
MATHEMATICS OF COMPUTATION 
Volume 67, Number 223, July 1998, Pages 1173-1178 
S 0025-5718(98)00986-7 

FINDING FINITE B2-SEQUENCES FASTER 

BERNT LINDSTROM 

ABSTRACT. A B2-sequence is a sequence ai < a2 < ... < a.r of positive 
integers such that the sums ai + aj, 1 < i < j < r, are different. When q 
is a power of a prime and 0 is a primitive element in GF(q2) then there are 
B2-sequences A(q, 0) of size q with aq < q2, which were discovered by R. C. 
Bose and S. Chowla. 

In Theorem 2.1 I will give a faster alternative to the definition. In Theorem 
2.2 I will prove that multiplying a sequence A(q, 0) by integers relatively prime 
to the modulus is equivalent to varying 0. Theorem 3.1 is mny main result. It 
contains a fast method to find primitive quadratic polynomials over GF(p) 
when p is an odd prime. For fields of characteristic 2 there is a similar, but 
different, criterion, which I will consider in "Primitive quadratics reflected in 
B2-sequences", to appear in Portugaliae Mathematica (1999). 

1. INTRODUCTION 

A sequence of positive integers a1 < a2 < ... < a, is called a B2-sequence (or 
Sidon sequence) if the sums ai + aj, 1 < i < j < r, are different. Erdos and Turan 
proved in [4] that ar < n implies that r < n1/2 + 0(nr/4). This was improved by 
the author in [5] to r < n 1/2 + n l/4 + 1. Erdos asked in [3] if r < n'/2 + C is true 
for a constant C. 

B2-sequences with r > n1/2 are known to exist by a theorem of Bose and Chowla 
[1]. Let q be a power of a prime and 0 primitive in GF(q2); then 

(1.1) A(q,0) = {a: 1 < a < q2, Oa - 0 E GF(q)} 

will give a B2-sequence of size q. These Bose-Chowla B2-sequences have the stronger 
property that the sums ai +aj, 1 < i < j < q, are different modulo q2 - 1. This has 
important consequences for the problem of Erdos, which Zhang noticed and used 
in [7]. 

By Lemma 3.3 in [7], if {ai}r is a B2-sequence (mod m), then {ai + b}l will also 

be a B2-sequence (mod Tn) for any integer b. Assume that a1 < a2 < < a, and 

define ar+1 = a1 + m. Determine the largest interval (ai, ai+i) for 1 < i < r. Let 

b = m + 1 - ai+i. Then the largest number in the new sequence is, in general, 

smaller. 

Another idea of Zhang was to generate a large number of B2-sequences for 

each q by varying the primitive element 0 E GF(q2). There are p(q2 _ 1) prim- 

itive elements 0, where p is Euler's function. This number can be reduced to 
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-(q2- 1)/4 due to symmetries of the B2-sequences. Then he determines one with 
largest possible interval giving a smallest possible upper bound by the previous idea. 
It is laborious to check each time that 0 is primitive. But it is only necessary to do 
this for one A(q, 0). The other sequences can be found if we multiply the sequence 
by integers which are relatively prime to q2 - 1 and reduce modulo q2 - 1. This is 
contained in Theorem 2.2. In Theorem 2.1 I prove that A(q, 0) can be determined 
q times faster than suggested by (1.1). 

Zhang considered only the case when q = p is an odd prime. To check that 0 is 
primitive in GF(p2) he used the following necessary and sufficient conditions: (i) 
OP+1 is primitive in GF(p); (ii) 0, 02,... ,0p ? GF(p) (Lemma 4.3 in [7]). 

In Theorem 3.1 I give a new criterion for 0 to be primitive in GF(p2). If 0 
satisfies the quadratic equation 02 = uO - v with u, v E GF(p) my criterion poses 
conditions on u2/v and v. 

2. FINDING A(q, 0) FASTER 

In this section I will assume that q is a power of a prime. The following Lemma 
2.2 generalizes Lemma 4.3 in [7]. 

Lemma 2.1. Let 0 be a root of an irreducible quadratic X2 - uX + v with u, 
v E GF(q). Then we have 

(2.1) tv~~~~~q + t? = U) 0q+1 = V. 

Proof. There are two roots 0 and 0q. The relations (2.1) follow since u is the sum 
and v is the product of the roots of the quadratic. LI 

Lemma 2.2. Let 0 E GF(q2) and write 0q+1 = v. Then 0 is a primitive element 
if and only if 

(i) O' ? GF(q) for 1 < i < q; and 
(ii) order(v) = q - 1. 

Proof. Assume that 0 is primitive in GF(q2). Then order(0) = q2 - 1. If O' E GF(q) 
for some i, 1 < i < q, then 0i(q-1) = 1 gives a contradiction. Therefore (i) 
holds. If order(v) = n < q - 1, then 0(q+l)n = 1 gives another contradiction since 
(q + 1)n < q2 - 1. Therefore (ii) holds. 

Conversely, assume that (i) and (ii) are satisfied. Note that v E GF(q) since 

Vq- =q-1 = 1. Let order(0) = n = (q + 1)k + r, 0 < r < q. Then 0i = 1 implies 
that or = v-k E GF(q) and r = 0 follows by (i). Then vk = 1 and k = q -1 follows 
by (ii). Hence n = q2 - 1. LI 

Let 0 be primitive in GF(q2). Define ui and vi E GF(q) by 

(2.2) Oi = ui0 - vi. 

We have ui =$ 0 for 1 < i < q by Lemma 2.2(i). Since v is primitive in GF(q) by 

(ii), there are integers ti such that 

(2.3) u- = Vti = 0(q+1)tj 1 < i < q. 

If we divide (2.2) by ui, then we find 

(2.4) 0i-(q+1)ti - 0 =-Viui71 E GF(q) 

and since, by definition 

(2.5) A(q,0) ={a: 1 < a < q2,0a 0 E GF(q)}, 
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it follows that 

(2.6) i- (q + 1)tj E A(q, 0), 1 < i < q. 

We have 

Theorem 2.1. Let 0 be a primitive element in GF(q2) and define the integers ti 
for 1 < i < q by (2.3) and A(q, 0) by (2.5). Then we have 

(2.7) A(q, 0) = {i - (q + 1)tj (mod q2 _ 1): 1 < i < q}. 

Proof. With regard to (2.6) it remains to prove that the elements are distinct 
modulo q2 - 1. If i-(q + 1)ti j-(q + 1)tj (mod q2 - 1), then i-j (mod q + 1) 
and we have i = j since 1< i, j < q. LI 

Example 2.1. Let q = 7 and 02 = 0 - 3 (cf. Example 3.1 in [7]). We find u1 = 

U2 =1, U3 = 5, u4 = 2, U5 = 1, U6 = 2, u7 = 3 and, since v = 3, t1 = t2 = 0, 
t3= 5, t4 = 2, t5 = 0, t6 = 2, t7 = 3, which gives A(7,0) = {1, 2, 5, 11, 31, 36, 38} 
after sorting. LI 

If c is relatively prime to q2 - 1, then MC(x) = cx defines a one-one mapping of 
the integers modulo q2 - 1. For any integer t we define another one-one mapping 
(modq2 -1) by Tt(x) = x- (q + 1)t. 

Theorem 2.2. Let 0 and 01 be primitive elements in GF(q2) and 0 = 01 = ucol- 

vcUC I vc E GF(q)), Uc = 0(q+1)t. Then A(q, 01) = TtMcA(q, 0). 

Proof. Let a E A(q, 0). Then we have Oa- 0 E GF(q) and oca -ucO1 C GF(q). If 
we divide this by uc (7& 0), we find that ca - (q +4)t C A(q, 01) and TtMcA(q, 0) = 

A(q, 01) follows since both sets have q elements. El 

3. A CRITERION FOR PRIMITIVE QUADRATICS 

I will prove a new criterion for a quadratic X2- uX + v over GF(p), p an odd 
prime, to be primitive, i.e., with a root 0, which is a primitive element in GF(p2). 
I am looking for a criterion which is suitable for computations and faster than the 
one in Lemma 2.2. There is a criterion by Bose, Chowla and Rao, Theorem 3A 
in [2], which depends on cyclotomic polynomials. I do not think it is what I am 
looking for, but I have use of the integral order of a cE GF(p2). It is the least 
positive number n for which a' E GF(p). I found this notion in [2]. 

I will need polynomials Qm(X) of degree m > 0 defined recursively by 

(3.1) Q0(X) = 1, Q1(X) = X, 

(3.2) Qm+i(X) = XQm(X)-Qm-i(X) when m> 1. 

Lemma 3.1. Let a be a root of the irreducible quadratic X2 - uX + v over GF(p) 
with u, v -7 0. Write u2/V = w and let n = 2(m + 1). Then (a 2/v)n = 1 if and 
only if Qm(w - 2) = 0. 

Proof. We have (a2 + V)2 - u2a2. Hence a4 + V2 = (U2- 2v)a2 and 

(3.3) (a 2/V) + (V/a2) = w - 2. 

Write a 2/v = 3 for brevity. Observe that 3 -7 +1. Hence /32 - 1 7& 0. 
Assume that /3n = 1, n =2(m + 1). If we divide /3n_1 =0by /32 _ 1 = 0 we 

find 32m + 32m-2 + + 1 =. Divide this by O3m. Now 

(3.4) 3m + 3m-2 +... + 3m =0. 
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The left-hand side of (3.4) can be written as a polynomial in 3 + p1. In fact, it is 
Qm (f + p3- 1) For obviously Q1 (X) = X, Q2 (X) = X2 - 2 and (3.2) follows since 
(o + 0- )Qm(o + 151) = (Qm+l + Qm-i)(3 + 3-1). Since ? + 3-1 = w-2 by 
(3.3), we have Qm (w - 2) = 0. 

Conversely, assume that Qm(w - 2) = 0. Then, working backward, we find that 
n =1. 0 

Lemma 3.2. If atm E GF(p) and nZ is the integral order of a, then nlm. 

Proof. Write m = kn + r, 0 < r < n. Then aer = am(aCn)-k E GF(p) and r = 0 
follows by the definition of n. O 

Theorem 3.1. Consider a quadratic X2 - uX + v with u, v E GF(p), v -7 0 and 
p an odd prime. Write u2/V = w. The quadratic is primitive if and only if the 
following conditions are satisfied ((iv) or (iv')) 

(i) v is primitive (modp), 
(ii) w 0 0 is a quadratic nonresidue (modp), 

(iii) w - 4 is a quadratic residue (mod p), 
(iv) Qm(w - 2) 0 0 (modp) when m < [(p + 1)/6] - 1, 

(iv') for all odd primes q dividing p + 1 Qm(q) (w- 2) 0 0 (modp), where m(q) 
((p + 1)/2q) - 1. 

Proof. When we prove the necessity of one condition we may assume that the 
preceding ones are satisfied. 

Condition (i) is necessary by Lemma 2.2(ii). Assume that (i) holds. Then v is 
nonsquare in GF(p). It follows that w is nonsquare in GF(p) (u = 0 is impossible). 
This gives (ii). A primitive quadfatic is irreducible. Then the discriminant u2 - 4v 
must be nonsquare in GF(p). If we divide by nonsquare v we will get a square by 
the rules. This is (iii). 

Assume that the conditions (i)-(iii) are satisfied. The quadratic is then irre- 
ducible and we have v = OP+1 by Lemma 2.1, where 0 is a root. 

Assume that Qm(w - 2) _ 0 (modp) for some m < [(p + 1)/6] - 1. By Lemma 
3.1 we have 1 = (V/02)n = 0(p-l)n with n < (p + 1)/3. This is impossible when 0 
is a primitive element in GF(p2). This gives (iv) and (iv'). 

Assume that (i)-(iii) and (iv') are satisfied. Let n be the integral order of 0. 
Since OP+1 - v E GF(p), p + 1 = kn follows by Lemma 3.2. 

Note that v is nonsquare in GF(p) and v = OP+1 = (on)k, on E GF(p). It follows 
that k is an odd integer. We claim that k = 1. 

Assume that k > 1. Let q be an odd prime divisor of k. Then n = (p+1)/q will be 
a multiple of n = (p+ 1)/k. Observe that (V/02)n = On(p-l) = 1 since on E GF(p). 
Then we have (02/V), = 1. By Lemma 3.1 it follows that Qm(q)(w-2) _ 0 (modp), 
a contradiction to (iv'). Therefore k = 1 and n = p + 1. 

We have proved that the integral order of 0 is p+ 1. I will prove that this implies 
that 0 is primitive. If N = order(0), then ON = 1 and we have n I N by Lemma 
3.2, i.e., p + 1 1 N. Write N = (p + 1)a and we find that 1 = ON = Va. Since v is 
primitive in GF(p), it follows that p - 1 a. Hence N = p2 - 1, which was to be 
proved. E 

In calculations using a computer one could use (iv) and (3.1), (3.2). If the 
calculations are done by hand, then (iv') is better. In both cases start with a list 
Li of all quadratic nonresidues (mod p). The length of this list is (p - 1)/2. Delete 
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from this list all integers w for which w - 4 (mod p) belongs to the list. Then we 
obtain a list L2, which is about half as long (the length of L2 is (p + 1)/4 when 
-1 is a quadratic nonresidue (modp) and (p - 1)/4 when -1 is a quadratic residue 
(modp)). Then go to (iv) or (iv') and check the numbers in L2. Suppose we have 
found a number w, which satisfies all four conditions. Then find a primitive element 
(modp) from a table and determine u such that u2 = vw (modp). Then we have 
the coefficients u and v of a primitive polynomial. If we apply (iv) or (iv') to all 
numbers on the list L2 we may determine all primitive quadratic polynomials. 

It is easy to prove by induction over m > 1 that 

[m/21] 

Qm(X) = Ej (1)i(m )Xm-2i 

Example 3.1. Let p = 29. The odd primes dividing p+ 1 are 3 and 5. We find that 
m(3) = 4 and m(5) = 2. We have Q2(X) = x2-1, Q4(X) = X4-3X2+1. The list 
of quadratic nonresidues is Li = {2,3,8,10,11,12,14,15,17,18,19,21,26,27}. We 
delete all w for which w-4 belongs to the list and find L2 = {3, 8,10,11,17,26, 27}. 
From L2 we delete "3" since 3 - 2 = 1 is a root of Q2 and we delete "8" and "26" 
because 6 and 24 are roots of Q4 (mod29). There remains: 10, 11, 17, 27, which 
satisfy conditions (ii), (iii) and (iv'). There are yp(28) = 12 primitive elements v 
in GF(29). Hence there are 4 12. 2 = 96 primitive polynomials (4 numbers w, 
12 numbers v, and 2 numbers u for each combination of v and w). This gives 192 
primitive elements in GF(292) in agreement with yp(292 - 1) = 192. If we choose 
w = 10 and v = 2, we find u = 7 (or -7) and X2 - 7X + 2 is a primitive polynomial 
(mod 29). CL 

Corollary. If p = 2k - 1 is a (Mersenne) prime or if p = 2q - 1 for an odd 
prime q, then the conditions (i)-(iii) are necessary and sufficient for the quadratic 
X2 uX + V to be primitive. 

Proof. In the first case (iv') is vacuously satisfied. In the second case m(q) = 0 and 
Qo = 1. 

4. A VERY FAST CONSTRUCTION 

There is a new construction of B2-sequences by I. Z. Ruzsa in [6], Theorem 4.4, 
which gives B2-sequences of the size p - 1 for each odd prime p. The computations 
are straightforward and therefore very fast. I have extended the construction by 
the introduction of a factor f, an integer in 1 < f < p -1, which is relatively prime 
to p - 1. Let g be a primitive element modp and define 

(4.1) R(p, f) = {pf i + (p -1)gi modp(p -1): 1 < i < p-1} 

The integers of R(p, f) are smaller than p(p - 1). 

Theorem 4.1. R(p, f ) is a B2-sequence modulo p(p - 1). 

Proof. Let pf (i+j) + (p- 1) (gi ?gJ) _ a (mod p(p- 1)) be the sum of two elements. 
Then we find 

(4.2) gi + gi =- -a(modp) 

and f(i+j) -a (modp- 1). Since f is relatively prime to p-1, there is an integer 
h such that fh -1 (modp- 1). It follows that i + j _ ah (modp- 1) and we have 
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by Fermat's little theorem 

(4.3) gi9j gah (modp). 

By (4.2) and (4.3) gi and g3 are the roots of X2 + aX + gah = 0 in GF(p). 
Hence, gi and gi are unique and determine {i, j} uniquely. LI 

If we replace the primitive element g by another primitive gb we will get R(p, f d), 
where bd -1 (mod p - 1). If we multiply R(p, f) by an integer c relatively prime 
to p(p - 1) we get a translate of R(p, fc). Thus we have essentially only O(p - 1) 
B2-sequences for each prime p. This "count" is much smaller than the count of the 
Bose-Chowla sequences A(p, 0). The estimates for C using R(p, f) are worse than 
those of A(p, 0). 
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