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FAST EVALUATION OF MULTIPLE ZETA SUMS 

RICHARD E. CRANDALL 

ABSTRACT. We show that the multiple zeta sum: 

(1 2,-- d) Lw Si S2 8d'I 

nl >n2 > ... >nd 1 2 d 

for positive integers si with sl > 1, can always be written as a finite sum of 
products of rapidly convergent series. Perhaps surprisingly, one may develop 
fast summation algorithms of such efficiency that the overall complexity can be 
brought down essentially to that of one-dimensional summation. In particular, 
for any dimension d one may resolve D good digits of ( in O(D log D/ log log D) 
arithmetic operations, with the implied big-O constant depending only on the 
set {si.Sd}- 

1. INTRODUCTION 

The multiple zeta sums: 

(1.1) ~~~ (Si, 82, -, Sd)- Si 2 S 

(l.l) ~~~~~~~~nl>n2> .... @>nd 2 d 

also called Euler/Zagier sums, have attracted considerable interest in recent times 
(see Bailey et al. [3], Borwein et al. [4], Borwein et al. [7], Broadhurst et al. [9], 
Crandall and Buhler [11], Markett [13] and Zagier [14]) (note that some previous 
treatments have reversed ordering of the indices ni). The study of such sums is 
not only important to general zeta function theory, but also touches upon such 
domains as knot theory and particle physics methodology. To simplify our present 
analysis we shall concentrate on this scenario: each si is a positive integer and, to 
ensure convergence of the explicit sum, s, > 1. It should be noted, however, that 
even in absence of the integer restriction on the si, the ideas herein do lead to the 
development of convergent, albeit more intricate series. 

These multiple zeta sums have been given many attractive, exact evaluations. 
It could be said that the research situation is quite rich, in the following sense. 
Whereas Euler's original evaluations, of which 

((4, 1) = 2((5) - ((2)((3) 

is exemplary, along with more modern evaluations such as: 

((4,5,1)= 2(7,3) + ((5)2 - 17(3)((7) + ((2)((5,3) + 10O(2)((3)((5) 0 0) 20 
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47r24 
((6,6,6 6) =432684797065192546875' 

are now proved (Markett [13], Borwein and Girgensohn [8], Borwein et al. [7]), 
suspected evaluations such as Zagier's conjectured: 

((31 1, 3,11 ...,) 3, 1) = n+2! 
(4n + 2)! 

(where n denotes the the number of (3,1) pairs) remain elusive.* Even the two- 
dimensional sums ((6, 2) and ((3, 5) are unknown, in the sense that neither has 
been cast in a finite form involving "one-dimensional" sums such as Riemann zeta 
values. There is a growing literature on which sums are evaluable, which can be 
reduced to lower-dimensional forms, and which appear dimensionally irreducible 
and therefore "fundamental." For example, in Borwein and Girgensohn [8] it is 
argued that 3-dimensional sums can always be reduced (to lower-dimensional forms) 
if S1 + 82 + 83 is either even or less than 10. On the other hand, ((5, 3, 3) has never 
been expressed as a combination of, say, two-dimensional ( sums, "one-dimensional" 
Riemann sums, and fundamental constants. 

To verify conjectured evaluations, indeed to generate reasonable conjectures, it 
has been important to be able to evaluate ( numerically, to high precision (say 
> 100 decimal digits). The requirement of high precision arises for various reasons, 
such as the desire to avoid "accidental" relations and to guard against mishap 
when some integral coefficients of exact relations are large. The original approach 
of Bailey et al. [3] involved an Euler-Maclaurin scheme for estimating double sums. 
This approach has been effectively generalized by Broadhurst, as described in [7], 
to higher dimensions. A primary-difficulty with an Euler-Maclaurin approach is 
that explicitly convergent sums do not obtain. In the special case of double sums, 
Crandall and Buhler [11] developed convergent series for ((r, s), where r, s need 
not even be integers. In this way, both ((6,2) and ((3,5) are now numerically 
resolved, each to more than 1200-digit precision (Bailey [1]). Given the present 
complexity claim, it should be possible to attain such extreme precision for sums 
of much higher dimension. 

For the d-dimensional, unified approach we consider herein, the resulting conver- 
gent series will involve a single free parameter, A, restricted to the interval [0, 27r). 
One advantage of such free-parameter expansions is that one may gain substantial 
confidence in the numerical scheme by repeating the convergent sum for different 
A choices and verifying that the numerical result is, to some satisfactory precision, 
invariant. 

2. INTEGRAL REPRESENTATION 

Our series development starts with the observation that ( admits of certain inte- 
gral representations (see Crandall [10], Borwein et al. [7], and Zagier [14]). Denote 
the argument vector s {S= , 82, ..., Sd}, and consider a particular d-dimensional 
integral representation: 

00 00d dx 

(2.1) ( S j ... S7i-lJe-i Eh =i Mh 

MhEZ+ Jo iF() 

*Note added in proof: D. Broadhurst has recently announced a proof of this conjecture of 
Zagier. 
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in which indices i, h are understood each to run through values 1, ..., d. This repre- 
sentation is proved quickly by performing the d individual (and separated) integrals, 
then re-indexing, with the n2 in (1.1) becoming appropriate partial sums of the mh. 

An immediate transformation of variables yields a more practical representation. 
Set 

k 

(2.2) Uk = Exi 
i=l 

for k = 0,1, ..., d, and interpret uo = 0 for convenience in what follows. Now the 
Jacobian of the x -- u7 transformation is conveniently the identity, and we have 

(2.3) (8() S J>U > ( i-i- l)Si-l e-Uimi dui 
mhCZ+ d>Ud-> ...>Uo F(st) 

where, again, each of i,h runs through 1,...,d. The integrand is now somewhat 
more palatable, but at the expense of a more complicated domain of integration. 
This domain can be partitioned in the following way. Choose a positive parameter 
A, and consider subdomains of integration defined for each of k = 0, 1, .., d as: 

Ud > ... > Uk+l > A> Uk > ... > UO, 

where for k = d the inequality chain to the left of the A is interpreted as empty. It is 
evident that the domain of integration in (2.3) can be taken to be the disjoint union 
of these (d + 1) subdomains. Now for the subdomain indexed by a k < d we can 
expand the term (Uk+1 -uk)Sk+1-l in a finite binomial series, and in this way obtain 
a finite set of once-separated integrals. (This expansion step is, in fact, the only 
juncture at which the integer restriction on Sk is critical.) For the "lower" part of 
an integral, that is over variables ul, ..., Uk, we sum formally over ml, ..., i. In this 
way we obtain a kind of "factored" representation into lower and upper integrals: 

(sl = Y(s-; 0; A) + Z(s-; A) 

(2.4) ~~d-1 S+- 
(2.4) + ,_, ! Y(81, ..., 8k; q; A)Z(Sk+l - q, Sk+2) ..., 8d; A)) 

klq=O 

where the "lower" integrals Y are defined: 

(2.5) Y(sl, .-, Sk; q; A) J> UUi...>ui> ?k H (ut 
- 

1Ui' 

while the "upper" integrals are 

(2.6) Z(ri, ..., rj; A) =ju Z UJi->i r>i-le- uimi d 
MhEZ+ Uj>Uj-1> ->U1>,\ i=l F(i 

Note that in (2.4), when k = d - 1 the argument vector for Z is interpreted to be 
the singleton term 8d- q; i.e., the subsequence 8k+2, ... Sd is empty. Note also that 
evaluation of the Riemann ( involves only the first two terms, a Y and a Z, in (2.4). 

The relation (2.4) shows that, for any positive A, every multiple zeta can be 
written as a finite sum of products of Y, Z functions. In the next section we show 
that, by way of proper constraint on the parameter A, each of the necessary Y and 
Z may be cast in efficient convergent series form, whence a general multiple zeta 
can be calculated efficiently from (2.4). 
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3. OPERATOR CALCULUS AND BERNOULLI NUMBERS 

For all ri,..., rj positive integers we can rewrite the general Z integral (2.6) by 
replacing terms (ui - ui1)ri-1 with respective operators 

(&ami + amil)rilv 

then moving these operators out of the integral. We then re-index the mi indices 
according to 

d 

ni = EMh) 
h=i 

whence the transformed derivative operators a,, collapse conveniently to yield 

(3.1) Z(rl,...,rj;A) - ri) E (njr1) l r2 1 ] 

where symbolic differentiation is understood to be performed prior to the summa- 
tion. It is evident that Z looks very much like the original multiple zeta definition. 
Indeed Z coincides with ( as A -- 0, a fact also formally evident from (2.4) because 
said A limit pinches all Y integrals to zero. 

Now (3.1) is a patently convergent series, more efficient for larger A. It remains 
to develop a converging series for the lower Y integrals. For A < 27r we can expand 
each term (eui - 1)-i within the definition (2.5), in standard Bernoulli series. Such 
expansion leads to 

Y(sl, *-, Sk; q; A) = I-likUi k) d,i kE Iin IFf(u (S1) i)f~ 
ni>Op=l P Uk>Uk-1>...>UO i=l 

This time we avoid expanding the polynomials, using instead a change of variables 
ui = viui+,, with vo := 0 and, for convenience, u Uk, to yield 

Y(sl8, --, Sk; q; A) 
k A k k dvi 

where we have introduced partial sum nomenclature: 

Np= n, + ...+np, Sp = sl+...+ sp 
with N:= Nk, S := Sk. Each v-integral is a beta function expressible in terms of 
gamma functions, so we immediately obtain the final result, an explicit series for 
Y, 

Y(s8, ..S, Sk; q; A) 

(3.2) 1 , N+S+q-k k Bn k 
F(Nm + Sm -m) 

F(sO ni>O N+S+q-k P=l np! m=1 F(Nm + Sm+l-m) ' 

where the indices n1, ..., nk are restricted to non-negative integers. It turns out that 
the sum (3.2) for Y always converges absolutely when A < 27r. 

The relations (2.4), (3.1), (3.2) comprise a complete prescription for computation 
of multiple zeta values. It turns out that considerable reduction in the apparent 
complexity of the Y, Z sums is possible, as we see in the next section. 
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4. SUMMATION COLLAPSE AND BAILEY ACCELERATION 

On the face of it, the Z sum (3.1) seems to require, for first index n1 summed 
over the range j < n1 < L1, at least O(L}3) operations; for after all, the sum is over 
a j-dimensional lattice region. The same basic dimension-dependent complexity 
would also seem to obtain for the Y sum, (3.2). However, both of these preliminary 
estimates turn out to be overwhelmingly pessimistic, as we presently explain. 

It turns out that the Z sum can be thought of, in a computational sense to be 
made precise later, as one-dimensional. Speaking heuristically, whenever the first 
index ni in (3.1) increments, not much new information is contributed from the 
other indices. Specifically, the sum, which might originally be implemented as a j- 
nested loop, can be collapsed into just one loop. Here is a pseudocode construction 
for the collapsed Z sum. Denote the operator part of (3.1) by 

f (n, r, A) = n)r 

Then the summation collapse algorithm starts with initialization of (j + 1) variables 
and proceeds with a singly-nested loop, like so: 

q := t, : t2 := ... := tj := 0; 
for n1 := j to L, 

q q + 1; 
ti L i + 1/qrj; 
tj_1 := t>_i + t3/(q + 1)ra-1; 

tj-2 :=tj_2 + tjpl/(q + 2)r -2; 

t2 :=t2 + t3/(q + j-2)r2; 

tLi t + f (nl, rl, A) * t2; 
endfor 
return t1/F(ri); 

The final returned value, which approximates Z to order e-L1, is obtained thus 
in asymptotically jL1 loop steps, or 0(L1) arithmetic operations. It is in this 
precise sense that we may think of the Z sum's complexity as essentially that of a 
one-dimensional sum. 

In a practical implementation it is clearly advantageous to pre-compute all 
needed values of f (n, r, A) in an initialization phase. To this end it should be pointed 
out that the multiterm expression resulting from the differentiation indicated in the 
definition of f (n, r, A) can be generated with a simple recursion. Also, for a fixed r 
and A, the expression for f satisfies a recursion in n, so that repeated evaluations 
of the exponential function are not required. Thus an economical procedure to 
compute the required f values can be stated as follows. Let rm denote largest rk 
that will be encountered anywhere in the full computation, i.e. the maximum of 
the original s vector. Then perform the following algorithm: 

to := e-A; t2 := 1; 
for k 1 to L1 

tl:=kA; t2 :=to *t2; 

for j 1 to rm 
t3 :=1; t4 := 1; 
for i := 2 to j 

t4 := t4 * (j-i + 1); t3 :tl * t3 + t4; 
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endfor 
f(k, j, A) := t2 * t3 * k-i; 

endfor 
endfor 
The collapse of Z sums leaves only the problematic Y sums which do not, unfor- 

tunately, enjoy an analogous collapse. But all is not lost, thanks to an acceleration 
first observed by Bailey [1]. He noticed that certain two-dimensional series imple- 
mentations in [11] could benefit from convolution algorithms. Let us look, as a 
canonical example, at the problem of evaluating ((6,2). In (2.4), and given knowl- 
edge of Z sum collapse, there remains only one problematic two-dimensional sum, 
which can be written in the following suggestive style: 

I(6) N2+6 BN,BN2-N1 F.) 
(,; =(6) E 

_> 
N2+ 6 

E<N1 N1!(N2- Nl)! (N1 + 5)(N1 + 6) 

We expect to perform the outer summation over a constrained range: 0 < N2 < L2, 
to obtain an error of order ( A)L2. We observe that the inner sum in (4.1) is 
in fact the N2-th element of an acyclic convolution. The convolution procedure 
is: first, find the acyclic convolution (equivalent to straightforward polynomial 
multiplication) of the two sequences (of coefficients): 

{n!1(n + 5) (n + 6); } Bn 

x"2 := {' !; n 0, 1 , 2, .., L2 } 

Then the Y value in (4.1) can be obtained simply from the elements of the acyclic 
convolution of x1, x2 (which elements are also the coefficients of the relevant product 
polynomial). 

In a practical implementation it is important to efficiently compute the Bernoulli 
terms Bo/0! through BL2/L2!, even if this be done only once in a global initialization 
phase. Fortunately, it turns out that these Bernoulli terms can be obtained in a 
"parallel" fashion via a method pioneered by J. P. Buhler; namely, Newton method 
inversion applied to the formal generating function 

00 

k=O 

One uses the series expansion of (ez - 1) through a desired degree L2 in z, then 
inverts the resulting polynomial, the procedure requiring O(L2 log L2) arithmetic 
operations ([10], [2]). Since the convolution inherent in (4.1) can be performed, via 
FFT methods, say, also in O(L2 log L2) arithmetic operations, it follows from all the 
considerations above on Y, Z that ((6, 2) can be obtained to D good decimal digits 
in O(L1) + O(L2 log L2) arithmetic operations, where each of the outer summation 
limits L1, L2 has been chosen such that the respective sums are both good to the 
D digits. 

Happily, for dimensions d > 2, the Y sum is still susceptible to a convolution 
approach. Write the double product in (3.2) abstractly, as 

BN1 BN2-N1 BNk-Nk-1 9 (N1) 9 (Nk) 
N1! N-Nl!..Nk-N 1! 
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Now observe that the sum over N1 in the range 0 < N1 < N2, which sum involving 
only the first two Bernoulli terms and the g, term, is but a certain convolution 
evaluated at the N2-th element, as before. But this means that the sum over 
O < N2 < N3 can then be performed via convolution of one sequence indexed by 
N2 and involving 92, with another sequence indexed by N3- N2, and so on. 

A pseudocode realization of the entire convolution procedure can be formulated 
as follows. Choose the outer summation limit L2 to be one less than a power of 2 (a 
convenience, so that convolution lengths are themselves powers of 2). Now define 
sequences, each of length L2 + 1, as follows: 

B := { B;n =0, 1, 2, ..., L21) 

and for m = 1, ..., k-1, 

Gm F{r(n 
+ Sm -rn)=0))2)... L2} 

FP(n +Sm?i -in)' 

Define further, for two sequences X, Y each of length L, their "half-cyclic" con- 
volution as the first L elements of the full acyclic convolution, and denote this 
half-cyclic by X XH Y. This half-cyclic can be obtained via these steps: zero-pad 
each of X, Y to length twice L, perform the cyclic convolution of the padded se- 
quences (via standard FFT methods, say), and finally, take the first L elements of 
the result. Further, we denote by X * Y the dyadic (elementwise) product sequence 
of any two equal-length sequences X, Y. Now initlalize a sequence X and carry out 
a loop, as follows: 

X := B; 
for m := 1 to k - 1 

X := X * Gm; 
X := X XH B; 

endfor 
Now the Y value from the defining series (3.2) is obtained simply as a weighted 
sum over elements X[N] of the final half-cyclic, as 

I L2 AN?S?q-k 

Y 
(si) NE N+S+q-kX[N] 

The convolution procedure admits of interesting potential enhancements. First, 
if FFT method is used, the transform of the (zero-padded) B sequence may be done 
just once, and used repeatedly for the half-cyclic within the loop. Second, since 
every odd-indexed Bernoulli number vanishes except B1 =-1/2, the B sequence 
is sparse. One may, in principle, algebraically subtract out all dependence on B1 
from (3.2), whence convolutions lengths may be effectively halved. Third, half- 
cyclic convolution can be done via cyclic and negacyclic convolution each of half 
length (sans zero-padding), and even done in a special, recursive fashion for lengths 
not a power of 2 [10]. Perhaps the most intriguing possible enhancement is to 
somehow invoke the negacyclic option to effect the whole pseudocode loop via one 
long dyadic product of various initial transforms. In other words, there may exist 
some means to generate "(k - 1)-fold half-cyclic convolutions" in such a maximally 
efficient manner. 
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We have thus realized the considerable advantage of the Bailey acceleration: if 
proper precision is maintained for each convolution, we see that the total operation 
cost is still that of the (k = 1)-dimensional case; namely O(L2 log L2). 

5. COMPLEXITY 

It follows from all the above complexity estimates that, if the respective outer 
summation limits L1, L2 be equal, then the multiple zeta with pure-integer argu- 
ment vector s can be resolved to D digits in 0(D log D) arithmetic operations. But 
we can optimize a little further. Since the complexity for the Z sum is slightly 
lower (i.e. linear in L1), the optimal parameter A can be slightly lowered (with 
L , -L2 log D) to yield an overall complexity of 0(D log D/ log log D). The prob- 
lem of what should be the overall big-0 constant is interesting. Perhaps it is reason- 
able to conjecture that the constant can be taken to be some simple function only of 
the dimension d and the "weight" Ed si. (In this regard, note Bailey's-empirical 
discovery of quadratic growth (in dimension d) of this constant for a particular class 
of zetas, as we discuss in the next section.) Incidentally, many existing schemes for 
evaluation of, say, an arbitrary Riemann ((n), n C Z, require 0(D log D) operations 
or slightly better than this [10]; although there are elegant, Apery-like formulae in- 
volving O(D) operations and small implied big-0 constants [6]; and a complicated 
but asymptotically efficient scheme involving only 0(M(D) log2 D) bit operations 
[12], where M(D) is the bit-complexity of multipication of two D-digit numbers. It 
may also be possible, for our present multiple zeta algorithms or the cited Riemann 
zeta ones, to effect a hypergeometric acceleration, as in [5] for further reduction 
in operation complexity, to say O(Da) for some a < 1. In any event it is clear 
that the expedient of summation collapse combined with Bailey acceleration is ef- 
ficient indeed: our d-dimensional sums reduce, up to a big-0 constant, to our own 
(d = 1)-dimensional case. If an implementation be sufficiently adroit, the penalty 
for higher dimensions should be correspondingly light. 

6. EXPERIMENT AND PRACTICAL CONSIDERATIONS 

Even if the acceleration of section four is implemented, the computation of the 
Y function is generally more expensive than the Z function. If the acceleration 
is not employed, the disparity between these two costs is even more pronounced. 
Fortunately, these costs can be brought more into balance, with an overall savings 
in computation time, by adjusting the value of A. Smaller values of A tend to lower 
the cost of the Y function, but increase the cost of the Z function. To be precise, 
the two limits L1 (the limit for the Z function) and L2 (the limit for the Y function) 
are given by 

- log e log e 

A log(A/(2w))' 

where 6 is the desired accuracy of the result. Using these formulae, an optimal 
value of A can be determined. 

The author employed this asymmetrical technique to evaluate the four- 
dimensional sum ((3,1,3,1), using A = 1/20, L1 = 12000 and L2 = 120, so that 
the collapsed loop for Z is about as fast as the straightforward (i.e. without ac- 
celeration) evaluation of Y using (3.2). The numerical result agrees with Zagier's 
conjectured ((3, 1, 3,1) = 27r8/10! to more than 250 decimal digits. 
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At the time of this writing, the present author has been informed by David H. 
Bailey that the latter has succeeded implementing the complete procedure described 
herein, including the convolution acceleration for the Y function. Bailey employed 
A = 5/32 = 0.15625, L1 = 12000 and L2 512, which yields more than 800 decimal 
digit accuracy in the result. The resulting program verified ((3,1,3J1) - 27r8/10!, 
to 800 decimal place accuracy, in only four minutes run time on an IBM RS6000/590 
workstation. 

Bailey has further verified the Zagier conjecture, as it is stated in our inroduc- 
tion, for 1 < n < 10, again to 800 decimal place accuracy for each number n of 
argument pairs {3, 1}. The entire run over the stated range of n required just 4.3 
hours on an IBM RS6000/590 workstation. Bailey found that the CPU time re- 
quired for each instance n (not including global initialization, such as computing 
the Bernoulli coefficients used for all dimensions), accurately satisfies an empirical 
quadratic formula in n. These results suggest that evaluations of multiple zetas 
of very high dimensions (perhaps dimensions into the hundreds) can be feasibly 
computed using the techniques described herein. 

There are many useful, sharp tests of any numerical algorithm for mutiple zetas. 
The compendium [7] contains many fascinating exact evaluations, as well as various 
well-motivated conjectures. One way to test higher-dimensional implementations 
is to exploit the complete reducibility of any multiple zeta of the form ((s, s, ..., s); 
i.e. with all argument components equal. Denote such a ( having exactly N 
appearances of s by (({S}N). Then, via a combinatorical argument, one may 
establish the recursion 

1 N 

C({s}Nf) = N (-l)3 1WSX(fSJN-j), 

j=1 

where we also define the empty case ((X) := 1, revealing immediately that any 
(({S}N) can always be reduced to "one-dimensional" (Riemann zeta) sums. The 
exact evaluation of ((6,6,6,6) exhibited in the Introduction may be effected in this 
way. Another rigorous test for any implementation is the sum rule [7]: 

E ( (n 1, .. . nd )= ((N). 
n3>,5 ; nj=N 

Finally, we address briefly the scenario in which at least one of the argument 
components is not an integer. It turns out that the Z integral defined by (2.6) can 
always be cast as a sum of the type (3.1), except that for r1 non-integral we use 
the correspondence 

(_0nl)e--n, F (ri, At/l) 
ni n 

where r here is the incomplete gamma function. The Y sum (3.2) is, as it stands, 
a correct representation of the defining form (2.5) for any set of real Sl, -,Sk 

as long as the sum converges. Therefore, the only thing preventing a complete 
series development for arbitrary real argument components is that the factored 
representation (2.4) involves explicit summation indices Sk+1 - 1which must be 
integers. Thus more work must be put into the expansion of the integrand of (2.3) 
in order to handle arbitrary real argument vector components. However, as s, in 
particular does not appear as a summation index, we can certainly evaluate, via 



1172 RICHARD E. CRANDALL 

the tools already in hand, such a priori poorly convergent entities as 

= 4.68181441155622703569221027933719959407392140996102081308586936... 

((3 1 1) 2') 
- 9.124484559118879556428450796505756958335362902190857985302503..., 

3)1,1,1) 

= 18.11470015628181060307338708154110242297626623122066064185.... 

each obtained, via the aforementioned asymmetrical series approach with L, 
2L2,20L2, and 50L2 respectively, in a few minutes on a typical workstation. 
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