(m) (x) 
is piecewise continuous and piecewise differentiable on [0, 2ir], it can be readily 
shown by partial integration and Riemann-Lebesgue's Lemma that 

(10) uk= O(Ikl-'-') as k - ?oo. 

Thus it follows that in this case u C S2m. If u(x) is discontinuous, but such that 
u(x) is piecewise continuous and piecewise differentiable on [0, 2ir], then (10) holds 
with m = 0 and u E S?T. It should be emphasized, however, that (9) does not hold 
for all functions u E S2', and in particular that the piecewise smooth functions 
only constitute a small subset of the class of functions So7. 

In order to establish suitable estimates, it will be convenient in the following to 
apply the following notation 

Definition 2. A sequence {9k} is said to be of the order O(k-') as k -? 00, if for 
every 3 < ce we have 9k = o(k-0) as k -? oo. 

It is easy to construct examples showing that O,(k-') does not in general imply 
the slightly sharper estimate O(k-c) as k -? oo. Although formally not equivalent, 
it seems difficult in practice to distinguish between those two estimates in actual 
numerical computations, however. As an immediate application of the notation 
introduced in Definition 2, and as a contrast to the sufficient condition (9), it easily 
follows from Definition 1 that a necessary condition for u E S' is that 

(11) uk = 0,((kI-') as k -? oo. 

When the function u(x) and its derivatives up to the order p at every point are given 
by the corresponding infinite Fourier series (a sufficient condition is that u E S 

for some a > p), it follows for the truncation-error 
+00 

(12) ENU(X) = U(X) - PNU(X) =ike 

Ikl=N+l 

that for arbitrary -y > 0 we have 

dPENU() |def dPENU(X) ?00O 

(13) max < N-- S (Ikl + 1)P+ tklI4 dxP 0<x<27r dxP 
IkI=N?l 

Assuming that -y is such that the sum on the right hand side in (13) converges, we 
may at least for u E S2 with a > p conclude that 

(14) dPENU(X) - Q (NP-9) as N -x 00. 
dxP 

If u E S' is such that u(m) (x) is piecewise continuous and piecewise differentiable 
on [0, 2ir], it can be shown that the following slightly sharper estimate holds when 
m > p 

(15) dPENU(X) - O(NP-m) as N -- o0. 
dxP 



HIGH ORDER NUMERICAL METHOD FOR SINGULAR FUNCTIONS 1067 

Let us now assume that the function u(x) is known (and finite) on a uniform set 
of, say, G grid points in the interval [0, 2ir] 

(16) xl = 27l ; I =0,1,. ... ,G-1. 
G 

The discrete Fourier coefficients associated with u(x) are then as usual given by [6] 

(17) Uk def 1 U(Xi)e k = 0, ?1, 2* 2 
1=0 

Assuming that either G = 2N + 1 or G = 2(N + 1), we define the interpolated 
Fourier series of order N associated with u(x) by 

N 
def ikx (18) INU)ike 

k=-N 

Strictly speaking, (18) is interpolating the given values of the function u(x) at 
the collocation points (16) only when G = 2N + 1. We shall use the form (18) 
also for G = 2(N + 1), however, in order to avoid the nuisance introduced by the 
unsymmetric series which exactly interpolates the given values of u(x) at an even 
number of collocation points (16) [6]. 

When u C S2 for some a > 0, the following well-known relation [6] 
+00 

(19) Uk = Uk + E [Utk+mG + fUk-mG] , 

m=1 

can be readily utilized to establish the estimate 

(20) 'Uk = Uk+ O(N ) as N - oo. 

For the interpolation-error, i.e. the difference between the truncated Fourier series 
(7) and the interpolated series (18), we clearly have by (19) for > > 0 

dPPNu(x) _dPINu(x) N +00 

dxP dP -l || E (ik)P S [ftk+mG + Uk-mG] e 1k 
dxPN 

dxP 
k=-N m=1 

(21) < NP E [I?tk+mGr + JUk-mG!] 
< 

NP-"3 (?k| 
+ 

1)310k0 
k=-N m=1 Ikl=N+l 

When u C S2 with a > p, we may therefore conclude from (21) that 

(22) dPPNU(x) _dINu(x) - 

O(NP) as N -- oo. 
dxP dxP 

The interpolation-error (22) is thus seen to be of exactly the same order as the 
truncation error (14) [5], [19]. 

3. SPECIAL FAMILIES OF FUNCTIONS 

Let a be a real number and let us consider the family of 27r-periodic functions 
ftj(x) given by 

xa 
(23) f (x) = ( + ) when 0 < x < 2ir. 
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The function f, (x) is clearly integrable if and only if a > -1, and the associated 
Fourier coefficients (8) are given by 

I - 27 xae-ikx 

(24) (fe)k 
= 
2 I( + 1) dx; k = O,?1, 1 ?2... 

In particular, we therefore have 

(25) (NO= r( + 2)' 

In order to get hold of the other coefficients (24) when a is not an integer, we 
denote by m > 0 the integer which is such that m - 1 < a < m. By applying 
partial integration m times in (24), we may then rewrite the result in the following 
way [3] when m> 1 

1 27r a-m -ikx m a-n 
(fa dx - 

Y, 
- Jot)k 21r(ik)m F r(a + 1- m)X 

n=S (ik)nF(oe + 2 - n) 

f? Xa-me-ikx 1 F+ Xa-me-ikx 
Jo ~~~~dx - 2 mjdx 

21r(ik)m F(a + I1- m) 21r(ik)m 7T F(a+I-m) 

(26) - 
z: (2ir)'a 

(26) -(ik)n](Cf + 2 -n) 

Since -1 <a - m < 0, it is not difficult to show that [3, p. 311] 

?C'o Xa-me-ikx 1 

(27) 21r(ik)m Jo F(a + 1 - m) 27(ik)a+ 

Now let Q > a -1 be an arbitrarily given non-negative integer. Application of (27) 

and partial integration Q + 1 - m times in the last integral in (26) then give us 

asymptotically as k -? ?oo 

(f_)k 1 _ E ( + (2ki)-Q-2 

(28) 2 ar(ik)' - + F(a + 1-r) (Unf)k + O(lk| -Q-2) 

where the Fourier coefficients (4) have been employed. From (9), (28), we may 

conclude that fog E Sa when -1 < a < 0, while fog c SO when a > 0. 
With reference to the first term on the right hand side in (28), we now let 

U,(x) E S2 denote the 27r-periodic function which has the Fourier coefficients 

(UJO = 0 and 

1 e-iT2i(a+1)signk 
(29) ~ ~ ~ ~ e 

27r(ik)a+l 2rlkla+l , k 1, ?2. 

If a = n is a non-negative integer, these Fourier coefficients (29) coincide with the 

coefficients (4). Hence the family of functions U, (x) is a generalization of the family 

of functions Un(x) given by (2) to non-integer values of the parameter a. 
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With (29), the Fourier series associated to U, (x) can be written 

(30) U(x)s (a + 1) - x 
k=l1 

For a > 0, the series (30) is clearly absolutely and uniformly convergent everywhere. 
For a = 0, the series (30) converges everywhere, but no longer uniformly in a 
neighborhood of x = 0, ?2ir, ?4,.... For -1 < a < 0, the magnitudes of the 
coefficients in (30) are still monotonically decreasing as Ik* I oo, hence (30) is 
known [24] to converge everywhere with the exception of the single point x= 
O, ?2ir, ?47r, ... in each period. 

With the exception of the leading (k = 1) Fourier coefficient in; (30), all coef- 
ficients are seen to be monotonically decreasing when a increases. Since the rate 
of decrease is seen to be increasing with the value of k, the associated truncated 
Fourier series (7) will accurately approximate Uc, (x) for moderate or small values of 
N if a is chosen sufficiently large. In fact, for a > 50, Uc, (x) can be approximated 
with machine accuracy for normal double precision calculations by the leading term 
in (30) 

(31) U (x) OS [2(a+) ] 

The approximation (31) is fairly good also for smaller values of a than 50, but 
the error increases as a decreases. For a = 6, for instance, the error for the 
approximation (31) is everywhere less than 2.6. 10-3. In order to approximate Uc, (x) 
with machine accuracy, it suffices to keep 10 terms in (30) for a > 15, 20 terms for 
a > 11, while in our calculations we needed 456 terms for a = 5 and 1555 terms 
for a = 4 in order to get the optimal approximation for normal double precision 
calculations (53 bits). For a smaller than 4, the truncated Fourier series soon 
becomes impractical for obtaining machine accuracy, since the necessary number 
of terms will be sky-rocketing beyond any limit of practical interest the closer we 
get to the value a =-1, where the Fourier series no longer converges. 

In later applications we shall need accurate information about the function U, (x) 
for a small, i.e. for cases where the associated Fourier series (30) is converging very 
slowly. In fact, we are for some applications interested in information not only 
about the function Uc,(x) itself, but also about its derivatives when -1 < a < 0. 
In order to obtain the necessary information, we may write UC, (x) in the following 
way 

(32) Uc, (x) = f, (x) + a (x) + .PQ(x). 

Here f,(x) is the 2wF-periodic function given by (23) and 'I'Q(x) is the following 
explicit linear combination of the 2wF-periodic functions U, (x) given by (2) 

(33) TQ Un ( x) where CRh) 
n=0 l17(a + I-n)' 

while 'iQ3 (x) is a 2wF-periodic function which by (28) is seen to satisfy 

(34) (k) - QO(lk -2) as k -- oo. 

Hence IRQ E S$Q+1 by (9). With this background we may conclude that U,(x) is 
smooth everywhere in the open interval (0, 2w) and furthermore that Uc, (x) - go, (x) 
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is smooth in a neighborhood of x = 0 when we choose 

(35) g9(x) = { f w(X) hen x < 0, 
f,, x) henx > 0. 

Thus (35) characterizes the type of singularity the otherwise smooth function Uc (x) 
has at x = 0, ?2wr, +4wr,.... We furthermore note that when a > 0, we have 

(36) d U0.(X) = Uo_l(x). dx 
The function U, (x) can clearly for x $& 0, ?2r, ?4r,... , be uniquely defined also for 
a < -1 if we repeatedly utilize the relation (36). We shall in section 6 briefly indi- 
cate an important area of applications where the function Uc.(x) can be successfully 
applied for some non-integer values of a. Due to their importance in applications for 
partial differential equations in complex geometries both in two and three spatial 
dimensions [11], however, the piecewise smooth functions (2) obtained for integer 
values of the parameter a, will be at our focus in the rest of this paper. 

4. REMOVAL OF SINGULARITIES 

Unless a given 2wr-periodic function w(x) is a member of the class S2 for some 
relatively large a, neither the estimates established in section 2, nor numerical ex- 
perience give any evidence that truncated or interpolated Fourier series give partic- 
ularly accurate approximations for w(x). As we shall see in the following, however, 
such series may still provide valuable tools for handling special subclasses of func- 
tions w C S2 when a is not large. Normally we will here assume that a > 0, but 
in special circumstances we may get useful results also when a < 0. 

The key to the success of Fourier methods for singular functions, is the assump- 
tion that the given function w e S2 is singular only at a finite number of points 
x = -j, j = 1, 2, ... , M on the interval [0, 2wr], and that it can be represented on 
the form (5), i.e. that for any given integer Q > 0 we can write 

Q M 

(37) w(x) = wQ(x) + A VnV(x; vyj). 
n=0 j=1 

In this paper we shall assume that the location of the singularities Y, ... ., "YM are 
known with sufficient accuracy. For cases where yl,... , y7m are not known, we 
refer to [10] for algorithms which can be used to determine those locations. For 
each j = 1, ... , M and each n = 0, 1, 2, ... , the special feature function Vn(x; -yj) 
is assumed to belong to the class S,+nT. From (14), (22) it therefore follows that as 
long as a + n > p we have 

(38) dP Vn (x; -yj) _ dPIN Vn (X; Y) - 05(NP-T -n ) as N -oo. 
dxP dxP 

We shall in addition assume that with the possible exception of the points x = 

-j + 2mwr, m = 0, ?1, ?2,..., the function Vn(x; -yj) is smooth everywhere and 
such that at any given point x 7& yj + 2mwr we have for arbitrary p 

(39) dPVn(x;-yj) _ dPINVn (X;Yj) -o= O(NP n) as N-*oo 
dxP dxP 

We note that the above assumptions are satisfied if the special feature functions 
are given either by Vn (x; vyj) = Ucj +n (X - -Y) or by Vn (x; vyj) = U-j +n (Yj-X) for 
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some a? > a, where U,, e S' is the special family of functions introduced in the 
preceding section. 

Finally, we shall assume that V,, (x; '-j) possess prototype singularities of the 
same kind that w(x) is known to have at the point x = -yj. By this we shall mean 
that for certain constants A'n (i.e. strengths or amplitudes of the singularities), the 
function wQ(x) in (37) is a member of the class S- +'+Q for each Q > 0. In order to 
simplify the construction for cases where the given function w(x) has a relatively 
complicated structure at the singularities, we may introduce the convention that it 
is not necessary to exclude the possibility that -yj = -yl for some j i 1. This may in 
particular make it easier to handle cases where various special features of different 
nature simultaneously occur at the same point. 

With the above assumptions, it follows from (14), (22) that as long as a+I+Q > 
m we have 

(40) 1dmwQ(x) _ dmINWQ(X) as N o0 
dxtm dxtmO(N-lQ 

Furthermore, we observe that (37) is an identity when the proper function WQ (x) 
and amplitudes Ajn have been substituted. If the functions involved are defined 
(and finite) at the collocation points (16), we therefore get the following relations 
between the associated discrete Fourier coefficients (17) 

Q M 

(41) zvk.= (WQ)k + Z An (Vn) k (Vi% ) 
n=O j=1 

For the associated interpolated Fourier series (18), we consequently get the identity 

Q M 

(42) INW(X) = INwQ(x) + AinINVn(x;ay) 
n=O j=1 

By combining (37) and (42) we thus have the identity 

Q M 

(43) w(x) = INzW(x) + # # Aj [Vn(X; _Yj) - INVn(X; -yj)] + WQ(X) -INWQ(X)- 
n=O j=1 

At least when x 5 -YI, iY2, .. , -yM, we therefore also have the following identities for 
m = 0, 1, 2, ... 

dm dm Q M rdm dm m 
dm W(x) dxmINW(X) + ZA LdxmVn (x; i) -dxmINVn (x; j )J 

(44) dm wQ (x) - IN WQ (x) +dxmW dxmIwx 

Thus when x 5 -YI, .., -yM, we conclude from (40), (44) that for m = 0, 1, 2,... 
we have 

dmW(x) = dtmINW(X) 
+ 

YZ Aj [njm Vn(X; Yj) -dxmINVn(xX; Yj) 

(45) +0(Ntm-c-l-Q) as N -* oo. 
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As a consequence of (20), (37), (41), we furthermore note that the following relations 
between the discrete and the exact Fourier coefficients hold 

Q M 

:Wk = (WQ) k + Aj (Vn) k (7j) 
n=0 j=1 

Q 

vk + ZEZA [(3 )k(QW7j) (Vn)k(Qj)] + (WQ)k - (WQ)k 
n=0 j=[ 

Q M 

(46) = vk +>Z EZAjn [() )-(Vn)kQYi)- (Vri)k%)] +O8(N- Q) as N oo. 
n=0 =1 

If Q and N have been chosen sufficiently large, the last 0-terms in (45) and (46) 
can be neglected. The relations (45), (46) are therefore suitable for approximation 
purposes when we are able to calculate all the terms occurring on the right hand 
side. Since all the functions Vn (x; yj) by assumption are explicitly known (at least 
approximately, with high accuracy), and the function w(x) is known at the collo- 
cation points (16), the only remaining unknown quantities on the right hand side 
in (45), (46) are the amplitudes A. 

In general the amplitudes A. can only be determined approximately, and we 
shall in the following section describe several procedures for doing this, depending 
on what additional information that is available for the particular problem at hand. 
In this connection we note that with the introduced assumption (39), the order of 
accuracy in (45), (46) will be preserved if approximations A1 satisfying 

(47) A. = A. + O(N ) as N - oo 

are substituted for A> 
We also note that in view of (42), the relation (44) and hence also (45), is 

equivalent to the relation (6) given in the introduction. Furthermore, we note that 
if we restrict ourselves to piecewise smooth functions w(x), we may take Vn (x; -yj) = 
Un (x - yj). In this case all estimates given in this section are valid when we replace 
Os with the slightly sharper ordering 0. This in particular means that with the 
notation introduced in [11], we have actually proved that the method described in 
[11] will work in general also when Qi = Q with an accuracy which is of the order 
that we observed in the numerical computations reported in [11]. 

5. CALCULATION OF THE SINGULARITY AMPLITUDES 

In this section we are going to establish equations for the approximate determi- 
nation of the amplitudes An in the representation (37) for a singular function w(x) 
given at the collocation points (16). The accuracy of the determined amplitudes 
will in all cases be at least consistent with (47), but for many problems this will 
not be sufficient for obtaining a stable and/or robust algorithm. After establishing 
a system of equations valid for the general case in ?5.1, we shall therefore in ?5.2 
establish additional equations valid when detailed knowledge of the function w(x) 
is available on a certain subinterval of [0, 2ir]. As an example of the latter, we may 
mention the cases considered in [11] where a buffer zone with w(x) _ 0 is intro- 
duced outside the domain of interest in order to be able to handle problems with 
complex geometry. 
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For special problems it may be possible to establish additional equations for 
the amplitudes by utilizing the special structure of the problem at hand. This 
may make it easier to construct a more stable and more robust method, as well as 
reduce the computational cost involved in applications of the method, thus making 
the approach more competitive relative to alternative methods. For the special case 
of piecewise smooth functions we shall in ?5.3 see how finite difference formulas can 
provide such additional equations. 

5.1. Approximate equations for the amplitudes. For an arbitrarily given -y, 
the function V,(x; 'y) belongs by assumption to the class S">' for n = 0,1,. 
From (11) we therefore have 

(48) (Vn)k (Y) = Os (1k- ) as |kI - x, 

while from (20) we have 

(49) (Vn) k() = (Vn)k(Y) + Os(N-,-n) as N - o. 

If we let the integer P > 0 be fixed and let N - P < Ikl < N, it follows from (48), 
(49) that 

(50) (Vn)k( C) = Os(N-,-n) as N -- oc. 

Since by assumption wQ E S2+1+Q, it follows in the same way that when N-P < 
lkl < N, we have for Q = 0,1, 2, ... . 

(51) (wQ)k = Os(N-1--) as N -- oc. 

From (41), (51) we now get when N - P < Ik < N 

Q Al 

(52) Wk - ZZAj(Vn) k(%j) = (WQ)k Ok (N -) as N - . 
n=O j=1 

For Q and N sufficiently large, we may therefore neglect the right hand side in 
(52) and have consequently obtained a system of approximate equations for the 
amplitudes A.. As partly discussed in [10], [11], the system of equations obtained 
from (52) may be ill-conditioned and in some cases singular, it may therefore be 
advantageous to consider the least squares solution of the over-determined system 
obtained from (52) with 2P + 2 > M(Q + 1) 

N Q M _ 

(53) E - w-Aj(V. )k('yj)l2 - minimum. 
jkj=N-P n=O j=1 

In this way the conditioning of the resulting system of equations for the amplitudes 
An is normally improved, and if we choose P > M(Q + 1) - 1, we will in most 
cases be guaranteed a system which at least in principle is linearly independent 
and therefore determines the amplitudes uniquely. In section 7 we shall illustrate 
various aspects related to this issue by considering some numerical examples. 

In many cases the solution of (53) will be more accurate than indicated by the 
above estimates. In fact, the estimate (48) necessarily follows by (11), but (48) is 
not sufficient to ensure that Vn (x; -y) belongs to the class S<+n. If for instance the 
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function V, (x; -y) is given by either U+ (x - -y) or by U+ (-y - x), it follows from 
(29) that 

(54) (Vn )k(Y) = ?(1k` 
1 as I k I ?? . 

When a + n > 0, we have by (19) 

(55) (Vn)k(-Y) = (Vn)k(-Y) + S (Vn)k+mG(QY) + (Vn)k-mG(QY) ] 

m=1 

which together with (54) can be used in the same way as in [11, ?41 to show that 

(56) (Vn)k(QY) = (Vn)k(QY) + O(N n-1) as N -* 0o. 

For fixed P, we now get from (54), (56) when N - P < Ikl < N that 

(57) (Vn)k(-Y) = O(N--n-I) as N -* oo. 

As a consequence of (54) and the assumptions made in the previous section, it 

is clear that for the case considered here we are restricted to functions w E S2 

satisfying 

(58) Wk = O(|kK-O1-1) as k-* ??, 

and hence 

(59) Wk = Wk + O(N a 1) as N -*oo. 

Since by assumption we have w E S2 j1+ for every Q = 0, 1,... ,it follows from 

(41), (51) and (57) that when N - P < lkl < N 

(WQ)k (WQ+2)k + S, [A +(VQ+I1))k(Yj) + AS W(VQ+2)kC(yj)] 

(60) =O(N-'-Q-2) as N oo. 

In this case therefore, the right hand side in (52) has been shown to be of the order 

O(N- -Q-2) as N -- oc. This is clearly a sharper estimate than the generally 

valid estimate given in (52), the solution of (53) can therefore be expected to be 

quite accurate. This has already been partly confirrhed by the numerical results 

presented in [11], and further numerical examples will be presented in section 7. 

5.2. Additional equations when there is a buffer zone. In this subsection 

we shall establish additional equations valid when we have detailed knowledge of 

the function w E So in some subinterval of [0, 2irl, say the subinterval (a, b). As an 

example of the latter, a buffer zone with w(x) 0 O was in [111 introduced outside the 

domain of interest in order to be able to handle problems with complex geometry. 

There is clearly no loss of generality by assuming that w(x) _ 0 on the subinterval 

(a, b) since it is always possible to subtract any other given value the function may 

have there. With that assumption, we therefore get from (43) that everywhere in 

(a, b) we have 

Q M 

INW(X) + 55 A' [V (x; -yj) - INV (X; yj) 
n=O j=l 

(61) - O(N-'-'-Q) as N -* oo. 
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At those of the collocation points (16) which are located in the subinterval (a, b), 
the left hand side in (61) will for arbitrary amplitudes An either nearly vanish or 
actually vanish, depending on whether G is even or odd, respectively. In between 
the collocation points in (a, b), however, the left hand side in (61) will norrnally only 
be small when quite accuirate values for the amplitudes A. have been substituted. 
As a consequence, additional approxirnate equations for the amplitudes A. can 
be obtained by equating the left hand side in (61) to zero at one or more non- 
collocation points in (a, b). These equations can then either be used in conjunction 
with (52) to make a slightly larger least squares problem than (53), or alternatively, 
as a stand alone system if sufficiently nmany independent non-collocation points have 
been chosen in (a, b). 

In addition to (61), the relation (45) with the assumption that w(x) 0 O on 
(a, b), shows that on (a, b) we also have for m = 1, 2,... 

d'"lQ A'! Fdm Vdml 

dxTnINw(X) + Z AS [dm Vrt(x; Yj) -dXrnINVn(X; ^)j 
n=0 j=1I 

(62) =O0(Nmn---GQ) as N -oo. 

In contrast to (61), the relations (62) will not automatically be satisfied at the 
collocation points. We are therefore here more free than for (61) to choose where 
we want to put the left hand side in (62) equal to zero. Normally, the relations (62) 
will at an arbitrarily chosen point in (a, b) provide uls with additional approximate 
equations for the amplituldes A . We may for instanc-} choose the boundary points 
x = a+ and x = b-, or any othier convenient point inside the interval (a, b). With 
this flexibility, it is not difficult to obtain an independent stand alone system which 
in principle determines all the amplitudes Aj' uhtiquely. In order to get a balanced 
systemn of equations, the error terms oti the right hand side in (61), (62) clearly 
indicate that (62) should be multiplied by a weight-factor proportional to Nm 
before approximate solutions are sought. 

Sinice the obtairned system normally can be expected to be ill-conditioned, the 
least squares problem for an enlarged systemi which for instance also includes some 
of the generally valid equations deduced in ?5.1, may lead to a better conditioned 
systemn and may thus be more feasible in practice. The most favorable choice of 
system will clearly depend on the actual problem at harnd, but the inherent flexi- 
bility should make it possible in many cases to establish systems which determine 
the amplitudes with sufficient accuracy. An application of this construction has 
already been seen to be feasible for the solution of the heat equation in complex 
geometries [14], and further illustrating examples will be given in section 7. 

5.3. Utilization of finite differences. For the important special case of piecewise 
smooth functions where VTL(x, -yj) is given by (2), the amrrplitudes AT are given by 
(3). Since the singularity locations -j need not be grid points, we will in general 
have to deal with nonuniform grids if finite difference formulas shall be emnployed 
in the determination of the right hand side of (3). In principle, however, such finite 
difference formnulas of arbitrary order are known and can be set up for derivatives 
of any given order. Thus finite difference formulas can in principle be set up for all 
the unknown amplitudes An in this case, formally satisfying (47). Such high order 
finite difference formulas are known to lack robustness, however, they will therefore 
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normally be unsuitable for our purpose here. In the words of Lyness [21, p.101], 
such finite difference approximations are notoriously unreliable. 

Even with this background there is still one combination of such finite difference 
formulas which may be suitable for our purpose for cases where there is one or more 
buffer zones. The combination in question here is perhaps better known as a Taylor 
expansion near each singularity location which is next to a buffer zone. In fact, if 
there is a buffer zone with w(x) 0 to the left of the singularity location -yj, we 
have w(t) Q}p) 0 for every n = 0, 1, 2,... , and (3) consequently implies that 

'_Yj~ ~ ~ ~ ~ dm 
(63) A7 = dxn (tm ) 

For x > -yj, a Taylor expansion therefore results in 

(64) w(x) =A?+ (x- y)Al + + AQ 

If we let Xk denote the grid-point next to -yj on the right, i.e. if Xk1 < YJ < Xk, 

then (64) with x = Xk clearly gives us an approximate equation for the amplitudes 
AO?,... AQ with an error term which is of the order O(N-Q-1) as N - oo. Al- 
though the error term normally grows if we take (64) with x = Xk+1, the error term 
is still of the order O(N-Q-1), thus providing us with an additional equation. If the 
distance to the next singularity location is large enough, this process can formally 
be continued to also include the grid-points Xk+2, Xk+3,... ,Xk+Q, thus providing 
us with a closed system for the determination of the amplitudes AQ,9.. , AQ. The 
solution of this system is actually a set of finite difference formulas which formally 
are of the appropriate order (47). Our numerical experiments do show, however, 
that if more than 2 or possibly 3 such equations are considered, a loss in robustness 
and accuracy can be expected, indicating that only a few of these equations should 
be considered as part of a larger system incorporating equations obtained earlier in 
this section. 

Except for a change in sign, a similar construction applies at a singularity location 
-Yi which has a buffer zone to the right. In fact, since we then have w (ty+) 0 
for every n = 0,1, 2,... , equation (3) now implies that 

(65) At d 
dtmW 

For x < -yi, a Taylor expansion consequently results in 

(66) w(x) =-AO - (x - -y1)A- (x Q')Q AQ?O(Xl - Ql). 

If we let xm denote the grid-point next to -yl on the left, i.e. if xm < ayl < xm+l, 
then (66) with x = xmv, x, and possibly also x = xm_2, clearly give us two (or 
possibly three) approximate equations for the amplitudes Al, .. ., A4Q with an error 
term which is of the order O(N-Q-1) as N -* oo. 

6. SOME APPLICATIONS 

The area of application which we primarily have had in mind in this paper, is the 
solution of partial differential equations in complex geometries utilizing an ordinary, 
fixed, uniform, Cartesian system of grid-points [11]. The derivative with respect 
to x at each of those grid-points then clearly depends only on the behavior of the 
function on the grid-line through that point where y = constant (and z = constant 
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etc., if the dimension is higher than 2). Similarly, the derivative with respect to 
y depends only on the grid-line where x = constant, z = constant, etc. etc. The 
corresponding one-dimensional function on each grid-line is relevant for our problem 
only on certain disjoint subintervals [-Y1, -Y21, [Y3, -Y41,.. , Iv[yI-i, 'yv], which for some 
M > 2 are uniquely determined by the geometry of the problem. Points outside 
the subintervals [mY, _Y21, [rY3, -Y41,... ,[IvY- 1, 'YM1 correspond to points outside the 
domain of interest, and are therefore irrelevant for our problem. The subintervals 
[mY, -Y21, [Y3, 4Y41,... , [KYM/-i, 'YMI may clearly vary from grid-line to grid-line, and 
may also vary in time if the geometry of our problem is time dependent. 

Since the derivative of the function on each of the subintervals is independent 
of the behavior of the function on the other subintervals, each subinterval can be 
handled separately. Thus, in order to handle the space discretization problem on 
a Cartesian grid for problems in complex geometries, it clearly suffices to design 
a SUBROUTINE that accurately calculates the derivative of an arbitrarily given 
one-dimensional smooth function on a uniform set of grid-points in an arbitrar- 
ily given interval [FY1, _Y21 utilizing only the values of the function at the same grid 
points and the relevant boundary conditions at the endpoints -yl, -Y2 of the interval. 
These endpoints -Y1, -y2 will normally not coincide with grid-points. There is clearly 
no essential loss of generality by assuming that [-Y1,Y2 is a subinterval of [0, 2w], 
and that the rest of the interval [0, 27r] is a buffer zone. Thus all the machinery 
developed earlier in this paper for calculating the derivative of a piecewise smooth 
function can be applied in the construction of such a SUBROUTINE. Some nu- 
merical results obtained for such constructions have already been published in [11], 
[14], and improved results based on the additional insight gained in this paper will 
be given in the following section. Applications to partial differential equations will 
be given elsewhere. We would here like to add that, in principle, the same type of 
approach can also be applied to problems involving shocks in the solution, if the lo- 
cation of the shocks can be accurately calculated. In fact, the location of the shock 
can then be handled as an additional boundary (possibly with appropriate shock 
relations as boundary conditions) manifesting itself in appropriate values of -yj on 
the various grid-lines. For one-dimensional problems, some such results obtained 
by an analogous modified Galerkin method have been published in [9], [12], [13]. 

Another area where interesting applications can be given is numerical quadra- 
ture. If the integral over the interval [0, 27r] of a one-dimensional function w(x) is 
needed, it is from (8) given by 27rwo, which clearly can be accurately approximated 
by the expressions given in (46). If in particular w(x) is smooth on [0, 2w], the 
27r-periodic extension of w(x) is in general only piecewise smooth with one jump- 
singularity in each period (i.e. we may take M = 1 and -yl = 0). In this case it is 
not difficult to show that (46) results in a quadrature formula which is equivalent 
to the classical Euler-Maclaurin formula [7], [21]. 

The formula (46) can clearly also be utilized to obtain generalized Euler- 
Maclaurin quadrature formulas in cases where.the function w(x) has various types 
of additional singularities on the interval [0, 27r]. We shall here only look more closely 
at the formula we obtain when the integral over a subinterval ['y1, '72] C [0, 2w] of a 
smooth function w(x) is needed. We may then assume that w(x) vanishes identi- 
cally on the rest of the interval [0, 27r], providing us with a buffer zone. With these 
assumptions, w(x) is piecewise smooth, and V,(x,'y) = U,(x - -y) is given by (2). 
By arguments analogous to those given in the last part of section 5.1, it is easy to 
show that the error term in (46) then actually is of the order O(N-Q-2) as N -> oo 
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instead of O,(N-1-'-Q). In view of (4) we therefore get the following formula for 
this case 

_2 

Y w(x)dx 27rwo 

(67) Q 2 

27rE9o - 2-r ZA (Vn)o(_? ) + O(N-Q -2) as N - oo 
n=O j=l 

Application of (4) and (19) readily gives for n > 1 

+00 

( 1 )oryj ) 5 [?Q(Vn)mGQ(Yj) + (Vn)-mG(Yj)] 
m=1 

(68) ()n+l + r eimGaj e-imGaj 1 (-_)n+lU_(Gyj) ( - Gn+ 1 L 2wr(im)n+l 27r(-im)n+l Gn+J 

It is not difficult to show that (68) also holds for n = 0 if we apply the convention 
that Uo(2k7r) = 0, k =0, ?1, 12,1... , which implies that Uo(x) is everywhere given 
by the sum of its Fourier series. With this convention we have therefore established 
the following generalization of the Euler-Maclaurin formula 

(69) 

j w(x)dx = 27rzo-2 Q 2 + O(G-(1 as G +l 00 

n=0 j=1 

where by (3), (16) and (17) we have 

(70) A> dnW dnW 1 G-1 
(70) Al = dxn (+) ,A2 =-d n -) , WO = w(27rl/G). 

1=0 

For the above formulas to be valid also when -yl and/or _Y2 are grid-points, it is in 
view of the convention introduced above for Uo(x) necessary to assume that w(x) 
is also everywhere given by the sum of its Fourier series. Since w(x) by assumption 
is smooth on the interval [Y71,Y721 and vanishes outside ['71,Y721, it suffices here to 
introduce the convention that w(-yl) = w(-y+)/2 and w(-Y2) = w(-y-)/2, which is 
easily seen to be consistent with the assumption that (37) is an identity. 

In order to apply the above quadrature formula, the efficient and robust calcula- 
tion of the amplitudes An, An, n = 0, 1,.. , Q, by the equations established in the 
preceding section will clearly play a key role. One area where the formulas (69), 
(70) may seem especially useful is for integration in two or more dimensions, where 
efficient quadrature formulas are not very well developed [7]. In fact, we shall now 
see that repeated use of (69), (70) on a Cartesian grid will give us accurate approx- 
imations for the double integral of an arbitrarily given smooth function f(x, y) on 
a domain which is of one of the following two types 

(71) Sl = {x,y '7Yl < X < 'Y2 & l(X) ?< y < 02(X)} 

(72) S2={x,y l<_?y<_A2 & f/l(y)<x<_2(y)}, 

where it is assumed that q1 (x) < 02 (x) are smooth on the interval [LYl, _Y21, and that 
'1 (Y) ?< 'b2 (y) are smooth on the interval [tl, u21- 
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In the notation of Apostol [11, S1 is a domain of Type I, and S2 is a domain of 
Type II, and the double integral of a smooth function f(x, y) can be evaluated by 
repeated one-dimensional integration in the following way 

(73) 

Ii Jj / |f(x,y)dxdy j 4(x)dx, I2= j f(x, y)dxdy j 'I'(y)dy, 

where 

02 (x) +b2 (Y) 

(74) @(Dx) f X (x,y)dy , T@(v) f / (x, y) dx. 
f2 (x) I (y) 

From the assumptions introduced, it follows that 4>(x) is smooth on [Y1, 2] and 
@I (y) is smooth on [A1, u21 . Without essential loss of generality we may assume 
that both Si and S2 are subsets of the square [0, 27rw x [0, 27rw, which in particular 
imply that [Yli, -Y21 C [0, 27w and [Al, b21 C [0, 27w. Thus the last one-dimensional 
form of the integrals I1,I2 given by (73) can clearly be approximately evaluated 
by the formulas (69), (70). Since also 4>(x) can be approximately evaluated by the 
formulas (69), (70) for each x c [LYl, -Y21, and T (y) can be approximately evaluated 
by the formulas (69), (70) for each y C [A1, A21, the above assertion that I1,I2 can 
be approximately evaluated by repeated applications of the formulas (69), (70) on 
a Cartesian grid therefore follows. 

It is not difficult to find a domain which does not satisfy all the requirements 
we have put on Si and S2 above. Consider for instance a circular domain S 
{x, y (X I 3)2 + (y - 3)2 < 4}, which we also can express in the following alternative 
forms resembling Si and S2 

S {x, y 1< x < 5 &3 - V4- (xx-3)2 < y < 3 + V4 - (xx-_3)2}, 

(75) {x, y l? < y < 5 &3 - 4 4 (y- 3)2 < x < 3 + /4 - (y- 3)2}. 

The intervals associated with S which resemble [Y71, Y721 and [u1,[21 in (71), (72), 
are both seen to be [1, 51, and the double integral can also in this case be evaluated 
by repeated one-dimensional integrations as in (73), (74). We do see, however, that 
smoothness of f(x, y) in this case is not sufficient to guarantee that the correspond- 
ing functions 4>(x) and @(y) are smooth on the interval [1, 51. In fact, if we take 
f(x, y) 1_ in S for instance, we readily obtain from (74) 

(76) 4>(x) = 2 V4 - (x -3)2 , 4 (y) = 2 4 _-(y- _3)2. 

At both endpoints of the interval [1, 5], 4>(x) and @(y) are both seen to have singu- 
larities of the type (35) with a = 1/2, thus indicating the need for special feature 
functions of the type Vo(x, 1) = U1/2(x - 1) and Vo(x, 5) = U1/2 (5 - x) instead of 
the usual Bernoulli polynomials (2). It is not difficult to see that for more gen- 
eral piecewise smooth functions with discontinuities along more general curves in 
the plane, the second performed Fourier transformation (or, equivalently, the first 
inverse Fourier transformation) will involve singularities which typically can be han- 
dled by special feature functions of the following types V (x,-y) = Ul/2+,(x -Y) 
and Vn(x,'y) I= V12+n('7 - X), n = 0,1 .... We hope to be able to develop these 
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ideas further elsewhere, and applications for instance to the accurate reconstruc- 
tions of two-dimensional pictures from their two-dimensional Fourier transform may 
here seem promising in view of the existing one-dimensional version [101. In addi- 
tion, we can foresee possibilities for applications both to quadrature and to partial 
differential equations. 

We would finally like to note here that by dividing a two-dimensional domain into 
a finite number of subdomains, it is normally possible to get each of the subdomains 
to be either of the type S, given by (71), or of the type S2 given by (72), with all 
assumptions fulfilled. As an example, we can divide the circular domain S given 
by (75) into three subdomains by the two lines y = 2 and y = 4, respectively. 
Similar constructions are also feasible in higher dimensions. We may therefore 
conclude that by simple decomposition of the domain, it is normally possible to 
obtain accurate approximations for multiple integrals over quite general domains 
by repeated utilization of the quadrature formulas (69), (70) on a Cartesian grid 
(which does not have to be altered from one sub-domain to the next). 

7. NUMERICAL EXAMPLES 

In order to illustrate the accuracy which potentially can be achieved by the 
method we have described in this paper, we shall first look at the accuracy obtained 
for the first derivative of the following function 

( 0 when x C [0, 0.1), 
(77) v(x)- exp(-x) when x C [0.1,4.6], 

0 - when xC (4.6,27r], 

when the exact amplitudes at the two discontinuity locations -Yl = 0.1 and 72 4.6 
are substituted in the subroutine where the derivative at the grid-points (16) is 
calculated utilizing normal double precision (53 bits). In Figure 1 the RMS error 

0.01 Q=0 
0.01 - ------------------------+---------- Q ---- 

1 e-05 ----------- -- ------- 

1e-06 - -i- -0- 
1e-10 --x-~~~~...........-- E3-----+ -- -f- Q=124 -o-- 

1e-1207X( i _ 

0. 01 e -....... 
1 -09 .. ......... = 

le-l 
l e-06 

l e-08__ 

l l l l l l l~~~~~~~Q l 

8 12 16 24 32 48 64 
G 

FIGURE 1. RMS error for the derivative of the function (77) with 
exact amplitudes. 
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FIGURE 2. RMS error for the derivative of the function (78) with 
G = 32 and exact amplitudes, when yl = 0.1, y2 = 4.55. 

in the derivative at the grid-points is shown for various values of the parameter 
Q, and for different numbers of grid-points G on the interval [0, 27r]. A plot for the 
corresponding maximal errors would show a similar behavior. For the largest values 
of the parameter Q, the maximal errors will in fact differ only slightly from those 
shown in Figure 1. Normally, the maximal errors. will be found at the grid-points 
which are located nearest the discontinuity locations. Away from those locations, 
the accuracy is usually somewhat better and can actually be further improved by 
various forms of filtering [23], but we shall not pursue that issue here. The results 
found are easily seen to be consistent with the estimates given in the preceding 
sections even when the number of grid-points is small. For other functions with a 
similar structure we get qualitatively the same type of results. Quantitatively we 
may get differences due to the different resolution requirements the actual functions 
may have.- 

In order to exploit the resolution issue further, we have looked at the accuracy 
obtained for the first derivative of the following family of functions 

f 0 when x C [o?,y1), 
(78) we(x) cos(cx) when x c [yiv,y2], 

O when x C ('y2,2w], 

for various values of the constant c, and for various discontinuity locations -yi < -Y2 in 
the interval [0, 27r]. When the exact amplitudes at the two discontinuity locations 
are substituted in the subroutine where the derivative at the grid-points (16) is 
calculated, the behavior of the RMS error is plotted in Figure 2 for the particular 
choice -Yl = 0.1,72 = 4.55 when the number of grid-points is 32. If -Y1, Y2 are 
chosen differently, the overall error will be seen to remain virtually unchanged, 
only the oscillatory behavior with respect to the parameter c which can be seen on 
Figure 2, will appear in a different way. In fact, for smaller subintervals [7Y1, y2], the 
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FIGURE 3. RMS error for the derivative of the function (78) with 
G 48 and amplitudes determined by (53) with P - 2Q -1 when 
71 = 0-1, 72 = 4.5 5. 

oscillations will disappear, while the oscillations will get more and more pronounced 
the larger the interval [71, 72] C [0, 27] is. With this behavior in mind, Figure 2 
can therefore be regarded as representative for the accuracy which in principle is 
obtainable for arbitrarily given values of 7Y1, 72 On Figure 2 it seems that Q = 12 
gives the optimal results in most cases for our normal double precision calculations 
(53 bits). 

For the function (78) we see that with 32 grid-points on [0, 2wr], c = 16 is corre- 
sponding to 2 grid-points pr. wavelength and cannot therefore be expected to give 
resolution. Already with 2.5 grid-points pr. wavelength, however, which on Figure 
2 corresponds to c = 12.8, the accuracy for the higher values of Q shown is better 
than 1%. Completely analogous results can be obtained for other values of the 
locations 'Yl, '72, and other numbers of grid-points on the interval [0, 2w]. 

We shall now calculate the derivative of the function (78) at the grid-points (16) 
in the case where the exact amplitudes are not known in advance. We shall in our 
first calculations assume, however, that the principal amplitudes AO, AO are known, 
or equivalently, that the limit-values of the function are known at the two boundary 
points x = ty and x = 72, respectively. In the various applications we later shall 
encounter, the principal amplitudes AO, AO will normally either be known from 
Dirichlet boundary data, or may be calculated separately by for instance letting 
the two boundary points x = tYi and x = '72 be treated as two extra grid-points. 
If the higher order amplitudes A', A', n 1, ... , Q, are calculated from (53) with 
P = 2Q - 1 utilizing the SVD subroutines from LAPACK [2], we obtain the results 
plotted in Figure 3. 

If the same calculation is done with P = Q, we obtain the results plotted in 
Figure 4. 

The first lesson to be learned from Figures 3 and 4 is that for a well resolved 
function (i.e. for c small), we may obtain better accuracies by utilizing a larger 
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FIGURE 4. RMS error for the derivative of the function (78) with 
G 48 and amplitudes determined by (53) with P Q when 
-y = 0.1, -y2 = 4.55. 

part of the spectrum in the determination of the amplitudes. Second, the reso- 
lution properties of the algorithm is reduced when a larger part of the spectrum 
than strictly necessary is utilized in the determination of the amplitudes. Third, 
large errors stemming from unresolved parts of the function can be expected, as is 
particularly pronounced in Figure 4. Such errors may lead to lack of robustness, 
and may perhaps also explain instabilities we have encountered when the algorithm 
has been applied to solving initial-boundary value problems for partial differential 
equations. The calculations shown in Figures 3 and 4 are done for 48 grid-points, 
but completely analogous results can be obtained for other numbers of grid-points 
on the interval [0, 27r], as well as for other choices of the locations -yl, 'Y2. 

For the function (78) there clearly is a buffer zone which can be utilized to set 
up additional equations for the amplitudes as discussed in sections 5.2 and 5.3. 
These can then be combined with (53) into a larger over-determined system of 
equations which then can be solved utilizing the SVD subroutines from LAPACK. 
An infinite number of different combinations are here clearly possible. When a 
sufficient number of independent equations (61), (62) are included, we have only 
observed slight changes in the solutions by including more of the equations (61), 
(62). The same is not true for the equations set up in sections 5.1 and 5.3. In 
fact, especially when high resolution is desirable, we have found that it normally is 
advantageous to limit the number P in (53) to 2.and also limit the Taylor equations 
from section 5.3 to the 2 internal grid-points (i.e. located in the interval ['yl, y2]) 
which are nearest each of the 2 boundary points 'Yl, 72 . 

In the calculations we shall report here, we have evaluated (61), (62) at each 
boundary point, at the midpoint between the boundary point and the first internal 
grid-point, at the first internal grid-point, and at the midpoint between the first 
and the second internal grid-point next to each boundary point. In (62) we have not 
used m larger than 2. With this setup we have obtained the accuracies plotted in 
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FIGURE 5. RMS error for the derivative of the function (78) with 
G = 48 and amplitudes determined by a mixture of the available 
equations when Yl = 0.1, 72 = 4.55. 

Figure 5 for 48 grid-points in the interval [0, 2ir] for the specific values of boundary 
points -Yl = 0.1, -Y2 = 4.55. Again we find that the overall accuracies depend very 
little on the locations 'YI, Y2 as long as there are at least a handful of internal grid- 
points. The observed difference is also here a change in the oscillatory behavior 
with respect to the parameter c, similar to that reported earlier. The general trend 
that can be deduced from Figure 5, and which also holds for other numbers of grid- 
points in the interval [0, 2ir], is that already with 3 grid-points pr. wavelength the 
error does not exceed 10%, and with 3.5 grid-points pr. wavelength the error is less 
than 1% for the largest feasible values of Q. For more grid-points pr. wavelength the 
error rapidly decreases. We regard these results as very promising indeed. In our 
calculations we have found that Q 8 is optimal for G= 32, Q = 7 is optimal for 
G = 48, and Q = 6 is optimal for G - 64, but these numbers may come out slightly 
different for alternative implementations of the equations utilized. Although large 
errors occur for unresolved functions, the errors are considerably lower than those 
observed in Figure 4, thus the robustness of the algorithm is also considerably 
improved. 

In Figure 6 we have plotted the results for 48 grid-points in the interval [0, 2ir] 
when the "best" set of equations determined above is extended to also determine 
the principal amplitudes A', A' in addition to the other amplitudes An, An, n 
1,... ,Q. Analogous calculations have also been carried out with other numbers 
of grid-points and with other locations -y, %2 in the interval [0, 2Xi], with results 
that are consistent with the general trends discussed earlier. Although the overall 
accuracy is somewhat reduced compared to results obtained with exact values for 
the principal amplitudes A', A', we feel that the results are still quite good and 
should therefore be useful in applications. 
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FIGURE 6. RMS error for the derivative of the function (78) with 
C 48 and amplitudes, including the principle amplitudes A?, A2?, 
determined by a mixture of the available equations when tY 
0.1, 2 = 4.55. 

8. DISCUSSION 

The basic idea utilized in this paper is to split a singular function into two parts, 
namely a relatively smooth part and a specially structured singular part. The idea is 
not new as references given earlier in this paper show (see also [4] and the references 
given there). As far as we know, however, a systematic and detailed analysis of such 
a splitting has not been carried out earlier. We have been able to do this analysis 
in a relatively general setting in such a way that a systematic analysis of each of 
the two parts has been possible. Furthermore, from the analysis we have been able 
to construct a new class of spectral methods based on the Fourier method. This 
new class of methods is much more flexible than the traditional spectral methods 
for instance in applications to differential and integral equations. Applications to 
partial differential equations in complex geometries have already been given in [11], 
[14], and further applications will be given elsewhere. The analysis also establishes 
relations between the continuous and the discrete Fourier coefficients which for 
instance may be useful in relating results obtained by the collocation method with 
results obtained by the Galerkin method. 

A key problem in the new class of spectral methods for functions with singu- 
larities, is the determination of the singularity amplitudes. A large part of the 
present paper has therefore been devoted to that issue, and the numerical results 
show that quite reasonable accuracies can be obtained by the recommended algo- 
rithms. In fact, with approximately the same amount of work as in a traditional 
Chebyshev method, approximately the same accuracy and resolution properties [17] 
can be achieved by the new method with the added bonus of a uniform grid and 
the attractive flexibility with respect to the locations of the singularities, e.g. the 
boundary points. To be fair, it should here be added, however, that for functions 
which are very well resolved, the traditional Chebyshev method will give better 
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accuracies than the new method since the latter is of finite order. We note that 
in the system of equations we have established for the singularity amplitudes, the 
coefficient matrix is uniquely determined by the locations of the singularities -yj, 
j= 1, . . ., M, i.e. by the geometry of the problem. 

Since the analysis shows that the order Q in the representation (37) normally 
should be chosen as a relatively small number, the problem of determining 
when the singular part converges if Q -> oc is rather an academic problem. The 
answer to this academic problem is easily obtained, however, when V',(x, y) = 

U,,+.-(x -y) or Vn(x,-y) = U+n (-x) for some given ae. In fact, the asymptotic 
result (31) shows that the functions Vn (x, -y) then essentially group into only 4 
distinct functions which actually are translates of each other. Thus a necessary 
and sufficient condition for absolute convergence is that for each j = 1,... , M the 

00 n+4m infinite sums ZM=0 A. converge for n = 0, 1, 2, 3. As examples, we therefore 
immediately see that if w(x) w,(x) either is given by (78) or by 

( 0 when x E [owa1), 
(79) wC(x)= eCx when x E [V1, 2], 

0 when x E(y2,2ir], 

where c, 11, -Y2 are constant parameters such that 0 < -Yl < -Y2 < 2ir, then we will 
have convergence if and only if Icl < 1. It thus seems that the analysis of convergence 
when Q -> oc is considerably simpler in our setting than in the setting given in 
[211. 

The primary application area7 we have had in mind in this paper has been ap- 
plications involving piecewise smooth functions where the special feature functions 
Vn(x, -y) = Un(x - -y) are given_by (2) and the Bernoulli polynomials. As briefly 
indicated in section 6, however, we hope to apply the more general family of spe- 
cial feature functions U, for important multi-dimensional problems in the near 
future. Finally, we would like to add that it is not difficult to find both one- and 
multi-dimensional problems which may require other types of special feature func- 
tions than the family Uc described in this paper. The functions describing corner 
singularities [22] may here serve as illustrating examples. 
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