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AN ALGORITHM FOR CONSTRUCTING A BASIS FOR 
Cr-SPLINE MODULES OVER POLYNOMIAL RINGS 

SATYA DEO AND LIPIKA MAZUMDAR 

ABSTRACT. Let O be a polyhedral complex embedded in the euclidean space 
Ed and Sr(W), r > 0, denote the set of all Cr-splines on 0I. Then Sr(D) is 
an R-module where R = E[xl,... Xd] is the ring of polynomials in several 
variables. In this paper we state and prove the existence of an algorithm to 
write down a free basis for the above R-module in terms of obvious linear 
forms defining common faces of members of 0. This is done for the case 
when O consists of a finite number of parallelopipeds properly joined amongst 
themselves along the above linear forms. 

1. INTRODUCTION 

Let O be a polyhedral d-complex embedded in the euclidean space Ed, i.e., a 
compact subset of Ed subdivided into a finite collection of d-dimensional convex 
polyhedra which are properly joined (see [7] for details). Fix an integer r > 0. Let 
Cr(D) denote the set of real valued functions f defined on OL such that f I a is 
in the polynomial ring R = E[xl,... , Xd] for each d-face a' of Ol and f is r-times 
continuously differentiable on the whole of 0I. 

The elements of Cr (L), known as multivariate splines of smoothness r, have 
proved extremely useful in obtaining approximate solutions of partial differential 
equations by finite element methods. The set Ckr(L) of all those Cr-splines which 
are of degree < k, form a real vector space. These vector spaces which are easily 
computable are usually taken as the approximant spaces for various suitable degrees 
k. Evidently these are finite dimensional. Determining their dimension as well as a 
basis having minimal support has been a very interesting and sometimes a difficult 
proposition of practical importance (see [5], [6], and [7]). The difficulty is caused 
by the fact that the vector space dimension of Ckr (L) depends not only on the 
combinatorics but also on the geometry of LI. 

In order to tackle the above "dimension problem", more algebraic approaches 
using the method of commutative algebra have been recently initiated by Haas 
[8], Billera and Rose ([3], [5], [6]). With pointwise operations of addition and 
multiplication the set Cr (L) forms a ring and the polynomial ring R is just a 
subring of Cr(L). Hence Cr(L) is an R-module in a natural way. It is easily seen 
that this module is finitely generated, torsion free- and of rank equal to the number 
of d-faces of LI. The general question as to under what condition on d, r and 0l, 
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the R-module Cr(D) is free, has been dealt with in [4]. The case when Cr(0) 
is free is of practical importance in applications because in that case knowing a 
basis will easily determine general properties of a spline function on 0. This would 
be especially useful when one can determine an algorithm for writing down basis 
elements of the R-modules Cr(0) just by knowing the geometry of O alone. It is 
proved by Billera and Rose [4] that, when d = 2, Cr(0) is free over R iff O is a 
manifold with boundary. However, even in this case there does not seem to be an 
algorithm for writing a basis even for especially simple rectangular grids. 

The objective of this paper is to provide an algorithm for writing down a basis 
for the free R-module Cr(L) where O consists of a grid in the plane obtained by 
crossing a set of parallel lines (hyperplane in E2) by another set of parallel lines. 
In particular, this includes the general polyhedral case of rectangular grids not 
covered in the case of a simplicial complex. More generally, we prove the existence 
of an algorithm for writing down an R-basis for Cr(L) when O consists of general 
parallelopipeds obtained by mutually intersecting affinely independent d-sets of 
parallel hyperplanes in Ed. 

For the more familiar case when O = A is a simplicial complex, R. Haas [8] 
has studied the question of determining a free basis and a reduced free basis of the 
R-module Sr(A) for the case of planar cross-cut grids. As an application, using 
these R-module bases, she has also given techniques for deducing the vector space 
dimension of the spline space S r(A) in certain cases. 

2. PRELIMINARIES 

Let rO be imbedded in Ed. The fact that f is a Cr-spline on rO means (i) f is a 
globally Cr-function on O and (ii) f I u is in the polynomial ring R = E[xl,... , Xd] 

for each d-face u in 0. The analytic condition that f is Cr on O can be nicely 
translated into an algebraic condition (see [5]) as follows: Let 1(u) denote the ideal 
of all polynomials in R which vanish on the face a of r0, and let (I(j))r denote the 
r-fold product of 1(u) with itself. Then we have 

Algebraic Criterion. Let f: rO - R be a piecewise polynomial function on 0. 

Then f E Cr(0) iff for any two d-faces a,, 92 of ?I 

f I 1 - f 1 J2 E (I(ul n 72))r+l. 

Let the faces of OI be linearly ordered in some manner, say O.,.... , at where t is 
the number of d-faces of 0. Then using the algebraic criterion, one can represent 
a spline f E Cr(L) as a t-tuple of polynomials f = (fl, . .. , ft) where fi = f I ai, 
i = 1, ... , t, satisfying the condition that for each pair vi, aj of faces of LI, fi - fj E 

(I(ui n o3j))r+l. We will use this representation of splines in constructing a basis for 
the R-module Cr(L) whenever it is free. We must emphasize that as pointed out 
by Billera and Rose [4], the freeness of R-module Cr (Z) depends not only on the 
combinatorics of OI but also on the geometry of 0. However, when d = 2, Cr (L) 

is free iff O is a 2-dimensional manifold with boundary and therefore the freeness 
of Cr (L) over R is independent of the geometry and is a combinatorial invariant. 
Writing a basis, however, and that too in terms of obvious linear forms defining 
(d - 1) faces of 0, is a completely different problem of computational nature. 

Let r be a parallelogram in E2 subdivided into four subparallelograms by two 
lines (hyperplanes in E2) 11 = 0, 12 = 0, each parallel to a side of the parallelogram 
(see Fig. 1). 
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1 2 

12 = 0 

4 3 

FIGURE 1 

An R-basis for the R-module Cr(D) for this case was computed (Lemma 3.1 of 
[7]) to be the set consisting of four splines, 

(1, 1, 1, 1), (0O, Ili 12, O), (O, O, 12, 12), (O, O, 1112)- 

Likewise, when a parallelopiped P in E3 is subdivided into eight subparallelopipeds 
by planes 11 = 0,12 = 0,13 = 0, each drawn parallel to the faces of P, then again, 
Cr(0) is free over R and a basis consisting of eight splines was constructed (ibid., 
Lemma 3.2). It was also indicated (ibid., Prop. 3.4) that this construction may be 
formulated in an algorithm for any d-dimensional parallelopiped in Ed subdivided 
into 2d subparallelopipeds similar to the above special cases, but no proof was given. 
Here we extend the above constructions to the following general situations: Let L be 
a d-dimensional parallelopiped P in Ed which is subdivided into subparallelopipeds 
by drawing any finite number (not one) of hyperplanes in Ed, each one parallel to 
a side of P and let D2 denote the resulting d-complex. Then, for any r > 0, there is 
an algorithm to write down a basis for the free R-module Cr(D) just by inspection 
of the geometry of D, i.e., each basis element can be expressed as a t-tuple (t is 
the number of d-faces of O) of polynomials in which each tuple is a power of the 
linear form or their products which define these hyperplanes. As in the case of a 
simplicial complex (see [8]) the number of elements in any R-basis of Cr(D) would 
be 2d-the number of maximal faces of D. 

3. A PARTICULAR ORDERING AND THE ALGORITHM 

In the statement of our algorithm for writing an R-basis for Cr(0), the lin- 
ear ordering of the faces of D is crucial and we explain it first. We consider the 
two-dimensional case in which a parallelogram P has been subdivided into m.n 
subparallelograms by drawing (m - 1) lines ki = 0, i = 1,... , m - 1, parallel to 
one side and (n-1) lines Ij =0 , j = 1,... ,rn- 1, parallel to the other side of P 
(see Fig. 2). 

Let D7 be the resulting 2-complex so obtained. Treating each face of D as an 
entry in an m x n matrix, we linearly order the first row in ascending order as 1st, 
2nd, ... , nth. The last face of the second row is the (n + 1)-th element, the last 
but one is the (n + 2)-th element etc.; thus the first entry of the second row is the 
2n-th element. Next, the first element of the third row is the (2n + 1)-th element, 
then the next one is the (2n + 2)-nd, etc., the repeated last entry of the third row is 
the 3n-th element, last element of the next following row is the (3n + 1)-st element. 
In this manner we continue linearly ordering each face until the (m.n)-th element 
which would be either the first face of the last row or the last face of the last row 
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FIGURE 2 

depending on whether m is even or odd respectively. We will refer to this linear 
ordering of the faces of D as the "snakelike" ordering. 

With the above snakelike linear ordering of the m.n faces of O, we now explain 
our algorithm of writing down the basic m.n Cr-splines as follows: Here ki and i 
stand for (ki)r+l and (Ij)r+l respectively. Our basic splines are: 

0 1 1 . . 0 1 . 00 inOil 

1 k1 ... 1i 0 1 1 01 *1 b3 = k k . . . b= n . . . 0 

0 0 0 00 00 .. 01 
1.. .~11 0 . k 0 . . .01 

O ~ ~ ~ l~k 0 02 12.,2 *1k 02 0 . OI- 

kl kl . . . kl ~~In-l1kl l n_ lkl O 

bn+l = lk .*k bn+2 = In- 1kl ***In-1k, O 1 

Lk, k, k. j L lln- 1 k, ln_ 1k, O 

In-2kl in-1kl O O 1 ok 0 0...O 

bn+3= In-2kl in-1k1 0 01 L - b2n= liki 0 0 . . . 

in-2kl l n-2k, 0 0 11 ki 0 0 . 

0 0 ..0 [00 0...01 

b3n j k2 2 . .b3n+1 0 11k2 11kk2 . 1k2 

k2 k2 * * k2 0 11 k2 11 k2 * * 11 k2 
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0 0 ~0 1 
0 0 ~~~0 

bmn = . ,when m is odd, 

0 . . . 0 km-lln-1 

0 0..01 
0 0.01 

,when m is even. 

km-lll 0 . O 

3.1. The algorithm. We let b1 be the constant polynomial 1 on the whole of El. 

To write b2, we fill in zero at the first place, and in the first column also. Then we 
put 11 at all the vacant places (we are crossing the line 11 = 0 alone). To write b3, we 
fill in zeros at the first two columns and we put 12 at all the vacant places. Continue 
like this upto bn. To write b,+,, write zeros at all the preceding (in the snakelike 
ordering) n places and then put k1 at all the vacant places. To write bn+2, put 
zeros at the preceding (n + 1) places as well as in that column which precedes the 
(n + 2)-th place in the snakelike ordering. Then put the product ln_,1k1 at all the 
vacant places (we are crossing the lines ln-1 = 0 as well as k, = 0). Continue like 
this. In general, suppose we have written br as explained. Then to write br+i put 
zeros at the first r places (in the snakelike ordering). Also, put zeros in all those 
columns which precede the (r + 1)-th entry of the matrix. While moving from 
the r-th place to the (r + 1)-th place in the snakelike ordering if we are crossing 
a vertical line ij = 0 alone, put ij at all the vacant places; if we are crossing a 
horizontal line ki = 0 alone, we put ki at all the vacant places. However, if we 
are crossing a vertical line ij = 0 and have already crossed a few horizontal lines, 
then assuming ki = 0 was the last horizontal line that we have crossed, we put the 
product lIki at all the vacant places. This defines br?+. Thus we have defined br 
for all r, O < r < mn. 

Main results. First we settle the case of the 2-dimensional complex 0. We have, 

3.2. Theorem. Suppose a parallelogram region in E2 is subdivided into mn par- 
allelograms m, n > 1 by lines ki = 0, i = 1, 2,., m - 1, parallel to one side and 
lines lj = 0, j = 1, 2,.. , - 1, parallel to the other side (Fig. 2). Let the resulting 
2-complex 0 be given the snakelike linear ordering. Then, for any r > 0 the set 
B = b, ib2 ... b bnn+li,... bmn where bi 's are as written above, is an R-basis for 
the spline module Cr(D) over the polynomial ring R = E[x1,X2]. 

Proof. The proof is by induction on the number m of columns of the matrix like rep- 
resentation of the two-dimensional faces of 0. When m = 1, one easily checks that 
(1,1 ...,I 1), (0, 1, v ... * *l)... * (0,0,... * * n-l) is an R-basis of Cr(O). Suppose 
m > 1 and the result is true for all 2-complexes having lesser number of rows than m. 
Suppose O has m rows. Since the number of zero entries in B = {b1, b2,... ,bmn} 
increase as we move along in the linear ordering, it is straightforward to see that 
the set B is linearly independent over R. We only use the fact that R is an integral 
domain and that if an element of R vanishes on the interior of a face of 0, then it 
vanishes on the whole of 0. Hence we have to show only the generating property of 
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B, i.e., we must show that every spline in Cr(i) is a linear combination of elements 
of B with coefficients in R. 

For convenience, we arrange the mn elements of B in the form of an m x n matrix 
so that the snakelike ordering of the resulting matrix yields the set B. Thus, 

ell . . * eln 

e2l . . * e2n 

Lem 1 emnj 

where bi = ell ... bn= elnbn+l = e2n ... b2n= e2i ... bmn =emn 
Let 

fl I fl n 
f2l f2n 

Lfml fmnj 
be a Cr-spline on M. We drop the last row of O and denote the resulting 2-complex 
by MI' whose number of rows is less than m. By inductive hypothesis, 

ell . * n 
e/ e/ 
e21 . 2n 

B'- 

[rn-li rn** m-l,n - 

is a basis of Cr(D/) where 

1 1=. . ?],110 11 11 11 

ell= . . . e12= ... 

O 0 12 12 . . 12 0 in-1 
_ O0 12 12 . 12 0 O In-1 

1l3 . ln- 

O 0 12 12 . 2 O O O . In- 1 

0 10 0... 
11 ki 0 10 12ki 12k, 0... 0 

e2l lk 0 . . . 0] e22= 12k 12k 0 O 

L 11 k, 0 . j L o12kl 12k~l 0 O 0 

[0 0 00 . . . -~ . .01 
13ki 13ki 13ki 0. ki ki . . . ki 

e/3 I l3ki 13ki 13k1 0 O , k ki ki 

13k, 13k, 13k, 0 ? . . . ki 
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etc. For the last row of ei 's we have two cases: 

Case 1. When m is odd 

O 0 . 0] 

em12 O O2m2lk- . . . 0] 

0 .. . 0 

e/1 o 0 . ..O 

o 0~~~ 

llkm-2 0 km2] 

em-1,2= 

12km-2 12km-2 ? * 

0 0 ~0 0 

0 0 0 l~im- 

em-l,n f 

Lkm-2 km_2 ...km-2j 

Calse 2. When m is even 

km-2 km-2 ...km-2 

L ? (lkm-2 * l**lkm-2j 

em-l,n = . . . . . . . . 

L 
O . . In_lkm-2j 

Here e'j's are obtained from eij by dropping the last row. Note that 

fl 1 .i fln 

f2 1 . f2n 
E Crot 

fm_ 1,1 ***fm-l,n 
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Hence there exist polynomials aij (i = 1,... m - 1; j = 1,... , n) such that 

fii fln 

f2i 1 * f2n 

alle.I. = e+al2e/2+ +a2ne2n+ + am i,nem-l,n 

fm-I,j fm-i,n 

Now we extend each ei to eij by adding the m-th rows as follows: 

0 11 11 11 

. 1 1 . . . 1?= 11 11- 

0 11 11 . . . 

O 0 12 12 12 0 0 0 . . . in-I 

i2 . . . 0 0 . . . n- 

e-13= --I 
0 0 12 12 12 0 0 0 in-I 

O 0 12 12 12 0 0 0 . . in-I 

0 o o..o 0- o- o.. 
lik, 0 . . . 0 l2k l 2ki 0 . . . 0 

e2i= lik, 0 . . . 0 
1 

e22= l 2k 0 . . . 0 

lik, 0 . j o 12k, 12k, 0 . * * 

-o o 0 0..0 -o o... 
13k, 13k, 13k, 0 . . 0 ki ki . . k 

e23 = l3kil 3kil 3ki 0 * * 0 , )e2n = ki ki . . . k 

13k, 13k, 13k, 0 . ? ki ki . . ki 

etc. Corresponding to the last row of eij's we have two cases: 

Case 1. m is odd 

0 0.0 

emil,i= 0 0. .. 0 

likm-2 0 . . 0 

li km-2 0 0 
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O O. .. O 

o 0 O...O 

eml,2= 0 0 0 . . . 0 

12km-2 12km-2 0 * * * 0 

12km-2 12km-2 0 * 0 

o o .... 0 

O o o ... 0 
em-l,n - km-2 km-2 * km-2 

km-2 km-2 . km-2 

Case 2. m is even 

o 0 ... 0 

O O . .. 0 
em_l,1 = km-2 km-2 . . km-2 

km-2 km-2 . km-2 

~O O . .. 0 

O O . .. 0 
em-l,2 = 0 llkm-2 llkm-2 ' 

0 llkm-2 . . . llkm-2 

0 0 . . . 0 

0 .. . 0 
eml,n = 0 0 * * * in-lkm-2 

0 .. . in-lkm-2 

Then a straightforward calculation shows that 

fii fln 

m-i,n f21 f2n 

= fm-1,1 fm-l,n 
=1 ,j=1 

fm-1,1 * * * fm-l,n 
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Now we use the algebraic criterion separately for the two cases: 

Case 1. When m is odd. 
fm,i = fm-i,i + am,jkm-I for some am,j E R, 
fm,2 = fm,i + ,111 = fm-1,2 + ,Bkm-1, for some /1, /3 E R, 

#> fm-i,i + am,jkm-1 + /11i = fm-1,2 + /31km-i, 

4> fm -,2 + -YIli + am,lkm-i + 01l = fm-1,2 + /3km-1, for some -Yi ER, 

4y (/3k - Ym,i)km-I = (/1 + yl1) i, 

> /1 = am, 1 + aYm,21I for some am,2 E R. 
Hence, fm,2 = fm-1,2 + am,lkm-l + am,21 km_1. 
Continuing in this manner we get 
fmin = fm-l,n + aym,jkm-1 + am,2l1km-1 + + atm,nln-lkm-i. 
Hence if we define 

em, =[ 

0 0 ~~~~0 km_l km-l km-l 

em,2 = . . . 
0 0 ... 0 

0 likm-i llkm-l 

em,n = K , 0 , n, m , 

O . . In-lkm1j 
we find that 

fll fln m-l,n 

[:1; . . . . = a, ijeij + aemleml + cEm2em2 + ' m e 
+ mn 

fm,l fm, ni=,l 
m,n 

= E ?t~ij ej 
i=1l,j =1 

Case 2. When m is even. 
fmin = fm-I,n + am,nkm-i for some amn E R, 
fmin-I = fm,n + /3ln-I = fm-i,n-I + /Ikm-i for some 1, 31 E R, 

= fm-I,n + atm,nkm-1 + /l1n-I = fm-1,n-I + /3Ikm-i, 
) fm-i,n-I + Yiln-i + am,nkm-i + 3lln-I = fm-i,n-I + O3km-i, for some -Yi E R, 
=> (/ - Ym,n)km-1 = (131 + Yli)ln-l, 

a= Ym,n + am,n-iln-I for some am,n-I E R. 
Hence, fm,n-I = fm-i,n-I + atm,nkm-1 + aYm,n-iln-Ikm-i. 
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Continuing in this manner we get 
fm,i = fm-1,1 + aZm,nkm-1 + aZm,n-1ln-1km-1 + + am,likm-i. 
Hence if we define 

em,= I 

- -0 0 0. 0 llkm-l 0 0 

2km- 2km- . . . 0 =~~~ ... 

0 0.. .. I 

em,n= 

- - - 

kmil km-l ikm-l 

then we find that 

fll1 fln m-1l,n 

[I :: I >3ozie-i + oamle'ml + aEm2em2 + + Ozmnemn 

fm, I fm, n 

m,n 
= E ?t~oij eij .. FC 

i=l,j=l 

3.3. Example. For the case of Fig. 3 the R-basis in accordance with the above 
algorithm is given by: 

0 1 1 - - o 11 11 ~ 0 0 12 

b = b2 11 11 b3 0 0 121, 

o 0 11 11_ o 0 12J 

[0 00] [000] K00]0 
b4 L ki ki ki j b5 L k112 k, 12 0 , b6 L ki 11 0 0j 

0 k0 k0 0 k0 12 12 0 0 ? ? 
b7= ? ? ? 0 bs= O O O , bg= 0 0 

k2 k2 k2 0 7 72 7 72 j 0 7 
122 
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11=0 12=0 

1 ~~~2 3 

k1=0 

6 5 4 

k2= 

7 8 9 

FIGURE 3 

11=0 12=0 

18 17 16 
1 2 3 

\13 \14 \15 kl= 0 

6 5 4 

k2=0 

7 8 9 

m1= 0 

12 11 10 

FIGURE 4 

4. THE HIGHER-DIMENSIONAL CASES 

Let us start with an example in the three-dimensional situation. Suppose a 
parallelopiped is subdivided into eighteen subparallelopipeds and is obtained by 
drawing hyperplanes k1 = 0, k2 = 0, 11 = 0, 12 = 0 and m1 = 0 in E3 (see Fig. 4). 

Suppose D is the 3-dimensional subcomplex so obtained. To extend the snakelike 
linear ordering on the eighteen faces we linearly order the nine faces above the plane 
ml = 0 as in the two-dimensional case. From ninth place we go down to the tenth 
place just below the ninth one and then cover the second level according to the 
snakelike linear ordering, i.e., first move along a row in the second level, then along 
the next row but backward, then along the third row until we have enumerated 
the second level completely. If there is yet another level along the z-axis, we go 
down to the third level and extend the snakelike linear ordering in the obvious way. 
Returning to our example (Fig. 4), we first explain the algorithm of writing a basis 



AN ALGORITHM FOR CONSTRUCTING A BASIS FOR Cr-SPLINE MODULES 1119 

using a linear ordering just described. Start with the first element b, by filling in 
1 in all the eighteen places of the 3 x 3 x 2 matrix. To write b2 put zero in the 
first place and then fill in zeros in the first column including all the levels below 
the first column; then put 11 at all the vacant places (we are crossing the plane 
11 = 0 in the linear ordering). We fill all the entries of the first level according 
to the 2-dimensional case putting zeros in the second level below the zeros of the 
first level. This will give us the first nine elements of the basis. To write the tenth 
basis element, we put zeros at all the preceding places (i.e., on the whole of the 
first level), and then put rml at all the vacant places. To write bll, we put zeros 
in all the preceding ten places, also put zeros in the column of the second level 
which has tenth entry in it, then we fill all vacant places by 12&l (we are crossing 
12 = 0 and ml = 0 both). We continue like this as in the first level remembering to 
include factor ml, everywhere in the second level. Since it is unmanageable to write 
the three-dimensional matrices, we write below all the eighteen basis elements of 
the particular example of Fig. 4 according to the linear ordering described above. 
These are: 

bi = (1,1 *- ............. .I), 
b2 = (0,11,1l,11 00l,l,li Oi 0) fill ll 0v xll l xl 0)) 

b3 = (O0 OX 2i f2i Oi OiOi Oi 2i f2i Oi OiOi O2i f2i Oi )i 

b4 = (O, O, O2, 0, 0, 0, 0, 12, 12, 0, 0, 0,, 2, 1, 0,) O, O, O) 
b5 = (O, O,0,, 12kO , 12k1, 12k1, 12k1, 0, O,12kO , 12k1, 12k1, 12k1, O, O, 0, 0), 
b6= (O,,O,,O, 11kO,C11kl, o,0,o,o, 11kl, 11kl,O 0,,0,0,0), 
b7= (O,O,O,O,O,O,k2,k2,k2,k2,k2,k2,0,0,0,0OQ0,0), 
b8= (O, O, O, O, O, O, O, 1lk2, 1lk2, 11k2, 1lk2, O, O, 0, ,0,0, O0 O), 

bg= (0,0,0,0,0,0,0,0,12k2,12k2,0,0,0,0,0,0,0,0), 
blo = (0O,0,0,0,0,0,0,0 ,m0, r l, nI, l, IMi, ln, IMl, IMl, ri1I, niL), 
b11 = (O, O, O, O, O, O, O, O,,, 12iOl, 12ild, 12m, l2rl, 0,0, 12n1 , l2ri), 

b13 = (O, O, O, O, O, O, O, O, O,,, O 1ii1l, 1 tildem2, 0,0,0,0, Ol,i Tl), l 
b14= (O, O, O, O, O, O, O, O, O, i , O, O, Tlk2,) lk2,D lk2,i lk2, flk2,rhlk2), 

b4= (0,0,0,0,0,0,0,0,0,0,0,0,0,Di1k2,l,Di1k2,l,Dilk2,ll,Dilk2,ll,0), 
b15 =(O, O, O, O, O, O, O, O, O, O, O, O, O, O, Thlf2i4i 7nF16Ci O, O), 

b16 = (O,0,O,O,O,O,O,O,O,O,O,O,O,O,OiTlk,Diul2ki,0L, 0), 
b17 = (0,O, O0, O0 O,, O, O, O,,0, 0, 0, 0, 0,0 ,O i k1, rhm1k,iTI ) 
b18 = ( O?,0, 0, 0, 0, 0,0,0 ,0 o, o, o, o, o, o, o,0 0, lCk). 
Now, with this example, it is clear what would be the basis in the case when 

we have m.n.p number of parallelopipeds by intersecting m, n and p parallel hyper- 
planes in E3. A simple but long calculation can be exhibited to prove (we have done 
it to satisfy ourselves) the above statement for the particular example having 18 
parallelopipeds in the three-dimensional case. The general case of three or higher 
dimensions can be stated and proved using induction, as in the two-dimensional 
case (Theorem 3.1). We omit the lengthy proof (we saw the two-dimensional case) 
and give only the statement of the general result. 

4.1. Theorem. Let P be a d-dimensional parallelopiped in Ed. We subdivide P 
into nl.n2- -- .nd number of subparallelopipeds by drawing hyperplanes in Ed par- 
allel to the sides of P. Suppose E denotes the resulting d-complex in Ed. Then, 
with the snakelike linear ordering on the faces of 0 and for any r > 0, there is an 
algorithm to write down a basis consisting of nl.n2. .nd number of C'-splines 
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on D which will form a basis for the spline module Cr(EI) over the polynomial ring 
R=E[xl,... ,Xd]. I 
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