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A NATURAL LATTICE BASIS PROBLEM 
WITH APPLICATIONS 

JOHN D. HOBBY 

ABSTRACT. Integer lattices have numerous important applications, but some 
of them may have been overlooked because of the common assumption that a 
lattice basis is part of the problem instance. This paper gives an application 
that requires finding a basis for a lattice defined in terms of linear constraints. 
We show how to find such a basis efficiently. 

1. INTRODUCTION 

Numerous application problems involve trying to minimize a quadratic function 
with integer variables. The problem of finding an integer vector x that minimizes 

(1.1) flA(x - Xo)fl2 

for a matrix A and a vector x0 is known as the nearest lattice point problem. The 
possible values of Ax form a lattice and the columns of A are a basis for the lattice. 
The nearest lattice point problem is NP-complete, but approximate solutions can 
be found with Lenstra, Lenstra, Lovasz (LLL) basis reduction [12] and Babai's 
nearest plane algorithm [1]. 

Lenstra [13] uses the algorithms from [1, 12] for integer programming; Shamir 
[17], Odlyzko [14], Hastad [9] use them for cryptographic applications; Sugihara 
[18] uses them for representing geometrical objects; Hobby [10] uses them for font 
generation. Other applications appear in Frieze et al. [5], Grosse and Hobby [7], 
and Hastad et al. [8]. 

We shall see that at least one of these applications benefits from the generaliza- 
tion where we allow linear constraints on the integer vector x. It is safe to assume 
that the equations have rational coefficients and that we can find a basis for the 
solution space over the rationals. If x has dimension n, this allows x to be expressed 
as By where B is an n x m matrix over the rationals with dimensions m < n. Un- 
fortunately, this cannot be substituted into (1.1) because an integer vector y might 
generate a non-integer x vector and a non-integer y might give an integer x. If Z 
is the set of integers, we need a matrix B such that 
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(1.2) {By y E Z} 

is exactly the subset of Zn that satisfies the constraints on x. 
Since the set of Zn that obeys the constraints on x is closed under addition and 

subtraction, it is a lattice. Requiring (1.2) to match the lattice just says that the 
columns of B are a basis for th.e lattice. Thus the problem can be restated as 
follows: given a basis for a vector space in Q?p, find a basis for the lattice formed by 
intersecting that vector space with Zn. An alternative formulation of this problem 
appears in Cohen's book [4, Algorithm 2.7.2]. The algorithm presented there is 
based on Pohst's modification of LLL basis reduction, so we refer to it as the 
MLLL algorithm [15]. Similar algorithms have appeared elsewhere [3]. The MLLL 
algorithm has some advantages, but experiments show that it is very ill-suited to 
the application given below. 

The rest of this paper gives a practical application for this problem and explains 
how to find the desired basis. Section 2 explains the application, and Section 3 
gives the algorithm. Section 4 gives some performance statistics and compares the 
algorithm to the MLLL algorithm, and Section 5 gives some concluding remarks. 
The time for an m-dimensional subspace of Q?p is at most O(m3n) times a term 
that depends on the size of the integers needed to represent the input basis. 

2. APPLICATIONS 

We have already referred to applications where it is useful to find a vector x e Zn 

that approximately minimizes the quadratic function (1.1). This section shows how 
one of them benefits from the ability to impose linear constraints on the vector x. 

The application described in [10] deals with adjusting outline fonts so that they 
can be converted to bitmap form without introducing undesirable artifacts. This is 
important because printers and computer terminals require bitmaps, while charac- 
ter shapes are most naturally described via outlines. Virtually every font supplier 
uses some "hinting" or "grid-fitting" strategy to cope with the fact that naive 
scan-conversion does not generate acceptable bitmap images. 

The quadratic function minimized in [10] is a heuristic estimate of the distortion 
in important features when a given set of outlines is scan-converted. The main 
variables are the coordinates of control points that describe the outlines. Additional 
integer-valued variables are introduced so that the distortion function can depend 
on how key features relate to the pixel grid. It is these integer variables that form 
the vector x when the distortion function is reduced to the form of (1.1). 

The paper [10] proceeds by finding certain features of the original outlines and 
deciding what relationships need to hold in order for the features to be preserved 
after scan-conversion. Each new relation to be preserved generates a new row of 
a matrix which we can call A. The distortion function is the squared 2-norm of 
A(x- xo) where x- gives the variables over which to minimize and x-o gives their 
ideal values. The next step is to find the QR-factorization A = QR where Q is an 
orthogonal matrix and R is upper-triangular. This reduces the distortion function 
to the form 

flR(x - xo)2 
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FIGURE 1. A character shape where the distortion function is 
much easier to minimize when linear constraints are used. 

Dividing x- into a vector w of control point coordinates and a vector x of integer 
variables gives the following block structure: 

(2.1) - H) 

Since w can be chosen to make 

C(w-wo) + B(x-xo) = 0, 

minimizing (2) is equivalent to minimizing (1.1). 
There are no provisions in [10] for linear constraints on x, but they easily fit into 

the framework outlined above. When a relation is very important, [10] multiplies 
the corresponding row of A by a large constant. Some of these relations involve 
only integer variables. Moving the corresponding rows of A to a separate constraint 
matrix effectively makes them "infinitely important." This reduces the danger of 
excessive numerical error and reduces the number of variables. 

When separate constraints on the x vector were added to an implementation 
of [10], several instances were found where the number of variables was greatly 
reduced. This occurred when processing complicated, repetitive character shapes 
such as that shown in Figure 1. In this instance, the x vector originally had 452 
components, but the linear constraints allowed x to be replaced by By where B 
is a 452 x 66 matrix. Thus flA(x - xo)1l2 is replaced by flAB(y _ yo) fl2, where y 
has only 66 components. This greatly speeds up LLL basis reduction and Babai's 
nearest plane algorithm. It requires the columns of B to be a basis for the lattice 
formed by intersecting the column span of B with Z452, but that is the subject of 
Section 3. 

The character shape shown in Figure 1 is rather unusual, but it did come up 
while processing an actual font. In fact, 216 of 1664 characters processed benefited 
from linear constraints. In one case, the number of integer variables was reduced 
from 7295 to 208. See Bigelow and Holmes [2] for information about the font. 

3. THE ALGORITHM 

Given a basis for a vector subspace of QTh, how do we find a basis for the lattice 
formed by intersecting with Zn? Begin by assuming that the given basis vectors 
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0 Bm 
0 Bm-1 
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0 B1 

FIGURE 2. The pattern of leading zeros in the basis vectors B1, 
B2, ... , Bm. 

B1, B2, ..., Bm are scaled so that they are in Zn and that the basis vectors are 
in a triangular form as shown in Figure 2. In other words, if li is the number of 
initial zeros at the beginning of the ith basis vector Bi, we assume li decreases with 
increasing i. (This can easily be obtained by Gaussian elimination.) 

The goal is then to alter the basis vectors so that they span the same vector 
space, they still lie in Zn, and they have the integer combination property. A set 
of vectors in Zn has this property if any linear combination of the vectors that 
involves a non-integer coefficient must yield a non-integer result. 

Proceeding inductively, assume that basis vectors B1, B2, ... , B_1 have the 
integer combination property and we want to find a vector B' E Zn so that B1, B2, 

Bm_-n-1, B' have the integer combination property and span the same subspace 
of Qfn as do B1, B2, ... , B i-, Bm. 

This requires finding the largest integer q such that there is a vector 

(3.1) 31B1 + 32B2 + ... + m--Bn-I + Bl/q 

in /n), where /1, 032 ... , 1m-n are rational numbers. (The triangular form illus- 
trated in Figure 2 guarantees that there is a maximal q. Indeed, q must divide the 
leading coefficient of Bn.) The following lemma shows that we can use (3.1) for 
B- n. 

Lemma 3.1. Suppose basis vectors B1, B2, ..., Bm are Zn vectors in the trian- 
gular form of Figure 2, and the integer combination property holds for B1, B2, .... 

B?nl-, where mT < m and q is the largest integer such that there is an integer vector 
(3.1). Let this vector be B' . Then the integer combination property holds for B1, 
B2, ...B, -II Bm. 

Proof. Suppose the integer combination property fails. Then there is a vector 
b1Bj + b2B2 + + bm_1Bmn1 + bnB'- E En, where some bi f Z. If bn E Z, then 
bi B1 + b2 B2 + + bm -n- Bmn- cE Zn and the property fails for B1, B2, B, n- 1, 

contradicting the assumption. 
If bm, n 2, express it as qi /q2 where gcd(q1, q2) = 1 and q2 > 1. Then there exist 

a, b E Z where aq1 + bq2 = 1. Multiplying 

b1Bj + b2B2 + + bm_1Bn-- + bmBm 
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by a and adding bB' yields a vector in Zn. This vector is 

( abiBi)q, ( q2 Bl- abiBi) + m 
q2 q2 

= (E (abi + 2') Bi) + Bq2n 

contradicting the assumption that q is as large as possible. C: 

Section 3.1 shows how to perform the induction step so that Lemma 3.1 applies. 
Then Section 3.2 analyzes the resulting algorithm in a way designed to suggest how 
actual performance might be much better than the worst case bounds. 

3.1. Updating the basis. Given vectors B1, B2, . .. , Bm-I in ZE that satisfy the 
integer combination property, we need to preserve the property while appending a 
7/ vector formed by taking a linear combination involving a new vector Bm. 

Let Bm[j] be the jth element of Bn. Since li decreases with increasing i, 
Bn[l1n + 1] through Bn[lm1n] must be divisible by q in order for (3.1) to be integer- 
valued. Thus q must divide g-, where 

(3.2) gn = gcd(B-[ln + 1], Bm[ln + 2],..., B7[lfn ) 

Our goal is to find the largest such q for which there is an integer vector of the 
form given by (3.1). Algorithm 1 does this by repeatedly replacing Bn by a vector 
of the form (3.1). 

Algorithm 1. Given basis vectors B1, B2, ..., Bn in 7/ and in the triangular 
form of Figure 2, where B1, ..., B_1 satisfy the integer combination property, 
modify Bn so that the property holds for B1, .. . , Bn. 

1. Initialize p = 2 and set gn according to (3.2). 
2. If gn = 1, stop. Otherwise let p be the smallest remaining prime factor of 

gn - 
3. Determine whether there exist integers b1, b2, . b. ., b1 such that 

Bn = b1Bj + b2B2 + +.b._1BnIn (mod p). 

4. If not, remove all factors of p from gn. Otherwise, replace gn by gf/p and 
Bn by 

B - bBj - b2B2 - * - -_Bn_ 

p 

5. Go to Step 2. 

Since the integers modulo p form a field, Step 3 of Algorithm 1 is a simple 
application of Gaussian elimination. Vectors B1, B2, ... , B_1 are given in the 
triangular form of Figure 2, but reducing modulo p can create additional zeros. 
There could be some i, j where i < j < m- - 1 and Bj has more leading zeros 
modulo p than Bi does. Gaussian elimination gets rid of such cases by applying a 
suitable linear transformation Tp to B1, B2, ... , B7n1. If Bm can be expressed 
modulo p as a linear combination of the transformed B1, B2, . B. ., B 1, applying 

Tp to the coefficients gives b1, b2, ... , bmn, 

Lemma 3.2. Algorithm 1 replaces Bm with an integer vector of the form (3.1), 
where q E Z is as large as possible. 
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Proof. Let Sm, be the set of integers q for which there is an integer vector of the 
form (3.1). For any q E Sm, any factor q' of q is in S- since multiplying (3.1) by 
q/q' yields an integer vector where the Bm denominator is q'. 

For any qi and q2 in Sm with gcd(ql, q2) = 1, Bm can be expressed as cl,i Bi 
modulo qi and i c2,i Bi modulo q2, where cj,i are integer coefficients. There 
clearly exist integers c3,i congruent to cl,i modulo qi and C2,i modulo q2. Thus 

Bf = E c3,iBi (mod qlq2) 

i<fn- 

and q q2 E Smn 
It follows that Sn consists of an integer and all of its factors. The algorithm 

initializes g,n so that this maximal q must divide gn. Suppose we add a "write-only" 
variable q that is initialized to 1 in Step 2 and multiplied by p whenever Step 4 
updates Bm. This clearly does not affect the correctness of the algorithm. After 
each iteration, the current Bm-n is l/q times the original Bn plus a rational linear 
combination of B1, B2, ... , B-n1. Another invariant is that any positive integer 
q' with qq' E Sm must be a factor of gn. This holds because we remove factors 
from g9 only if they are being multiplied into q or if we determine that jp Sm. 
(The integer combination property guarantees that failure to find integers b1, b2, 
..., b,_1 in Step 3 implies that no rational linear combination of B1, B2, ... 

Bm-n- can equal Bn modulo p.) 
When gn reaches m, the invariants guarantee that an expression of the form 

(3.1) gives the current Bm, as a function of the original Bn where q = q and q is 
the maximum element of Sm. E 

3.2. Algorithm analysis. Given basis vectors B1, B2, ..., Bm in EZ where the 
number of leading zeros 1i in Bi decreases with increasing i, we need to find a basis 
that spans the same subspace of Qfl and has the integer combination property. 
Lemmas 3.1 and 3.2 show that it suffices to apply Algorithm 1 successively for 
m = 1, 2,... , m. Hence, the total run time is the time for Algorithm 1 summed 
over these values of m-. 

If the input vectors have entries bounded by L, then Step 1 requires 
? (ln- (Im 14-) log L) arithmetic operations. 

Step 2 is executed several times, but the net effect is to find the complete prime 
factorization of the original value of gn. Since gm < L, trial division can find the 
factors in 0( L) arithmetic operations. More sophisticated factoring algorithms 
have smaller time bounds, but we shall avoid discussing their complexities and just 
use FL for the time to factor gn < L. 

Gaussian elimination in Step 3 requires Q(nm2) operations for each new prime p, 
but this can be reduced by taking advantage of previous results and the structure 
of B1, B2, ... , Bn. Before reduction mod p, each Bi has 1i leading zeros where 1i 
decreases with increasing i. The same holds mod p except that there may be more 
leading zeros due to entries divisible by p. Hence fewer than i vector operations 
may suffice for each Bi. In addition, we might already have some number m=p of 
initial Bi in reduced form mod p; i.e., if lp,i is the number of leading zeros for Bi 
modulo p, lp,i decreases for increasing i as long as i < mp. Hence the actual time 
for Gaussian elimination is 
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where Dm-p < m is the average number of row operations applied to any Bi during 
Gaussian elimination. 

Gaussian elimination needs to be done for each distinct prime factor of g7, and 
0(nm) additional operations are needed to find b1, b2, ... , bm after the reduction 
is complete. If PL is a bound on the number of distinct prime factors for gm and PL 
is a similar bound that allows multiplicity, Algorithm 1 does Gaussian elimination 
PL times and computes b1, b2, ..., bm a total of PL times. Hence, the total time 
for Step 3 is 

(3.3) o(0(n PL+ S m m 

where JF(gm) is the set of prime factors of g9. 
The total time for a single execution of Algorithm 1 is (3.3) plus the time for 

Steps 1, 2, and 4. The O(n MPL) cost of Step 4 is subsumed by (3.3), as is the 
0 ((ln-- l-1) log L) cost of Step 1. Thus the total cost is FL more than (3.3). 

Algorithm 1 is actually executed m times, once for each m- E [1, m]. The most 
interesting term is 

m 

E S ~nDm-p( p). 
Defining DmXp = 0 when p does not divide g9 and reversing the order of summation 
gives 

m_ 

S S mD~,inD-np( - P) < 5 nDm < nDmPLm, 
P F(9192 ...gm) m=1 PE7(9192 gm) 

where D is a weighted average of all DmXp values and PLm is a bound on the number 
of distinct prime factors of 9192 ... gm.m Since the other two terms are Em F1 and 
Z nnmPL, the total is 

(3.4) 0 (mFL + nm(mPL + DPLm)). 

We can eliminate FL, D, PL and PL from (3.4), but the result may be misleading 
because the required upper bounds can be rather pessimistic. We have D < m and 
PL < log2(L). To bound the number PLm of distinct prime factors less than Lm, 
let f(k) be the sum of the logarithms of the first k primes: 

PLm < max k. 
f (k) <log(L m) 

Since f(k) = 0(k log k), we have 

pLm ? (log m + log log L) 
The factorization time FL is poorly understood, but using heuristic assumptions to 
analyze the best known algorithm gives an expected running time of 

e(c+o(l))(log L)113 (log log L)2/3 

where the c is a constant and the limit implicit in the o(1) is for L -+ oo [4]. 
Substituting these values into (3.4) gives 

(3-5) 0 (me(c+o(1))(log L)"3(lg logL)2o 3 + Thr1lgL) 
log m 
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arithmetic operations on numbers of magnitude L. 
For large L, it is more appropriate to measure the bit operation complexity. This 

would introduce an additional factor into (3.5) that is theoretically o(log2 L). 

4. EXPERIMENTAL RESULTS 

Algorithm 1 was implemented in C++ using double precision floating point and 
tested on random data and on problem instances from the application of Section 2. 
Since finding a lattice basis requires m calls to Algorithm 1, we refer to the complete 
process as Algorithm 1*. Because these problem instances involved sparse matrices, 
the implementation used sparse matrix techniques. There are 500 lines of code in 
the main routines and 2000 lines including the test program and the sparse matrix 
package. 

Even though double precision suffices for the font application, the algorithm was 
also implemented using an infinite-precision integer package due to Gansner [6]. 
This version used Pollard's factorization algorithm [16], [11] to factor g9 in those 
cases where trial division was inappropriate. 

For comparison purposes, the MLLL algorithm [4, Algorithm 2.7.2] was also 
implemented using Gansner's infinite-precision package. Bugs in the published 
version of the algorithm were corrected by retrieving Cohen's Pari system and 
examining a routine named llallO. An alternative implementation of the MLLL 
algorithm used sparse matrix techniques, thereby achieving approximately a factor 
of 2 speed-up for the results in Table 1. 

The font application tended to generate large sparse problem instances. Table 1 
summarizes the 9 problems encountered while processing the font from [2]. All 
the timings were done on a 150 Megaherz MIPS R4400 processor. The timings for 
the MLLL algorithm do not include the time to convert the input matrix into a 
matrix that gives a basis for the null space. The input is a matrix A whose rows 
span the desired subspace of Qf, and the MLLL algorithm starts with a matrix B 
whose rows form a basis for the null space of A. (Thus ABT = 0.) The new input 
matrix B can have many more rows than A does. For instance, the 43 x 457 matrix 
for the fifth row of Table 1 results in a 423 x 457 matrix as the argument to the 
MLLL algorithm. (The 43 x 457 matrix had rank 34.) 

In general, if the input matrix A is m x n, the null space basis B will be m' x n 
where m' > n - m. If m' were shown in Table 1, it would range from 6 to 20 for the 
first four rows and it would be close to n - m for the remaining rows. The largest 
entry in B turns out to be the same as the L value whose logarithm is listed in the 
table, and the number of nonzeros in B stays within a factor of 2.2 of the number 
of nonzeros in A. Thus the percentage of nonzeros in B ranges from 7.7% for row 1 
to 0.23% for row 6. 

Table 1 is incomplete because the MLLL algorithm did not terminate in a rea- 
sonable time for the larger problem instances. This is probably due to the large 
size of the intermediate results. The largest intermediate result Imax is simply the 
largest integer result encountered for all the integer arithmetic operations during 
a run of the algorithm. For the last problem where the MLLL algorithm ran to 
completion, Imax was 1688 bits long. For Algorithm 1* in contrast, the numbers 
remain very small. They are easily small enough to allow doing all computations 
in fixed precision using 64-bit floating point. 
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TABLE 1. Comparitive results of Algorithm 1* and the MLLL al- 
gorithm on problems from the font application. The dimensions 
m x n, the largest entry L and the percentage of nonzeros in the 
matrix refer to the input for Algorithm 1*. Corresponding input 
for the MLLL algorithm was derived as explained in the text. The 
T column gives time in seconds and the Ts and Td columns give 
time in seconds for the sparse and dense implementations of the 
MLLL algorithm. The maximum intermediate result in the MLLL 
algorithm is Imax, and the mFL and mPL columns give the total 
trial divisions for factoring all the gm 's and the total number of 
divisors found. 

Algorithm 1* MLLL algorithm 
m n log2 (L) % + 0 mFL mPL T log2 (Imax) Ts Td 

45 26 1 2.2% 19 19 0.0017 16 0.130 0.1 
45 26 1 2.2% 19 19 0.0018 16 0.127 0.1 
58 37 1 1.7% 17 17 0.0022 72 0.230 0.4 
58 43 1 1.7% 24 24 0.0023 64 0.331 0.6 
43 457 3.8 3.6% 33 33 0.0037 1688 2197 4450 

8 1087 4.2 19% 6 6 0.0169 > 7800 
57 3162 5.1 2.8% 47 47 0.0218 

227 3162 5 0.68% 67 67 0.0230 
7 7315 5.2 22% 5 5 0.1230 

Is Algorithm 1* always so much faster than the MLLL algorithm? To check this, 
we derive additional test problems from rectangular matrices with random integer 
entries. The procedure is to take a rectangular matrix Ao, and use Gaussian elim- 
ination followed by row scaling to generate an integer matrix A1 in the triangular 
form required by Algorithm 1*. (See Figure 2.) Applying Algorithm 1* to the rows 
of A1 produces a lattice basis that we can write in the form of a matrix A2. For 
instance, if 

-7 -2 2 0 -10 4\ 
4 -3 8 -7 -6 -6 

Ao= -3 -6 -1 -11 3 5I, 
3 10 9 0 6 -5 
8 -10 -1 4 7 0/ 

Gaussian elimination followed by row scaling and swapping rows yields 

8 -10 -1 4 7 0 
0 110 75 -12 27 -40 

Al= ? 0 465 128 -68 5 
0 0 0 -5587 4087 650 
< 0 0 0 0 -3833 -1505 

and the lattice basis is the rows of 

1 -1 0 0 -1188 -467' 
0 1 0 0 373 146 

A2= 0 0 1 0 -568 -2231. 
0 0 0 -1 2369 930 
0 0 0 0 -3833 -1 50 
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TABLE 2. Parameter values for runs of the indicated algorithms 
on random data. Ten runs were made for each m, n, ? value 
starting with random m x n integer matrices with entries between 
-f and ?. Entries of the form min ... max list the range of values 
so obtained. As explained in the text, each column is labeled with 
the theoretical upper bound on the quantity being measured. 

Algorithm 1* (fixed prec.) MLLL algorithm 
m n log2 (L) mFL mPL T(ms) log2 (Imax) T(ms) 
3 7 1 0. 2 0.1 0 .1 0.14 .0.4 3 .21 11.3 .27.1 
5 10 1 0... 2 0.1. I 0 ...1 0.26... 0.42 10 . 34 50.3 . 74.1 
6 13 1 1... 4 0.. .4 0. . .4 0.3... .1.44 14... .113 88. ..167 
9 19 1 4... 7 2... .12 2 . 10 1.58 . 4.02 94... .316 462 ...549 
6 7 2 1... 8 2 . 12 2.12 0.82 . 3.08 10 . 32 10.4 . 13.8 
6 7 4 6 . 13 9...25 7 . 14 1.92 . 3.38 35 ...56 13.5 . 15.8 
6 7 8 8.. 18 22.. 99 11 21 2.7.. 4.9 55.. 81 19.7.. .24.6 
6 7 16 11.25 47. . 314 8. . .21 3.1. .5.3 83... 104 16.4 . 28.6 
6 7 1 0... 5 1... 7 1 ...5 0.4 . 1.46 0 . 14 5.18 . 12.5 
9 10 1 3... 7 5. . 13 4 . 10 1.36 . 2.96 9... .30 16... .20.5 

12 13 1 2 . 11 15 . 28 10 . 23 3.66 ...6.92 6 ...45 22.3 . 29.7 
18 19 1 9... 21 81 . 472 25 ...44 10.1 . 16.8 58 ...85 46.8 ...54.2 

The large numbers in A1 in this example are a consequence of Gaussian elimina- 
tion followed by row scaling to clear out the denominators. We have A1 = TOIAO, 
where To1 has determinant 4.7 x 107. This is interesting because the rows of 
Ao are in the lattice generated by the rows of A2 and therefore there is an integer 
matrix T20 for which Ao = T20A2 and Idet(T20)1 > 1. If T12 is the transformation 
performed by the algorithm while converting A1 into A2, 

det ( T1 2 ) =det (T23Tj) =det(T2o) det(Tol) - det(ToI) 4.7 x 107 

Hence Step 4 of Algorithm 1 will have to be executed many times in order to make 
det(Ti2) so small. In fact, we often have det(T12) < det(To) -1 since equality would 
imply that T27-1 has integer entries and the rows of the random matrix Ao happen 
to be a basis for the desired lattice. 

Experiments were run on random m x n integer matrices with entries in [-X, f] 
for various m, n and L. When numbers in the input matrix got too large, the 
infinite-precision version of Algorithm 1* was used. Since the matrices were fairly 
dense, the use of sparse matrix techniques probably added unnecessary overhead 
to all the run times (including those for the MLLL algorithm). 

Tables 2 and 3 summarize the test results that are relevant to the run time 
analysis. Each table gives MIPS R4400 run times for Algorithm 1* and the MLLL 
algorithm as well as the number of bits in Imax, the maximum intermediate result for 
the MLLL algorithm. The tables also list three quantities that appear in Section 3.2: 
the logarithm of the upper bound L on the entries of the input matrix produced by 
Gaussian elimination and row scaling; the number of trial divisions during factoring 
(column labeled mFL); and the total number of prime divisors tried for all gm 
values (column labeled mPL). The values corresponding to PLm and DPLnI} are not 
listed due to space limitations. The omitted PLm values (number of distinct prime 
factors) are somewhat less than the values in the mPL column, and the omitted 
DPLm values (1/m times the number of row operations in Step 3) are all less than 1. 
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TABLE 3. Parameter values for runs of the algorithms on random 
data using infinite precision integers in Algorithm 1*. For each 
m, n, X, there were ten runs starting with random m x n integer 
matrices with entries between -f and t. 

Algorithm 1* (infinite prec.) MLLL algorithm 
m n t 1og2 (L) mFL mPL T(sec) 1og2 (Imax) T(sec) 
5 10 1 0 .2 0... 1 0.. 1 .001... .003 10 . 34 .049... .065 
6 13 1 1 .4 0. 3 0 .3 .002... .009 14 .113 .089... .167 
7 16 1 2.6 0. 7 0 .4 .003... .022 65 . 154 .218... .304 

12 25 1 6... 12 9.. 78 5... 10 .034... .076 397 .. 635 4.48.. 5.22 
16 32 1 12 .18 32 .175 15 .22 .13... .258 768 . 1064 2.55 ...2.83 
20 40 1 18.. 25 124.. 474 23.. 37 .423... .639 1288 .. 1945 6.54.. .9.23 

5 10 16 13 .20 13 .142 5. 13 .02... .036 333 ... 386 .106... .142 
6 13 16 16 26 36.177 8. 16 .04... .073 560 . 714 .266... .332 
7 16 16 23 .31 100 .717 10 .28 .06... .16 774 . 1091 .624... .791 
8 19 16 28 ...34 208 .689 15 .25 .12... .192 1173. .1466 1.05 .2.45 

12 25 16 50.. .53 1622... .106 26.. .48 .518... .2.59 2609... .2775 3.86... .4.34 
16 32 16 70 . 74 105 ...7 106 36 ...66 2.2 . 6.71 4418 . 4706 15.4 . 17.3 
18 19 2 26 ...34 375 ... 2669 29. 51 .202... .343 108 .139 .06... .066 
18 19 4 41 .50 104 ... 5 105 40 .62 .394... .693 176 .205 .067... .076 
18 19 8 51.66 5 104 ... 107 54... 72 .585 .10.1 228 ...265 .077... .089 
18 19 16 69 ...83 105 ...9 106 56... 76 3.01 .10.9 297 ...335 .089... .102 
18 19 32 89 ...99 105 ...6 106 53... 88 7.38 .18.5 377 .404 .103... .117 

Table 2 gives results for problems where the fixed-precision version of Algo- 
rithm 1* suffices. While Algorithm 1* is faster than the MLLL algorithm in all 
cases, it performs best when m ?< n and worst when m n. This is reasonable 
since a full-rank m x n input matrix for Algorithm 1* leads to an (n - m) x n null 
space basis matrix as input to the MLLL algorithm. 

Table 3 compares the infinite-precision version of Algorithm 1* with the MLLL 
algorithm. Algorithm 1* is considerably faster in many cases, but it is slower in 
the last few rows of the table where m = n- 1 and the bound L on the entries in 
the input matrix gets large. In these cases, the large numbers in the mFL column 
indicate that the bottleneck is the need to factor gm. 

The relatively limited range of m, n and ? in Tables 2 and 3 values make it 
somewhat hard to decide how the observed running time compares to (3.4), but 
the O(nm2 PL) term appears to dominate in Table 2. In Table 3, there are some 
cases where the O(mFL) term clearly dominates. 

Since the theoretical bounds for LLL basis reduction also apply to the MLLL 
algorithm, the MLLL algorithm does Q(n4 log L) arithmetic operations on numbers 
O(n log L) bits long, but the Q(n4 log L) bound is known to be pessimistic in prac- 
tice. This gives a pessimistic bound of 0(n6 log3 L) for the overall running time, 
assuming that multiplication of two k-bit numbers takes time 0(k2) as is appro- 
priate for Gansner's arithmetic package [6]. The log2(Imax) values in Table 3 are 
roughly proportional to n log2 (L), but the MLLL run times do not grow as rapidly 
as the 0(n6 log3 L) bound. 

5. REMARKS 

The application described in Section 2 needs Algorithm 1* (or the MLLL al- 
gorithm) in order to work correctly, but it generates input bases that need little 
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further processing. The implementation of Algorithm 1* was designed for this sit- 
uation where a large sparse matrix describes the basis for the vector space that is 
to be intersected with ZE. Other types of test problems are readily generated from 
random data, but it is hard to say how well they reflect problems that might occur 
in actual applications. 

The results in Section 4 clearly show that the algorithm presented here (Algo- 
rithm 1*) is dramatically superior for problems like those encountered in the font 
application, but there are other problems where the MLLL algorithm is better. 
These problems are the ones where the input matrix contains large numbers and 
Algorithm 1* gets bogged down in the factoring step. 

It is tempting to argue that we could avoid this problem by having Algorithm 1 
proceed with p values that are not prime but have no small prime factors. The 
only way this could interfere with Step 3 is if we stumble into a number that is not 
relatively prime to p. In that case p has been factored and we can restart Step 3 
with a new p value. The problem is that Step 3 might discover that the condition on 
b1, b2, ... , bm cannot be satisfied modulo p when it could be satisfied modulo one 
of the unknown prime factors of p. The overall effect would be that the algorithm 
produces a sublattice of the desired lattice. 
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