
MATHEMATICS OF COMPUTATION 
Volume 67, Number 223, July 1998, Pages 1179-1197 
S 0025-5718(98)00944-2 

SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS 
OVER FINITE FIELDS 

ERICH KALTOFEN AND VICTOR SHOUP 

ABSTRACT. New probabilistic algorithms are presented for factoring univariate 
polynomials over finite fields. The algorithms factor a polynomial of degree 
n over a finite field of constant cardinality in time 0(n1 815). Previous al- 
gorithms required time E)(nr2+(l)). The new algorithms rely on fast matrix 
multiplication techniques. More generally, to factor a polynomial of degree 
n over the finite field Fq with q elements, the algorithms use O(n1 815 logq) 
arithmetic operations in Fq. 

The new "baby step/giant step" techniques used in our algorithms also yield 
new fast practical algorithms at super-quadratic asymptotic running time, and 
subquadratic-time methods for manipulating normal bases of finite fields. 

1. INTRODUCTION 

In this paper, we present a new probabilistic approach for factoring univariate 
polynomials over finite fields. The resulting algorlthms factor a polynomial of degree 
n over a finite field Fq whose cardinality q is constant in time (n 1.815). The best 
previous algorithms required time 0(n2+o(l)). 

This running-time bound relies on fast matrix multiplication algorithms. Let w 
be an exponent of matrix multiplication; that is, w is chosen so that we can multiply 
two n x n matrices using Q(nr) arithmetic operations (we assume that 2 < w < 3). 
Using the result of Coppersmith and Winograd [11], we can take w < 2.375477. 

More generally, we prove the following: 

Theorem 1. For any 0 < 3 < 1, there exists a probabilistic algorithm for factoring 
a univariate polynomial of degree n over a finite field Fq that uses an expected 
number of 

0(n(w+l)/2+(l-0)(w-l)/2 + nl+?+o(1) log q) 

Received by the editor October 12, 1995 and, in revised form, March 29, 1996. 
1991 Mathematics Subject Classification. Primary 12E20, 13P05, 68Q40. 
Key words and phrases. Factoring, polynomials, finite fields, randomized algorithms, normal 

bases. 
This material is based on work supported in part by the National Science Foundation under 

Grant No. CCR-9319776 (first author) and by an Alexander von Humboldt Research Fellowship 
(second author). 

A major part of the work was performed while the first author was at Rensselaer Polytechnic 
Institute, Department of Computer Science, in lRoy, New York and while the second author was 
at the Universitat des Saarlandes, FB 14-Informatik, in Saarbriicken, Germany. 

A preliminary version of this paper appears in the Proc. 27th Annual ACM Symp. Theory of 
Computing, ACM Press, pp. 398-406 (1995). 

?)1998 American Mathematical Society 

1179 



1180 ERICH KALTOFEN AND VICTOR SHOUP 

arithmetic operations in Fq. In particular, choosing w < 2.375477 and minimizing 
the exponent of n, we get (n 1.815 log q) operations iTn Fq. 

Relation to Previous Work. The first random polynomial-time algorithm for 
this problem is due to Berlekamp [4]. Berlekamp's algorithm reduces the problem to 
that of finding elements in the null space of an n x n matrix over Fq. Using standard 
techniques from linear algebra, Berlekamp's algorithm can be implemented so as 
to use an expected number of Qr(nw + n1+0(1) logq) operations in Fq. Note that 
the algorithm by Rabin [31] has an inferior running time, but Rabin completes 
the mathematical justification for the expected running time of the probabilistic 
Berlekamp method. 

A very different algorithm is described by Cantor and Zassenhaus [9] (see also 
Ben-Or [3], especially for the case where the characteristic is 2). Starting with a 
square-free polynomial, that algorithm first separates the irreducible factors of dis- 
tinct degree (distinct-degree factorization), and then completely factors each of the 
resulting factors (equal-degree factorization). The Cantor/Zassenhaus algorithm 
can be implemented so as to use an expected number of 0(n2+o(l) log q) operations 
in Fq. 

Von zur Gathen and Shoup [17] developed new algorithmic techniques that es- 
sentially allow one to implement the Cantor/Zassenhaus algorithm so that it uses 
an expected number of Q(n2+o(l) + n1+?(1) logq) operations in Fq. Their tech- 
niques allow one to solve the special problem of equal-degree factorization using an 
expected number of Q(n(+?l)/2+o(l) + n1+?(1) log q) operations in Fq. 

Niederreiter [28] developed an alternate approach to factoring polynomials over 
finite fields. However, from a complexity point of view this method is closely related 
to Berlekamp's original algorithm (Fleischmann [15] Niederreiter and Gottfert [29]). 

Kaltofen and Lobo [20] adapted the linear system solver of Wiedemann [36] to 
Berlekamp's algorithm. Utilizing techniques from von zur Gathen and Shoup, they 
show how their Black Box Berlekamp algorithm can be implemented so as to use 
an expected number of 0(n2+o(l) + n1+?(1) log q) in Fq. 

Notice that at = 0, the running-time of our algorithm matches that of Ber- 
lekamp's, and at / = 1 it matches that of Cantor/Zassenhaus, so that in some sense 
it interpolates between these two algorithms. 

When log q is not too large in relation to n, then our new algorithm is asymptot- 
ically faster than previous algorithms. This is certainly clear if q is a constant and 
w < 3. Also, for w < 2.375477, as n and q tend to infinity with logq = 0(n? 454), 

our new algorithm uses 0(n2-Q(1)) operations in Fq, whereas the best previous algo- 
rithms require E(nr2+o(l)) operations. Figure 1 plots the running times of selected 
algorithms in dependence of both n and log q when a fast matrix multiplication 
algorithm is used. The method by von zur Gathen and Shoup to-date remains 
the champion when log q = Q(n 454) and simultaneously log q = 0(nl 375477). At 
larger fields the term nlogq in the Berlekamp algorithm dominates all running 
times. 

Overview. Our Theorem 1 is proved using the Cantor/Zassenhaus strategy. The 
main technical contribution here is a subquadratic distinct-degree factorization 
algorithm, which is based on a "baby step/giant step" strategy. Our Fast 
Cantor/Zassenhaus algorithm is described in ?2. 

We also show how to modify the Black Box Berlekamp algorithm, using a very 
similar baby step/giant step technique, to get a subquadratic-time algorithm as 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1181 

y 

time = O(nY) 
2.6 

y-x+1 

y=x+2 

2.4 Berlekamp 1970 

Cantor/Zassenhaus 1981 
2.2 

von zur Gathen/Shoup 1992 
2 .0 . ................... ......................... .. 

y=2 
Ours 

- 
y = 

1.~815 + 0.407 x c)- 

1 .8 - I I I I I I I I I I I I I I I I I I I I I I I I I I i | I I x 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

log(q) = O(nX) 

FIGURE 1. Running time comparisons for variable field cardinality 

well. This algorithm is described in ?3. Interestingly, our techniques for the Black 
Box Berlekamp algorithm lead to subquadratic algorithms for finding a normal 
element in a finite field and for converting to aid from normal coordinates. We 
present those algorithms in ?4. 

At the heart of our algorithms is the following problem. Given polynomials f, 
g, and h in Fq[x] of degree bounded by n, compute g(h) mod f C Fq[x]. Recently, 
this so-called modular polynomial composition problem has arisen in many contexts 
(von zur Gathen and Shoup [17], Shoup [34]). The algorithm of Brent and Kung 
[6] solves this problem using 0(n(w+1)/2) operations in Fq. 

Any improvement in the complexity of this problem would yield an improve- 
ment in the complexity of factoring. Indeed, if this problem could be solved using 
Q(nQl+O()) operations in Fq, then our Fast Cantor/Zassenhaus algorithm could be 
implemented so as to use (n 1.5+o(1) + n1+o(1) log q) operations in Fq. 

Our algorithms rely on fast multiplication of matrices, indeed of n1/2 x n 1/2 

matrices, and therefore are not particularly practical. Interestingly, however, the 
techniques themselves can be adapted so as to give a quite practical factoring 
algorithm that uses 

O(n?25 + n1+o(1) log q) 

operations in Iq and space for 0(nl15) elements in Fq, where the implied "big-O" 
constants are quite reasonable. From practical experience, we have found that 
when q is a large prime, this new algorithm allows much larger polynomials to be 
factored using a reasonable amount of space and time than was previously possible 
using other algorithms. This is briefly discussed in ?5; a more complete discussion, 
including a description of an implementation of this algorithm as well as the results 
of empirical tests, is given in Shoup [35]. 



1182 ERICH KALTOFEN AND VICTOR SHOUP 

To attain a subquadratic running time, our algorithms rely on randomization. 
Even if we restrict ourselves to the field F2, the asymptotically fastest known de- 
terministic algorithm (Shoup [33]) runs in time 0(n2+o(l)), and it remains an open 
problem to find a subquadratic deterministic algorithm. 

2. THE FAST CANTOR/ZASSENHAUS ALGORITHM 

Like the original Cantor/Zassenhaus algorithm, our algorithm splits the problem 
of factoring into three sub-problems: 

Square-free factorization: The input is a polynomial f C Fq [x] of degree n. 
The output is fl, . . . , fn E Fq [x] such that 

f -ffi*f . *---fn-'. 

Distinct-degree factorization: The input is a square-free polynomial f E 
Fq[x] of degree n. The output is f[] .. . [n] f C Fq[x] such that for 1 < d < n, 
f [d] is the product of the monic irreducible factors of f of degree d. 

Equal-degree factorization: The input is a polynomial f C Fq [x] of degree 
n and an integer d such that f is the product of distinct monic irreducible 
polynomials, each of degree d. The output is the set of irreducible factors 
of f. 

The factoring algorithm proceeds in three stages as follows. In the first stage, the 
input polynomial is fed into a square-free factorizer. In the second stage, the non- 
trivial outputs from the first sta'ge are fed into distinct-degree factorizers. In the 
last stage, the non-trivial outputs from the second stage are fed into equal-degree 
factorizers. 

The square-free factorization problem can be solved on degree n inputs using 
Q(nl+o(1) + nlogq) operations in Fq, using the algorithm of Yun (see Knuth [23]). 

The equal-degree factorization problem can be solved on degree n inputs with 
the probabilistic algorithm of von zur Gathen and Shoup [17] using an expected 
number of 

0(n(w+?)/2+o(l) + n1+o(1) log q) 

or 

0(n 1.688 + n+?o(1) log q) 

operations in Fq. 
We shall now present a family of (deterministic) algorithms for the distinct- 

degree factorization problem, parameterized by : with 0 < 3 < 1, that uses 

0(n(w+?)/2+(1-/)(w-1)/2 + nl+?+o(1) log q) 

operations in Fq. For any choice of /, this dominates the time required for square- 
free factorization and equal-degree factorization, establishing Theorem 1. 

Our distinct-degree factorization algorithm uses a "baby step/giant step" strat- 
egy that exploits the following fact. 

Lemma 1. For nonnegative integers i and j, the polynomial Xq -Xqj C Fq [x] is 
divisible by precisely those irreducible polynomials in Fq [x] whose degree divides i-j. 

Proof. Assume without loss of generality that i > j. Then q - -(xq - x)q3 
and the result follows at once from the factorization of x -x, which consists of 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1183 

all irreducible factors whose degree is a divisor of k (see Lidl and Niederreiter [24], 
Theorem 3.20). El 

We first present a high-level description of our distinct-degree factorization al- 
gorithm. The details of how each step is to be implemented are deferred until 
later. 

Algorithm D. This algorithm takes as input a square-free polynomial f C Fq[x] 
of degree nr. The output is f[],... , f["] C Fq[x] such that for 1 < d < n, f[d] is 
the product of the monic irreducible factors of f of degree d. The algorithm is 
parameterized by a constant 0, with 0 < 0 < 1. 

Step Dl (compute baby steps): Let I Fnr]. For 0 < i < 1, compute 
hi = Xq mod f C Fq[x]. 

Step D2 (compute giant steps): Let m Fn/21]. For 1 j < m, compute 

Hi = Xql3 mod f C Fq[x]. 
Step D3 (compute interval polynomials): For 1 < j < m, compute 

Ij3 fJ (Hj-hi) mod f C Fq[x]. 
,O<i<l 

Note that by Lemma 1, the polynomial Ij is divisible by those irreducible 
factors of f whose degree divides an integer k with (j - 1)1 < k < jl. 

Step D4 (compute coarse DDF): In this step, we compute polynomials 
F1,... , Fm, where Fj = f [(-)l+lf [(i-1)+2] I.. f"[ll. This is done as follows. 

for j <- 1 to m do 

{Fj -- gcd(f*,Ij); f* f*/F } 

Step D5 (compute fine DDF): In this step, we compute the output polyno- 
mials f ['], .. . , f[]. First, initialize f[],. . . , f [n] to 1. Then do the following. 

for j <- 1 to m do 
{g - Fj; 
for i <- 1 - 1 down to 0 do 

{f[lJi] ?- gcd(g, Hj - hi); g -- g/f[lJi]} 

} 
if f* 7 1 then f[deg(f)] f 

The correctness of this algorithm is clear from the comments contained therein. 
Before establishing the running-time bound in Theorem 1, we begin with the 

following slightly weaker, but simpler, result. 

Theorem 2. Algorithm D can be implemented so as to use 

0(n(w+l)/2+l1- + nl+3+o(l) log q) 

operations in Fq. In particular, choosing w < 2.375477 and minimizing the exponent 
of n, we get 0(n 1.844 log q) operations in Fq. 

The proof of Theorem 2 is based on the observation that for any positive integer 
r, if we are given h = xq mod f C Fq[x], then for any g C Fq[x], we can compute 
gq mod f as g(h) mod f C Fq[x]. To solve this so-called "modular composition" 
problem, we use the following result. 



1184 ERICH KALTOFEN AND VICTOR SHOUP 

Lemma 2. Given a polynomial f C K[x] of degree n over an arbitrary field K, 
and polynomials g, h C K[x] of degree less than n, we can compute the polynomial 
g(h) mod f cE K[x] using Q(n(w+l)/2) arithmetic operations in K. 

Proof. This is essentially Algorithm 2.1 in Brent and Kung [6]. El 

We now prove Theorem 2. 
Step DI is performed by iterating the standard repeated-squaring algorithm 1 

times. This takes 0(nl+/+o(1) log q) operations in Fq. 
Step D2 is performed by setting H1 = hl, and then iterating the algorithm 

of Lemma 2, computing each Hj as Hj-1(HI) mod f E Fq[x]. This takes 
0(n(w+1)/2+1-/) operations in Fq. 

Step D3 is performed as follows. Let R be the ring Fq[x]/(f). We first compute 
the coefficients of the polynomial H(Y) c R[Y] of degree 1, where 

H(Y) J (Y - (hi mod f)). 
O<i<l 

Then we evaluate H(Y) at the m points 

(HI mod f),... , (Hm mod f) C R. 

Using fast algorithms for multiplication of polynomials in R[Y] (Cantor and 
Kaltofen [8]) Step D3 can be implemented so as to use 0(nl+/+o(1) + n2-0+o(l)) 

operations in Fq (Aho et al. [1]). 
In Step D4, we need to c6mpute 0(m) GCD's and divisions, requiring 

0(n 2-0+o(l)) operations in Fq. 
To implement Step D5 efficiently, we first reduce each hi modulo each Fj. Re- 

ducing one hi modulo each Fj takes 0(nrl+o()) operations in Fq, using standard 
"Chinese remaindering" techniques (Aho et al. [1]). Thus, reducing all of the hi's 
modulo all of the Fj's takes just 0(n1+0+o(1)) operations in Fq. Also, we compute 

Hi mod Fj for each Fj. This takes 0(n2-3+o(I)) operations in Fq. With these 
pre-computations, the total cost of computing the GCD's and divisions in the inner 
loop amounts to 0(n1+/+o(1)) operations in F?. Thus the total cost of Step D5 is 
0(n1+/+o(1) + n2-3+o(l)) operations in Fq. 

That proves Theorem 2. 
We now show how to modify the implementation of Step D2 to obtain the slightly 

better running-time bound of Theorem 1. 

Theorem 3. Algorithm D can be implemented so as to use 

0(n(w+l)/2+(l-/)(w-l)/2 + nl+3+o(1) log q) 

operations in Fq. In particular, choosing w < 2.375477 and minimizing the exponent 
of n, we get 0(n'1815 log q) operations in Fq. 

To prove this theorem, it will suffice to show that we can compute the polynomi- 
als H1,... , Hm in Step D2 using 0(n(w+1)/2+(1-l)(w-1)/2) operations in Fq. This 
is an immediate consequence of the following two lemmas. 

Lemma 3. Given a polynomial f c [[x] of degree n over an arbitrary field K, and 
polynomials gi, ... , gk, h c IK[x] of degree less than n, where k = 0(n), we can 
compute 

g1(h) mod f, ,gk(h) mod f c K[x] 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1185 

uszng 

0(n(w+ 1)/2 k(w-12 

arithmetic operations in E. 

Proof. Setting t = v0k], we decompose each of the input polynomials gi,... ,gk 
as 

(1) ~~~~~gi= E gi,jY Yi y= xt, 
0<j<nI/t 

where the gi,j's are polynomials of degree less than t. We first compute the poly- 
nomials h) = hi mod f for 0 < i < t. Next, we compute all of the polynomi- 
als gi,j (h) mod f by computing the following product of an n x t matrix and a 
t x (k[rn/t]) matrix: 

h(?) . h(t-1) ] h [g,o | ..- g|1,rn/t1- gk,o | gk, Fn/tl-I 

Here, we use the notation to denote the column vector consisting of the coefficients 
of a polynomial. This computation is done by performing O(V/r/k) multiplications 
of t x t matrices. Finally, we compute for 1 < i < k the polynomial gi (h) mod f (x) E 
IK[x] by substituting the polynomial h(t) for y in the formula (1), and performing 
a Horner evaluation scheme. This is done by iteratively performing Fn/tl - 1 
polynomial multiplications mod f and O(n/t) polynomial additions. 

It is easily seen that the dominant cost is again the matrix multiplication step, 
which can be carried out using the stated number of operations. DH 

We remark that when k = 1, the algorithm in the above proof is the same as 
Brent and Kung's modular composition algorithrm. 

Lemma 4. Let f E 1q [x] be a polynomial of degree n. Suppose that we are given 
Xq mod f EE 1q[x]. Then we can compute 

xqr mod f, xq2r mod f, k., 
rq mod f EE lq[x], 

where k = O(n), using 

0(n(w+ 1)/2 k(W-I)/2) 

operations- in 1q. 

Proof. For i > 1, let Gi = Xq mod f E 1q [x]. Assume we have computed 

GI,-.. , Gm. Then we can compute Gm+, . .. , G2m by computing GI(Gm) mod 

f,. . . , Gm(Gm) mod f using the algorithm in the previous lemma. 
So to compute G1,... , Gk given G1, we simply repeat the above "doubling" step 

O(log k) times. The stated running-time estimate then follows easily. DH 

3. THE FAST BLACK Box BERLEKAMP ALGORITHM 

In Kaltofen and Lobo [20], a version of Berlekamp's factoring algorithm was 
given based on Wiedemann's [36] sparse linear system solver. In this section, we 
show how to modify that algorithm to obtain a probabilistic, subquadratic-time 
algorithm. 

We split this section into two parts. In ?3.1, we review the ideas behind the 
Black Box Berlekamp algorithm, presenting a high-level description of that algo- 
rithm. Then in ?3.2, we describe a subquadratic-time implementation, first proving 



1186 ERICH KALTOFEN AND VICTOR SHOUP 

a running time bound of O(n1 880 + n1 808 log q) operations in 1q* We then modify 
this method to obtain the bound Q(n1.852 + n 1763 log q). With yet a bit more work, 
we show how to obtain the bound Q(n1.815 log q). 

3.1. The Black Box Berlekamp Algorithm. We first recall the main ideas 
behind the Black Box Berlekamp algorithm. Suppose the coefficient field 1q has 
characteristic p. Let f E 1q [x] be a monic square-free polynomial of degree n to be 
factored. Assume that the factorization of f into irreducibles is 

f = fi 
... 

fr- 

For 1 < i < r, let di = deg(fi), and let pei be the highest power of p that divides 
di. Furthermore, let e = max{ei 1 < i < r}. 

Now consider the q-th power map U: a l aiiq for e EE Fq[x]/(f). Let X E [q[A] 
be the minimum polynomial of a over 1q, i.e., X is the monic polynomial of least 
degree such that q(u) = 0. The polynomial q can easily be described in terms of 
the degrees of the irreducible factors of f, as follows. By the Chinese remainder 
theorem we have the 1Fq-algebra isomorphism 

Fq [XI /(f ) - Fq [X] /(fl) (D .. (DFq [XI /(fr) 
For 1 < i < r, let vi be the q-th power map on lq[x]/(fi), and let Xi EE lq[A] 
be its minimum polynomial. From the basic theory of finite fields, we know that 

Ad2 _ 1. Moreover, by the Chinese remainder theorem, 

c = m{,..,4Y} lcm A {dl - 1) ... ) d r 1}. 

Now consider the polynomial bt(A) = q(A)/(A - 1), and the image Ii C lFq[x]/(fi) 
of [t(ti). Since (vi - 1)(c() = aq-_a = 0 for all oa e 1j, it follows that Ii C Iq. It is 
easily seen that A - 1 divides Adi - 1 exactly to the power pe2, which implies that 
Ii = 1q if ei e, and 1i = {0} if ei < e (see Kaltofen and Lobo [20], ?3, for more 
details). 

These considerations motivate the following recursive algorithm. The details of 
how each step is to be implemented are deferred until later. 

Algorithm B. The algorithm takes as input a monic square-free polynomial f E 
1q[x] of degree n, and produces as output the set of irreducible factors of f. 

Step Bi (compute minimum polynomial): Probabilistically compute a 
polynomial q* E 1q [A] that with probability at least 1/2 is equal to q, the min- 
imum polynomial of the q-th power map a on 1q[x]/(f), and that otherwise 
divides q. 

Step B2 (evaluate polynomial): If q*(A) = A' - 1, then halt, as f is then 
certified to be irreducible. If A - 1 does not divide 0*(A), go back to Step B1, 
as then * is clearly erroneous. Otherwise, set bt*(A) (*(A)/(A - 1), choose 
a random a e Fq [x]/(f), and compute 

a* = (t1, ((J)) ((X) EE Fq [X] / (fE) 

Step B3 (split): Let a* = (g mod f). Compute h= gcd(g, f) and h2 = f/hi. 
If 0* = b then the degrees of all irreducible factors of h2 are divisible by pe 

and the residues of h2 modulo these factors are random elements in 1q \ {0}. 
Compute h* eE IFq[X]]/(h2) as 

h* J g(q-1)/2 mod h2 if p > 2, 

= X _k g2 modh2 ifq=2 k. 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1187 

Recursively factor h1, h* = gcd(1 + h* mod h2, h2) and h2/h*. 
Before going into the details of each step, we first calculate a bound on the 

recursion depth of this algorithm. 

Lemma 5. The expected value of the recursion depth of Algorithm B is 
O([logp n] log r), where r is the number of irreducible factors of f. 

Proof. Consider one invocation of the algorithm and recall the notation preceding 
the algorithm. Each factor fi with ei = e will be separated from the factors fj 
with e3 < e in Step B3 with probability bounded away from 0 by a constant. If f 
has several factors with e= e, then each pair of such factors will be separated in 
Step B3 with probability bounded away from 0 by a constant. These statements 
follow easily from the fact that * is correctly computed with probability 1/2, and 
from the discussion preceding the algorithm. 

Using a standard argument (see, for example, Lemma 4.1 in von zur Gathen and 
Shoup [17], at an expected depth of 0(logr), all irreducible factors fi with el, e 
will be isolated, and the only reducible factors remaining will have ei < e. 

It follows that at an expected depth of 0 ( [logp n] log r), all irreducible factors 
of f will be isolated. DH 

Next, we discuss the problem of computing q* in Step B1. Following Wiedemann 
[36], this is done as follows. We choose random a e EEq[x]/(f) and a random 1q- 
linear map u: lFq [x]/(f lFq, and compute the minimum polynomial of the linearly 
generated sequence {a2 ai = u(ui(ca)) and i > 0}. Using an asymptotically fast 
version of the Berlekamp-Massey algorithm (Massey [27], Dornstetter [12]), given 
the first 2n terms of the sequence {a : i > 0}, we can determine the minimum 
polynomial E5g,u E lq[A] of this sequence using Q(n1+o(1)) operations in 1q. In 
general, q5c,u divides q, but the probability that ,= q (for random a, u) may be 
less than 1/2, and indeed not even bounded away from 0 by a constant. To increase 
this probability, we repeat the above procedure some number p(n, q) times, each 
time choosing a new a and a new u at random, thus obtaining polynomials q5u , 

where 1 < i < p(n, q). Then we compute 

0* = lcm{o,ui i: 1 < i < p(n, q)} 

The value p(n, q) can be chosen as indicated in the next lemma. 

Lemma 6. Let p(n, q) be defined as follows. If q > 4n, then p(n, q) 1. Other- 
wise, 

6 if q=2, 

p(n, q) 
4 

if4?q?9 , p(n)q) ll3 zf 4 < q < 9, 
2 if q > 11. 

Then the probability that b* = is at least 1/2. 

Proof. If q > 4n, then the result follows by the analysis of Kaltofen and Pan 
[21]. Otherwise we argue along the same lines as Wiedemann [36, ?VI]. Suppose 

X 
. =7-1s is the factorization of b into irreducibles. Suppose a e EFq[x]/(f) 

and u: Fq[x]/(f) -* Fq are chosen at random. As above, let q5, E Fq[A] be the 
minimum polynomial of the sequence {fa(ai) i > 0} and let , be the minimum 
polynomial of the sequence {u(ai(o)): i > 0}. 



1188 ERICH KALTOFEN AND VICTOR SHOUP 

Claim. For any single j with 1 < j < s, the probability that Oj7j does not divide 
Oa is no more than 

(2/q - 1/q2)6 where 6 = deg(0j). 

We prove this claim by using a fact established by Wiedemann. He shows that 
there exists a surjective lFq-linear .map L: V -* W depending on a, where V is 
the linear space of Fq-linear maps from lq[x]/(f) to 1q and W is the linear space 
of polynomials of degree less than deg(Oq), such that for any u E V we have 
qa,u =q5/gcd(q5, C2(u)). Suppose now that 6j divides Oq. Then 4?1j divides 
XO,u if 43. does not divide L(u), which for a random u is a random polynomial 
over Fq of degree less than deg(q5). Clearly, of all qdeg(O) such polynomials only 
qdeg(O.)-6 are divisible by j., so the probability that /j does not divide L(u) is 
1 - 1/q6. Furthermore, by considering the rational canonical form of the linear 
transform a we can show the existence of an element ao such that q5O- = q. As L 
is surjective, there also must exist a uo such that ,= qo = q. By switching 
the r6les of u and a, as Wiedemann does in the proof of his Proposition 4, we can 
obtain that the probability that 0j7j divides ka,uo is 1- 1/q6. Thus, the probability 
that Ojb7 divides q5, is no less. 

3 

Therefore, the probability that Oj7j does not divide ,u is no less than 1 - 

(1- 1_/q6)2 = 2/q6 - 1/q26. The claim then follows from the inequality 2c8 -c26 < 

(2c - c2)6, which holds for all real numbers c with 0 < c < 1/2 and all integers 
> 1. 

From this claim, one sees that if this procedure is repeated k = p,(n, q) times, 
and we compute q* as the polynomial least common multiple of all of the O5,u, 's, 
then the probability that 067j does not divide * is at most (2/q - l/q2)kdeg(0i). 

Since the factorization of Xq - x includes each irreducible polynomial of degree 
1, the number of irreducibles of degree I is at most q1/l. Hence summing over all 
irreducible polynomials dividing q, as well as all those irreducible polynomials not 
dividing q, we get an upper bound on the probability that q* :& X of 

S - (2/q - 1/q2)kl -- log(1 - q(2/q - 1/q2)k). 
1>1 

The lemma then follows from a simple numerical calculation. DH 

For sufficiently large q it is possible to improve the expected recursion depth of 
Algorithm 1 to O(logpn + log r) as follows. First, we make the probability that 
O* 

q5 in Step Bi smaller than 1/q by computing the least common multiple of p' 
many polynomials q5, ,u,, where 

6 if q=2, 
{ 5 if q=3, 

p'(n,q)= 4 if q=4,5, 
3 if q>7, 
2 ifq>4n. 

The values for p' follow as in the proof of Lemma 6. Suppose now that q* = . 
Then the probability that all re irreducible factors fi of f with ei = e are separated 
from the remaining factors in a single gcd in Step B3 is equal to the probability that 
re random elements of ]Fq are simultaneously not equal to zero, which is (1 - l/q)re. 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1189 

Overall, we succeed to separate the fi with ei e from the rest in a single try with 
probability > (1 - 1/q) (1 - l/q)re 

Let r,, be the number of irreducible factors fj of f with ej r1. Then with 
probability no less than 

( )r? )e?r? ( ) (e+4rl)q 

the factors with ej = r are split off for all r1 by a recursion of depth e + 1. Now 
suppose that for a constant c > 0 we have 

q > c(Llogpnj n r+ 1) 

Then the probability that all pairs fi and f3 with ei :& ej are separated at recursion 
depth O(logp n) is bounded away from 0 by a constant (namely 4-1/c). It is then 
easy to show that the expected depth is 0 (logp n+ log r). We note that for constant 
q, however, the expected recursion depth can be E((logn)2). 

3.2. A Subquadratic-Time Implementation. 

Theorem 4. For any constant 13 with 0 < 13 < 1, Algorithm B can be implemented 
so as to use an expected number of 

(2) 0(n(w+1)/2+(3-w)J/-31/2J+o(1) + n(w+1)/2+1-/3+o(1) + nl+/3+o(1) logq) 

operations imn Fq. In particular, choosing w < 2.375477 and minimizing the exponent 
of n, we get Q(nl.880 +? n2.808 logq) operations inFq. 

Remark 1. The first term in (2) is dominated by the second exactly when 3 < 
(w - 5)/(2(w - 4)), and thus at least when ,3 < 3/4. 

To prove Theorem 4, we first show that one invocation of Algorithm B, not 
counting the recursive calls, can be implemented so as to satisfy the bound in 
Theorem 4. By Lemma 5, multiplying this by O((logn)2) gives a bound on the 
total cost of the algorithm, and thus the theorem will follow. 

The cost of Step B3 is 0(n1+o(1) logq) operations in Fq, and the cost of the 
Berlekamp-Massey algorithm in Step BI is 0(n1+o(1)) operations in Fq. So to 
prove our result, we have to solve the following two types of problems within the 
stated time bounds. 

automorphism projection: Given a E Fq[x]/(f), u: Fq[x]/(f) F ?q, and a 
positive integer k = 0(n), compute u(ui(ae)) E Fq for all i with 0 < i < k. 

automorphism evaluation: Given a E Fq[x]/(f) and a polynomial ,u E Fq[A] 
of degree less than k, where k = 0(n), compute (,u(o))(ae) E ]Fq[x]/(f). 

We first claim that these two problems are computationally equivalent, in a 
very strong sense. Consider the n x k matrix A whose columns consist of the co- 
ordinates with respect to the natural power basis 1, x, x,... ,2xn- for Fq[x]/(f) 
of a), 7(a),... ,Jk-l(a). Then the automorphism projection problem consists of 
multiplying A on the left by a row vector (uo,... ,un-1) E F1lxn. The automor- 
phism evaluation problem consists of multiplying A on the right by a column vector 
(A0, 1., k-kl)T E Fjkx 1. Thus these two problems are merely the transpose of each 
other, and by the so-called transposition principle a straight-line program of length I 
for one can be quickly converted (in time 0(l)) into a straightline program of length 
0(l) for the other, provided the straight-line program computes linear forms in the 



1190 ERICH KALTOFEN AND VICTOR SHOUP 

input variables {ui} (respectively, {ui }). It should be noted that this observation 
applies to the Wiedemann algorithm in general. For example, in Algorithm 1 in 
Wiedemann [36] step 4 and step 6 are computationally equivalent within a constant 
factor. The discovery of the transposition principle goes back to the Ph.D. thesis 
of Fiduccia [14], Theorem 2 for multiplications (see also Fiduccia [13], Theorem 4) 
and Theorem 5 for additions and subtractions. The additive version with a similar 
proof is rediscovered in (Kaminski et al. [22]). Furthermore, we remark that the 
transposition principle is a direct consequence of the so-called reverse mode in au- 
tomatic differentiation, see Canny et al. [7]; for reverse mode see also Ostrowski et 
al. [30], Linnainmaa [25], Baur and Strassen [2], and Griewank [19]. 

Thus, to prove our theorem, it will suffice to prove the required bound for just 
one of these problems. We prove it for the automorphism evaluation problem. 
The following algorithm for automorphism evaluation is based on the same "baby 
step/giant step" strategy used in Brent and Kung's modular composition algorithm. 

Algorithm AE. This algorithm takes as input an element a e EFq[x]/(f), where 
f E Fq [x] is of degree n, and a polynomial ,t E Fq [A] of degree less than k, where 
k = O(n). The output is ((u())(fl ) EE Fq[x]/(f). The algorithm is parameterized 
by a constant 13, with 0 < 13 < 1. 

We set t = [r] and m = [k/tl], and we write ,t as 

At = 
E: AJ (A)At3 

0<j <m 

where each ,Uj E Fq [A] has degree less than t. 
Then we have 

([O(()) (a) = U7tj ( (/X>j (aT))(a<)) 
O<j<m 

The algorithm proceeds as follows. 

Step AEl: Compute ui(ai) E ]Fq[x], for all i with 0 < i < t, by iterating a 
repeated squaring algorithm. 

Step AE2: Using the values computed in Step AEI, we next compute 
(Ati(u))(ca) E Fq [x] for all j with 0 < j Km. This is done by multiplying an 
m x t matrix by a t x n matrix. 

Step AE3: We compute Xq mod f, using the method of Algorithm 5.2 in von 
zur Gathen and Shoup [17], which requires the computation of Xq mod f, plus 
O(logt) modular polynomial compositions. 

Step AE4: We use the values computed in Steps AE2 and AE3 together with 
a Horner evaluation scheme to get ((u())(fl ). This is done iteratively, per- 
forming m - 1 modular compositions. 

Lemma 7. Algorithm AE can be implemented so as to use 

Q(n(w+1)/2+(3-w)J/3-1/2J + n(w+1)/2+1-/3 + nl+/3+o(1) logq) 

operations in 1q[x]. Moreover, the algorithm satisfies the conditions of the tranispo- 
sition principle. 

Proof. Step AEI takes 0(nl+/3+o(1) log q) operations in Fq. 
In Step AE2, if , > 1/2, we compute 0(nl+//n2(1-3)) multiplications of square 

matrices of dimension 0(n I/); otherwise, if 3 < 1/2, we perform 0(n2-/n/2/3) 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1191 

multiplications of square matrices of dimension OnJ). In either case, the number 
of operations in Fq is readily calculated as 0(n(w+1)/2+(3-w)J-11/2J). 

Step AE3 takes 0(n(5w+)/2 + n1+1(1) logq) operations in Fq. 
Step AE4 takes Q(n5G+1)/2+1-/) operations in Fq. 
To prove the second assertion in the lemma, one easily checks that all of the 

values computed by the algorithm are linear in the input variables representing the 
coefficients of ft. DH 

Although the above discussion implies the existence of an algorithm for automor- 
phism projection, it is not too difficult to give an explicit algorithm. We describe 
one here. 

Let Q be the n x n matrix representing the q-th power map a on Fq [x]/(f ), with 
respect to the natural power basis. The matrix Q is the transpose of Petr's matrix 
(see Schwarz [32]) computed in the classical Berlekamp algorithm. We represent the 
projection map u as a row vector u'T, and we let a' be the column vector consisting 
of the coordinates of a. We want to compute the values 

(3) u TQia (O < i < k). 

Algorithm AP. This algorithm takes as input a and u as above and computes 
the quantities (3). The algorithm is parameterized by a constant 13, with 0 < 13 < 1. 

Set t [ [0] and m= [k/tl]. We rewrite (3) as 

(4)~ ~~~ (T Qtj) * (Qi -) (O < j ,O< ) 

The algorithm proceeds as follows. 

Step APl: Compute the vectors Qia, for 0 < i < t, by iterating a repeated 
squaring algorithm t - 1 times (left multiplication by Q is the same as q-th 
powering). 

Step AP2: Compute Xq' as in Step AE3. 
Step AP3: Compute the vectors u?TQti , for 0 < j < m, by iteratively comput- 

ing m - 1 "transposed" modular polynomial compositions to carry out the 
right multiplications by Qt, each of which (by the transposition principle) has 
the same cost as an ordinary modular composition (with Xqt mod f). 

Step AP4: Using the values computed in Steps API and AP3, all of the values 
in (4) are computed by multiplying an m x n matrix by an n x t matrix. 

It is straightforward to check that Lemma 7 also holds for Algorithm AP. We 
point out that an explicit algorithm for the "transposed" modular composition 
problem in Step AP3 is given in Shoup [35, ?4.1]. 

Interestingly, Algorithm AP suggests a slightly faster algorithm for automor- 
phism projection. Notice that the term n(5+1)/2+1l in the running-time bound 
comes from Step AP3. Using the transposition principle and the strategy used to 
prove Theorem 3, we can reduce this term to n(.&+1)/2+(1-/)(w-1)/2 as follows. 

Lemma 8. Given Xq mod f, we can compute UjTQti for all j with 0 < j < m, 
where m = 0(n), using O(n(w+1)/2m(w-1)/2) operations in 1q. 

Proof. We use the same "doubling" strategy used in the algorithm in the proof of 
Lemma 4. Assume we have computed the row vectors 
(5) U T U Qt- U TQ(k-I)t 

(5) ~ ~~~~uTQt,.. 



1192 ERICH KALTOFEN AND VICTOR SHOUP 

as well as Xq kt mod f for some k > 1. Then we multiply each vector in the sequence 
(5) by Qk' and compute Xq mod f. The problem of applying Qkt to the sequence 
(5) is precisely the transpose of the problem solved by the algorithm in Lemma 3, 
and so by the transposition principle, now applied to a block diagonal matrix with 
Qkt as diagonal blocks, we can do this in 0(n(w+il)/2k(w-l)/2) arithmetic operations. 

Computing Xq mod f from Xqkt mod f requires just one modular composition. 
That completes the description of the doubling step. The running time bound 
follows easily. D 

Again, by the transposition principle, this implies the existence of an algorithm 
for the automorphism evaluation problem with the same complexity, although it is 
not entirely clear at the moment how to explicitly describe this algorithm. 

Combining all of this with our previous analysis of Algorithm B, we have proved 
the following. 

Theorem 5. For any constant 13 with 0 < 13 < 1, Algorithm B can be implemented 
so as to use an expected number of 

(6) 0(n(w+l1)/2+(3-w)J-l/22+o(l) + n(w+1)/2+(1-3)(w-1)/2+o(1) + ?21+1+o(1) log q) 

operations in Fq. In particular, choosing w < 2.375477 and minimizing the exponent 
of n, we get 0(n' .852 + n1.763 log q) operations in 1q. 

Remark 2. The first term in (6) is dominated by the second exactly when 3 < 
2/(5 - w), and thus at least wherr 3 < 2/3. 

For w = 2.375477, by making use of techniques for fast rectangular matrix mul- 
tiplication, the operation count (6) in Theorem 5 can be reduced to 

Q(5w+1)/2+(1l-3)(W-1)/2+o(l) + n1l+/+o(1) log q), 

and in particular to 0(nl1815 log q) for an appropriate choice of /3. We indicate how 
this is done. 

The first term in (6) arises from the rectangular m x n times n x t matrix 
multiplication in Step AP4. By the remark after Theorem 5, we may assume 
,3 > 2/3 and in particular that t > m. 

Techniques for fast rectangular matrix multiplication allow us to multiply a b8 x b 
matrix by a b x b matrix with O(b2+o(l)) operations for some 6 > 0 (Coppersmith 
[10], Lotti and Romani [26]). With the construction yielding w < 2.375477 by 
Coppersmith and Winograd [11], we may chose 6 = 0.29 (Coppersmith, private 
communication) . 

The needed m x n x t matrix product is done with O(n/t) products of m x t 
times t x t matrices. We shall carry out each of. the latter products by multiplying 
a (t/b) x (t/b) block matrix with (rmb/t) x b blocks times a (t/b) x (t/b) block 
matrix with b x b blocks. If mb/t = b, i.e., b = (t/m)1/(1-6), each block product 
costs O(b2+o(l)) operations, yielding a total of O((t/b)wb2+o(l)) operations for the 
m x t x t product. Substituting m = 0(nrJ0) and t = O((n), we get for the entire 
m x n x t product 

(7) 0(nl 
operations. 

Now, for w = 2.375477 and 6 = 0.29, one routinely checks that for 2/3 < 3 < 1, 
the quantity (7) is dominated by either the second or the third term of (6). 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1193 

4. APPLICATIONS TO NORMAL BASES 

The results of ?3 can be used to speed certain operations with so-called normal 
basis of finite extensions of Fq. In this section we describe those subquadratic 
algorithms. 

A finite field 1q n of qn elements can be represented as an n-dimensional vector 
space over 1q. For instance, if f(x) E 1q [x] is an irreducible monic polynomial of 
degree n over 'q, the powers 1,x,... ,x - form a basis for the Kronecker repre- 
sentation 1q[x] / (f (x)) of the field IFqn. It can be advantageous for performing arith- 
metic in Iqn, in particular exponentiation, if one finds a normal element a E lFqn 
with the property that 

q qn-i 

is a lFq-vector space basis for lql%. Von zur Gathen and Giesbrecht [16] give a ran- 
domized algorithm for finding a normal element a EC Fq[x]/(f (x)) in Q(nr2+o(l) logq) 
arithmetic operations in 1q. The running time of their algorithm is reduced in (von 
zur Gathen and Shoup [17]) to Q(nr2+o(l) + n1+?( ) log q) arithmetic operations in 
Fq. Here we give 0(n .815 log q) solutions to the following three problems: 

basis selection: Given f (x) c Fq [x] irreducible monic of degree n, compute a 
normal element a c Fq [x] /(f (X)). 

conversion to power basis coordinates: Given f and a as above and co,..., 
Cn-I E Fq, compute coa + ... + cnlaqn in power basis representation. 

conversion to normal coordinates: Given f and a as above and a C 
Fq [x] / (f (x)), compute co,... ,cn- 1 (E Fq such that 

n-1 

coaU+* + Cn-laq *=a 

Theorem 6. We have probabilistic algorithms that can solve the basis selection 
and conversion to and from power basis coordinates problems in 

(8) Q(n(w+l)/2+(1-3)(w-1)/2+o(1) + nl+/3+o(1) log q), 

arithmetic operations in Fq for any / with 0 < / < 1. 

Proof. Suppose a' is the column vector containing the coefficients of the canonical 
representative of a. Using the notation of ?3 we have that Qia is the coefficient 
vector of the canonical representative of a , where Q is the matrix representing 
the q-th power map on Fq[x]/(f (x)). Hence a is normal if 

--) Q -,) Q2 .. Qn -I -, 

are linearly independent vectors. Since f is irreducible and the minimum polyno- 
mial of Q is An _ 1 such an a must exist. Furthermore, for a random row vector 
uT and for a random column vector a' the probability that the minimum linear 
generator of 

U Qa (O < i) 

remains An _ 1 is no less than 1/(12 max{logq(n), 1}) (see Wiedemann [36, Propo- 
sition 3], or Giesbrecht[18, ?6.1]). Therefore, a normal element can be found with 
success probability no less than 1 - 1/e by running the automorphism projection 
algorithm of ?3 12 max{logq(n), 1} times. The stated complexity (8) then follows 
from our estimates at the end of ?3. 



1194 ERICH KALTOFEN AND VICTOR SHOUP 

Conversion to power basis coordinates is simply the automorphism evaluation 
problem of ?3, so it remains to demonstrate conversion to normal basis coordinates 
in time (8). By first applying the q-th power map nm- 1 times to 

qn-1 
=coaU+* + Cn-laUn 

and then applying a linear map u from Fqn to Fq we obtain 
n-I 

(9) u(7 ) ciu(ag ( < j <n). 
i=O 

If the linear map u preserves An - 1 as the minimum linear generator for u(aq%), 
where i > 0, then the Hankel matrix on the right side of (9) must be non-singular, 
because otherwise one could find a second linear generator of degree n. Such a u is 
a by-product of our basis selection method and can be found in a similar way if only 
a is given. The same is true for the entries u(aq 2?3) in the Hankel matrix, while 
the left side elements u(_yj) are computed again by automorphism projection. The 
Hankel system is finally solved for the ci in 0(nl+?(l)) arithmetic steps (Brent et 
al. [5]). 0 

5. PRACTICAL ALGORITHMS 

In this section, we describe how the methods developed in this paper can be used 
to obtain practical algorithms, without relying on fast matrix multiplication. 

Consider our Fast Cantor/Zassenhaus algorithm. A practical variant of Al- 
gorithm D, the distinct-degree factorizer, runs as follows. In Step Dl, we set 
I 7?_ m/2, so m /2 as well. We compute Xq mod f via repeated squar- 
ing. We generate both the baby steps and the giant steps (Steps Dl and D2) by 
iteratively applying a modular composition algorithm. Steps D3, D4, and D5 are 
performed by carrying them out quite literally as they are described, without any 
"tricks." 

The cost of each step is then as follows: 

Steps DI and D2: 2n modular compositions; 
Step D3: n/2 multiplications of polynomials modulo f; 
Step D4: /n/2 GCD's; 
Step D5: 0(nn3/4) polynomial divisions and the equivalent of at most m/2 

GCD's. 
To appreciate the practical significance of this, one must realize that, in spite 

of popular prejudice, asymptotically fast polynomial multiplication algorithms are 
in fact fast in practice, for quite reasonably sized n. This is demonstrated, for 
example, in Shoup [35]. 

Because of this, the dominant cost in Brent and Kung's modular composition 
algorithm is indeed the n2 scalar multiplications and additions, although the cost 
of the Q(n1/2) polynomial multiplications cannot be entirely ignored. 

The time spent taking GCD's can be reduced by using a fast "Half-GCD" al- 
gorithm (which is in practice faster than Euclid's algorithm, although not spectac- 
ularly so), and by "buffering" the GCD's, i.e., computing the product of several 
polynomials modulo f, and then taking just one GCD. With these techniques, the 
time spent taking GCD's can be made a small percentage of the total. Also the 
time spent is Step D5 is in practice a small percentage of the total. 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1195 

Finally, we note that the space requirement of this algorithm is just 0(n 15) 

elements in Fq. 
In summary, this variant of our distinct-degree factorizer uses 

0(n 25 + n1+o(1) log q) 

operations in Fq and space for 0(n 15) elements in "q. Moreover, both of the implied 
"big-O" constants are reasonably small. 

Of course, in general, we may have to perform one or more equal-degree factor- 
izations as well. The equal-degree factorization algorithm in von zur Gathen and 
Shoup [17] can be implemented so as to use 

0(n2 log n + n1+o(1) log q) 

operations in Fq and space for 0(n 15) elements in Fq, where again the implied 
constants are reasonably small. 

In Shoup [35], this factoring algorithm is developed in further detail, and an 
implementation as well as the results of empirical tests are described. That paper 
concludes that if q is a large prime, then this new algorithm allows much larger 
polynomials to be factored in a reasonable amount of time and space than was 
previously possible using other algorithms. As an example from that paper, a 
pseudo-random degree 128 polynomial was factored modulo a 128-bit prime on a 
SUN SPARC-station ELC, which is rated at about 20 MIPS. The running time 
was under 2 minutes. To put this in some context, for the same polynomial on the 
same machine, the built-in Maple factorizer (based on Cantor/Zassenhaus) required 
about 25 hours. As another example, a pseudo-random degree 1024 polynomial was 
factored modulo a 1024-bit prime in about 50 hours, using about 11 megabytes of 
memory. 

It is also possible to obtain a practical version of the Fast Black Box Berlekamp 
algorithm using similar techniques, although we have not as yet implemented this. 
That algorithm would require significantly fewer GCD calculations than the above 
algorithm, and would also avoid the occasional need to perform a large equal- 
degree factorization; however, it would require at least twice as many modular 
compositions as the above algorithm. Empirical analysis of the relative costs of 
these operations indicate that the disadvantages would outweigh the advantages of 
Fast Black Box Berlekamp over Fast Cantor/Zassenhaus. Moreover, a Fast Black 
Box Berlekamp algorithm would require about twice as much space. Therefore, at 
the moment, for practical purposes, Fast Cantor/Zassenhaus appears preferable to 
Fast Black Box Berlekamp. 

NOTE ADDED IN PROOF 

Biirgisser et al. [37] have traced the transposition principle discussed in ?3.2 
to Tellegen's theorem of control theory. By use of the new exponents for rectan- 
gular matrix multiplication [38] the asymptotic .complexity of modular polynomial 
composition and hence of our factorization algorithms can be lowered a little bit. 
For example, the 0(n1815 log q) running time of Theorem 1 can be lowered to 
0 (n1 8054 log q). For large q and small characteristic p it is possible to improve the 
binary running time of the von zur Gathen/Shoup algorithm. In [39] we show, for 
example, that for q = 2k with k = Q(n1 46) one may factor a polynomial of degree 
n with coefficients in Fq in 0(n(log q)1.67) fixed precision operations. Here the field 
Fq is represented as a polynomial residue ring, performing ring arithmetic modulo 



1196 ERICH KALTOFEN AND VICTOR SHOUP 

an irreducible polynomial of degree k with coefficients in F2. Binary running time, 
that is, fixed precision cost, includes the time for executing each field operation in 
Fq. 

Many of Kaltofen's publications are accessible through links in the BIBTI,jX bib- 
liography database at http: //www. math. ncsu. edu/-kaltof en/bibliography/. 

REFERENCES 

1. Aho, A., Hopcroft, J. and Ullman, J., Design and Analysis of Computer Algorithms, Addison 
and Wesley, Reading, MA, 1974. MR 54:1706 

2. Baur, W. and Strassen, V., The complexity of partial derivatives, Theoretical Comp. Sci., vol. 
22, 317-330, 1983. MR 84c:68027 

3. Ben-Or, M., Probabilistic algorithms in finite fields, Proc. 22nd IEEE Symp. Foundations 
Comp. Sci., 394-398, 1981. 

4. Berlekamp, E. R., Factoring polynomials over large finite fields, Math. Comp., 24, 1970, 713- 
735. MR 43:1948 

5. Brent, R. P., Gustavson, F. G., and Yun, D. Y. Y., Fast solution of Toeplitz systems of 
equations and computation of Pade approximants, J. Algorithms, vol. 1, 259-295, 1980. MR 
82d:65033 

6. Brent, R. P. and Kung, H. T., Fast algorithms for manipulating formal power series, J. ACM, 
vol. 25, no. 4, 581-595, 1978. MR 58:25090 

7. Canny, J., Kaltofen, E. and Lakshman Yagati, Solving systems of non-linear polynomial equa- 
tions faster, Proc. ACM-SIGSAM 1989 Internat. Symp. Symbolic Algebraic Comput., 121- 
128, ACM Press, 1989. 

8. Cantor, D. G. and Kaltofen, E., Orl fast multiplication of polynomials over arbitrary algebras, 
Acta Inform., vol. 28, no. 7, 693-701, 1991. MR 92i:68068 

9. Cantor, D. G. and Zassenhaus, H., A new algorithm for factoring polynomials over finite fields, 
Math. Comp., vol. 36, 587-592, 19_81. MR 82e:12020 

10. Coppersmith, D., Rapid multiplication of rectangular matrices, SIAM J. Comput., vol. 11, 
no. 3, 467-471, 1982. MR 83j:68047a 

11. Coppersmith, D. and Winograd, S., Matrix multiplication via arithmetic progressions, J. 
Symbolic Comput., vol. 9, no. 3, 251-280, 1990. MR 91i:68058 

12. Dornstetter, J. L., On the equivalence between Berlekamp's and Euclid's algorithms, IEEE 
Trans. Inf. Theory, vol. 33, no. 3, 428-431, 1987. MR 88j:94018 

13. Fiduccia, C. M., On obtaining upper bounds on the complexity of matrix multiplication, 
Complexity of Computer Computations, (R. E. Miller and J. W. Thatcher), Plenum Press, 
New York, 1972, 31-40. MR 52:12398 

14. Fiduccia, C. M., On the Algebraic Complexity of Matrix Multiplication, Ph.D. Thesis, Center 
Comput. Inform. Sci., Div. Engin., Brown Univ., Providence, Rhode Island, June 1973. 

15. Fleischmann, P., Connections between the algorithms of Berlekamp and Niederreiter for fac- 
toring polynomials over Fq, Linear Algebra and Applications, vol. 192, 101-108, 1993. MR 
94f: 11129 

16. von zur Gathen, J., and Giesbrecht, M., Constructing normal bases in finite fields, J. Symbolic 
Comput., vol. 10, no. 6, 547-570, 1990. MR 92e:11142 

17. von zur Gathen, J., and Shoup, V., Computing Frobenius maps and factoring polynomials, 
Comput. Complexity, vol. 2, 187-224, 1992. MR 94d:12011 

18. Giesbrecht, M., Nearly optimal algorithms for canonical matrix forms, Ph.D. Thesis, Dept. 
Comput. Science, University of Toronto, Toronto, Canada, 1993. 

19. Griewank, A., Achieving logarithmic growth of temporal and spatial complexity in reverse 
automatic differentiation, Optimization Methods and Software, Gordon and Breach Science 
Publishers, vol. 1, 35-54, 1992. 

20. Kaltofen, E., and Lobo, A., Factoring high-degree polynomials by the black box Berlekamp 
algorithm, Proc. Internat. Symp. Symbolic Algebraic Comput. ISSAC '94, (J. von zur Gathen 
and M. Giesbrecht), ACM Press, New York, N. Y., 90-98, 1994. 

21. Kaltofen, E., and Pan, V., Processor efficient parallel solution of linear systems over an ab- 
stract field, Proc. 3rd Ann. ACM Symp. Parallel Algor. Architecture, ACM Press, 1991, 
180-191. 



SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1197 

22. Kaminski, M., Kirkpatrick, D. G. and Bshouty, N. H., Addition requirements for matrix and 
transposed matrix products, J. Algorithms, vol. 9, 354-364, 1988. MR 89m:68061 

23. Knuth, D. E., The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Ed. 2, 
Addison Wesley, Reading, MA, 1981. MR 83i:68003 

24. Lidl, R. and Niederreiter, H., Finite Fields, Addison-Wesley, Reading, MA, 1983. MR 
86c: 11106 

25. Linnainmaa, S., Taylor expansion of the accumulated rounding error, BIT, vol. 16, 146-160, 
1976. MR 54:9070 

26. Lotti, G., and Romani, F., On the asymptotic complexity of rectangular matrix multiplication, 
Theoretical Comput. Sci.,, vol. 23, 171-185, 1983. MR 84g:68029 

27. Massey, J. L., Shift-register synthesis and BCH decoding, IEEE Trans. Inf. Theory, vol. 15, 
122-127, 1969. MR 39:3887 

28. Niederreiter, H., A new efficient factorization algorithm for polynomials over small finite fields, 
Applic. Algebra Engin., Commun. Comput., vol. 4, 81-87, 1993. MR 94h:11112 

29. Niederreiter, H. and G6ttfert, R., Factorization of polynomials over finite fields and charac- 
teristic sequences, J. Symbolic Comput., vol. 16, no. 5, 401-412, 1993. MR 95d:68072 

30. Ostrowski, G. M., Wolin, Ju. M. and Borisow, W. W., Uber die Berechnung von Ableitungen, 
Wissenschaftliche Zeitschrift Techn. Hochsch. Chem. Leuna-Merseburg, vol. 13, no. 4, 382- 
384, 1971. 

31. Rabin, M. O., Probabilistic algorithms in finite fields, SIAM J. Comp., vol. 9, 273-280, 1980. 
MR 81g:12002 

32. Schwarz, St., On the reducibility of polynomials over a finite field, Quart. J. Math. Oxford 
Ser. (2), vol. 7, 110-124, 1956. MR 20:3162 

33. Shoup, V., On the deterministic complexity of factoring polynomials over finite fields, Inform. 
Process. Letters, vol. 33, no. 5, 261-267, 1990. MR 91f:11088 

34. Shoup, V., Fast construction of irreducible polynomials over finite fields, J. Symbolic Comput., 
vol. 17, no. 5, 371-391, 1994. MR 95k:11156 

35. Shoup, V., A new polynomial factorization algorithm and its implementation, J. Symbolic 
Comput., vol. 20, 363-397, 1995. MR 97d:12011 

36. Wiedemann, D., Solving sparse linear equations over finite fields, IEEE Trans. Inf. Theory, 
vol. 32, 54-62, 1986. MR 87g:11166 

37. Biirgisser, P., Clausen, M. and Shokrollahi, M. A., Algebraic Complexity Theory, Springer- 
Verlag, Heidelberg, Germany, 1997. CMP 97:10 

38. Huang, X. and Pan, V., Fast rectangular matrix multiplications and improving parallel matrix 
computations, In Proc. Second Internat. Symp. Parallel Symbolic Comput. PASCO '97, M. 
Hitz and E. Kaltofen, editors, pages 11-23, New York, N.Y., 1997. ACM Press. 

39. Kaltofen, E. and Shoup, V., Fast polynomial factorization over high algebraic extensions 
of finite fields. In ISSAC 97 Proc. 1997 Internat. Symp. Symbolic Algebraic Comput., W. 
Kuchlin, editor, pages 184-188, New York, N.Y., 1997. ACM Press. 

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH. NORTH CAR- 

OLINA 27695-8205 
E-mail address: ka1tofen@eos .ncsu. edu 
URL: http: //www. math. ncsu. edu/-kaltof en 

BELLCORE, 445 SOUTH ST., MORRISTOWN, NEW JERSEY 07960-6438 
Current address: IBM Zurich Research Laboratory, Saiumerstrasse 4, Ch-8803 Riischlikon, 

Switzerland 
E-mail address: sho@zurich. ibm. com 


	Cit r307_c308: 
	Cit r312_c313: 


