
MATHEMATICS OF COMPUTATION
Volume 67, Number 223, July 1998, Pages 1253-1283
S 0025-5718(98)00952-1

DETECTING PERFECT POWERS
IN ESSENTIALLY LINEAR TIME

DANIEL J. BERNSTEIN

ABSTRACT. This paper (1) gives complete details of an algorithm to compute
approximate kth roots; (2) uses this in an algorithm that, given an integer
n > 1, either writes n as a perfect power or proves that n is not a perfect power;
(3) proves, using Loxton's theorem on multiple linear forms in logarithms, that
this perfect-power decomposition algorithm runs in time (log n)1+(l).

1. INTRODUCTION

An integer n > 1 is a perfect power if there are integers x and k > 1 with
n - xk. Note that k < 1g2 n; also, the minimal k is prime.

A perfect-power detection algorithm is an algorithm that, given an integer
n > 1, figures out whether n is a perfect power. A perfect-power decomposition
algorithm does more: if n is a perfect power, it finds x and k > 1 with n - xk.
A perfect-power classification algorithm does everything one could expect: it
writes n in the form xk with k maximal.

Theorem 1. There is a perfect-power classification algorithm that uses time at
most (log2 n)l?+(l) for n -* oo.

A more precise bound is (log2n) exp(O(loglognlogloglogn)) for n > 16.
This paper is organized as a proof of Theorem 1. Part I reviews integer and

floating-point arithmetic. Part II develops an algorithm to compute kth roots.
Part III presents a perfect-power decomposition algorithm, Algorithm X. It bounds
the run time of Algorithm X in terms of a function F(n). Part IV and Part V
analyze F(n). Part V completes the proof of Theorem 1 by showing that F(n) is
essentially linear in log n. Part VI surveys several practical improvements.

Motivation. Before attempting to factor n with algorithms such as the number
field sieve [16], one should make sure that n is not a perfect power, or at least not a
prime power. This is a practical reason to implement some power-testing method,
though not necessarily a quick one.

Speed is more important in other applications. According to [18] there is a
theoretically interesting method of finding all small factors of n (to be presented in
a successor to [19]) for which perfect-power classification can be a bottleneck.

Received by the editor October 11, 1995 and, in revised form, April 10, 1997.
1991 Mathematics Subject Classification. Primary 11Y16; Secondary 11J86, 65G05.
This paper was included in the author's thesis at the University of California at Berkeley. The

author was supported in part by a National Science Foundation Graduate Fellowship.

(?1997 Daniel J. Bernstein

1253

1254 DANIEL J. BERNSTEIN

See [4, section 1] for another example. Here average performance, for n chosen
randomly from a large interval, is more important than worst-case performance.
See Part IV for results oni the average performance of Algorithm X.

For readers who want to compute high-precision inverses and roots. One
of myl major tools is of independent practical interest. Section 8 gives complete
theoretical and practical details of an algorithm to compute y-1/k to b bits. My
goal here was to produce something immediately useful in practice.

For readers interested in transcendental number theory. One of my major
tools is of independent theoretical interest. Section 19 contains a corrected proof
of a bound on the number of perfect powers in a short interval. Both the bound
and the corrected proof are due to Loxton; the underlying theorem about linear
forms in logarithms is also due to Loxton. Sections 16, 17, 18, and 19 may be read
independently of the rest of the paper.

Index of notation. d(i,j) ?9; divb(r, k) ?5; div2,b(r, k) ?21; F(n) ?12; H (a) ?17;
,d(t) ?14; 0d2(t) ?14; e(t) ?14; MI(b) ?3; it(b) ?3; mul(r, k) ?4; MU12,b(m, k) ? 21;
nrootb(y,k) ?8; nroot2,b(y,k) ?21; P(k) ?6; powb(r,k) ?6; pow2,b(x,k) ?21; roundt
?10; truncbr ?5.

2. ACKNOWLEDGMENTS

Many thanks to Hendrik W. Lenstra, Jr., John Loxton, Michael Parks, Igor
Shparlinski, Jon Sorenson, and the referee for their helpful comments. Lenstra
pointed out that the method of Part III had a p-adic analogue; Shparlinski suggested
that [20] would help in the F(n) analysis; Loxton supplied the corrected proof of
[20, Theorem 1] shown in section 19.

PART I. ARITHMETIC

3. INTEGER ARITHMETIC

I represent a positive integer n inside a computer as a string of bits giving n's
binary expansion. It is easy to add and subtract integers in this form.

A b-bit number is a positive integer smaller than 2b. The string representing
such an integer has at most b bits.

The algorithms in this paper use a black box that performs integer multiplication.
By definition M-time is the time spent inside this black box. Let M(b) be an
upper bound on the time used by this black box to compute the product of two
b-bit numbers. In this paper, I show that the M-time used by various algorithms
is bounded by a sum of various M(b)'s.

Define Al(b) = max {M(j)/j: 1 <j < b}. Then 1i(b) is a nondecreasing function
of b, with M(b) < b1i(b). If M(b)/b is already nondecreasing then bi(b) M(b)/b.

Lemma 3.1. If K(t) C to(') and L(v) = max {K(t): t < v} then L(v) Cvo().

So if M(b) C bl+o(l) then Al(b) C bo(l). When 1(b) C bo(l) the black box is
performing fast multiplication.

11 have abandoned the practice of mechanically replacing "I" with "we" in my papers.

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1255

Proof. Fix e > 0. Select u > 1 such that -Elgt < lgK(t) < lgt for t > u. Fix
v > max{u,L(u)1/E}. If t < u then K(t) < L(u) so lgK(t) < lgL(u) < Elgv; if
u < t < v then lgK(t) < Elgt < EIgv. Hence lgL(v) < Elgv. On the other hand
lg L(v) > lg K(v) > - Ig v. D

Notes. Theorem 1 refers to time, not M-time. For definiteness I select a RAM, with
logarithmic cost for memory access, as a somewhat realistic model of computation;
the black box can be implemented using any fast multiplication algorithm. The
reader may then verify that the time spent by these algorithms is almost exclusively
M-time. The same is true in practice.

See [15, section 4.3.3] for a discussion of fast multiplication algorithms. For the
best known bounds on multiplication speed see [29] or [1]; note that it is possible to
build a different algorithm, achieving the same bounds, out of the method of [24].

4. FLOATING-POINT ARITHMETIC

A positive floating-point number is a positive integer divided by a power of
2. The computer can store a pair (a, n), with a an integer and n a positive integer,
to represent the positive floating-point number 2an. (In practice lal is always very
small, so a can be stored as a machine integer.)

Notice that (a, n) and (a - 1, 2n) represent the same number. The computer can
shift among representations. It could repeatedly divide n by 2 until it is odd, for
example, to make the representation unique.

Let (a, n) and (a', n') represent the positive floating-point numbers r 2an and
r' = 2a n' respectively. Set f = min {a, a'}. Then r + r' = 2f (2a- f n + 2a -f n') is
represented by the pair (f, 2a- f n + 2a-f in'). Similarly, if r > r', then r - r' is a
positive floating-point number represented by the pair (f, 2afm - 2a ifn').

Multiplication is easier: (a + a', nn') represents the product rr'. If n and n' are
both b-bit numbers then the M-time here is at most M(b).

Define mul(r, k) = kr for r a positive floating-point number and k a positive
integer. To compute mul(r, k) I use an algorithm designed for multiplying by small
integers; time spent computing mul is not M-time.

Notes. A typical computer has hardware designed to handle a finite set of floating-
point numbers. One may study the extent to which operations on the real numbers
can be approximated by operations on such a small set [15, section 4.2.2]; the
difference is called "roundoff error." Rewriting 2a-1 (2n) as 2an is often called
"denormalization"; it is rarely considered useful.

My point of view is somewhat different. I do not worry too much about computer
hardware, and I do not work within any particular finite set. I regard approximation
not as causing "error" but as limiting the precision used for intermediate operations,
thus speeding up the computation. I can work with n more efficiently than 2n, so
I happily rewrite 2a-1(2n) as 2an.

A floating-point number is also known as a dyadic rational [23, page 435].
See [15, exercise 4.3.1-13] for an algorithm to compute mul(r, k).

5. FLOATING-POINT TRUNCATION

In this section, I define truncation to b bits, written truncb, and show that
r/ truncb r is between 1 and 1 + 21b. More generally, for any positive integer k, I

1256 DANIEL J. BERNSTEIN

define divb(r, k) as a floating-point approximation to r/k, so that r/k divb(r, k) is
between 1 and 1 + 21-b.

Fix b > 1. Set divb(a,n,k) = (a + f - Flgk] - b, [n/2fFl-gk1-bkj), where
2f -1 < n < 2f. (Note that f - rlgk] - b may be negative.) This map induces a
map, also denoted divb, upon positive floating-point numbers:

divb(2an, k) = 2a+f -rg k-bLn/2f-Flg k-b k if 2f -1 < n < 2f

To compute divb(r, k) I use an algorithm designed for dividing by small integers;
time spent computing divb is not M-time.

Lemma 5.1. Fix b > 1 and k > 1. Let r be a positive floating-point number, and
set s = divb(r, k). Then s < r/k < s(l + 21-b).

Proof. Put r = 2an and define f by 2f1 < n < 2f. Also write g = f- lgk] - b
and m = [n/29kj, so that s = 2a+g.. Then m < n/29k < m + 1; furthermore
m > [2f-1/29kj = [2Fgk12b-1/kj > [2b-1 = 2b-1. Thus 2a+?g < 2 an/k <
2a+g(m + 1) = 2a+gm(1 + 1/m) < 2a+gm(1 + 21-b). So s < r/k < s(1 + 21-b) as
desired. L]

Define trunCb r = divb(r, 1); i.e., truncb 2an = 2a+f-b [n/2f-bj if 2f-1 < n < 2f.
Observe that [n/2f-bj is a b-bit number.

Lemma 5.2. Fix b > 1. Let r be a positive floating-point number, and set s
trunCbr. Then s < r < s(l + 21 -b).

Proof. Take k = 1 in Lemma 5.1. D

Notes. For most computers a base such as 232 is more convenient than base 2. It
is tempting to replace trunc by a function that keeps a few extra bits "up to the
word boundary." One may safely succumb to this temptation, as long as M(b) is
also changed appropriately: the crucial properties of trunc are Lemma 5.2 and the
fact that two values of truncb may be multiplied in M-time M(b).

See [15, exercise 4.3.1-16] for an algorithm to compute divb(r, k).

6. APPROXIMATE POWERS

Let r be a positive floating-point number, and let k and b be positive integers.
Then powb(r, k), the b-bit approximate kth power of r, is a floating-point
approximation to rk. In this section, I show how to compute powb(r, k) in M-time
at most P(k)M(b), where P(k) < 2 Llgkj.

Define P(k) for k > 1 as follows: P(1) = 0; P(2k) = P(k) + 1; P(2k + 1)
P(2k) + 1.

Lemma 6.1. P(k) < 2 Llgkj.

Proof. For k = 1, P(k) = 0 and lgk = 0. If P(k) < 2 Llgkj then P(k) + 2 <
2 Llgkj +2 = 2 Llg 2kj, so P(2k) = P(k) + 1 < P(k) + < 2 Llg 2kj and P(2k+ 1) =
P(k) + 2 < 2 Llg 2kj < 2 Llg(2k + 1)j. D

Define powb(r, k) for k > 1 as follows:

PoWb(r, 1) = trUnCbr,

powb (r, 2k) = trUnCb (Powb (r, k)2),

PoWb (r, 2k + 1) = trunCb (PoWb (r, 2k) poWb (r, 1))

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1257

Lemma 6.2. powb(r, k) < rk < powb(r, k)(1 + 21 b)2k-1.

Proof. If k = 1 then trunCbr < r < (trunCbr)(1 + 21-b) by Lemma 5.2. If
k > 1 there is, by definition of pow, some partition i + j = k with powb(r, k) =

truncb(powb(r,i)powb(r,j)). If powb(r,i) < ri < powb(r,i)(1 + 21-b)2i-1 and
powb(r, j) < ri < powb (r, j) (1 +21-b)2i-l then powb (r, k) < powb (r, i) powb(r, j) <
ri ri < powb (r i) powb (r, j)(1 + 21-b)2(i+j)-2 < pow (r, k)(1 + 21-b)2k-1. D

Algorithm P. Given a positive floating-point number r and two positive integers
b, k, to print poWb (r, k):
1. If k = 1, print trunCb r and stop.
2. If k is even: Compute powb(r, k/2) by Algorithm P. Print truncb(powb(r, k/2)2)

and stop.
3. Compute powb(r, k-1) by Algorithm P. Print trunCb(powb(r, k-1) trunCb r). O

Lemma 6.3. Algorithm P computes powb(r, k) in M-time at most P(k)M(b).

Proof. Count the number of multiplications. There are 0 = P(1) multiplications for
powb(r, 1). If there are at most P(k) multiplications for powb(r, k), then there are
at most P(k) + 1 = P(2k) multiplications for powb(r, 2k), and at most P(2k) + 1 =
P(2k + 1) multiplications for powb(r, 2k + 1). D

Notes. Algorithm P is the left-to-right binary method, which comes from a
broad class of powering algorithms indexed by addition chains [15, section 4.6.31.
Lemma 6.2 would remain true if powb (r, k) were replaced with the output from any
algorithm in this class. For many k one can find an algorithm using fewer than P(k)
multiplications; this is useful in practice. See [15, section 4.6.3] and [11, section
1.2] for further discussion.

For large k it is probably better to compute rk as exp(k log r) by the methods
of [9], which take essentially linear time.

PART II. ROOTS

7. SOME OVERLY SPECIFIC INEQUALITIES

Lemma 7.1. If i > O and 0 < e < 1 then (1 + /4j)2 < 1 +e.

Lemma 7.2. If , > 1 then 7/8 < (1 - 1/8)'K.

Lemma 7.3. If O < t < 1/36 then (1 + 3t)(1 + t)(1 + 32t/3) < 1 + 16t.

Lemma 7.4. If , > 1 and O < t < 1/(4K+4) then (1 +t)2K+33-1 < 16t(7h-2)/9.

8. APPROXIMATE ROOTS

In this section, I consider the problem of root extraction: computing yl/k,

given a positive floating-point number y and a positive integer k. I also consider
the problem of inversion: computing y-1. I solve both problems by showing how
to compute -l/k. Then yl/k = y(y-l/k)k-1. (Alternatively pl/k = (y- /1) /;

more generally yl/k = (y-I/ki)-/k2 if k = k1k2.)
For each positive integer b, I will construct a floating-point number nrootb (y, k)

satisfyiing nrootb(y, k)(1 -2 b) < y-1/k < nrootb(y, k)(1 + 2 b). My method, in
brief, is a binary search for small b, and then Newton's method with increasing
precision for all larger b.

1258 DANIEL J. BERNSTEIN

Binary search: the idea. I am trying to find a root z of zky - 1. Binary search
means guessing the bits of z, one by one. Given an interval R surrounding the root,
I evaluate zky - 1 at the midpoint of R. Depending on the sign of the answer, I
replace R by either the left half of R or the right half of R. I repeat until R is
sufficiently small.

To speed up the computation, I.only approximate z ky - 1. If the answer is too
close to 0 for me to be sure about its sign, I replace R with the middle half of R.

Binary search: the algorithm. For b < 3 + rlg k], I define and construct
nrootb(y, k) by Algorithm B below. For the time spent by Algorithm B, see Lemma
8.1. For the accuracy of its output, see Lemma 8.3.

A brief comment on the constant 993/1024 in Algorithm B: The proof of Lemma
8.2 will use the fact that 993/1024 is between 32/33 and e-133. It is the "simplest"
floating-point number in this range.

Algorithm B. To compute nrootb(y, k) for 1 < b < rlg 8k1: In advance, find the
exponent g satisfying 29-1 < y < 29, and set a = L-g/kj, so that 2a y Y-1/k <
2 a+1 . Also set B = rlg(66(2k + 1)) .
1. Set z <- 2a + 2a-1, i < 1.
2. (See Lemma 8.2 for an invariant.) Now nrootj (y, k) z. If j b, stop.
3. Compute r <- truncB (POWB(z, k) truncB y).
4. If r < 993/1024, set z <- z + 2a-j-1
5. If r > 1, set z <-- z - 2v

6. Set j <- j + 1. Go back to step 2. -

Lemma 8.1. For b < rlg8k], Algorithm B computes nrootb(y, k) in M-time at
most (b - 1)(P(k) + l)M(Flg(66(2k + 1))]).

Proof. Algorithm B gets to nrootb(y, k) in b - 1 iterations. Each iteration takes
time at most P(k)M(B) to find POWB(z, k), by Lemma 6.3, and time at most M(B)
to multiply by truncB y. ?

Lemma 8.2. 2a < z - 2a-j < y-llk < z + 2a-j < 2a+1 at step 2 of Algorithm B.

Proof. Induct on j. For j = 1: z - 2a-1 = 2a < y-1/k < 2a+1 = z + 2a-1

Assume the result true for j. Then, at step 3, the computation of r gives r <
zky < r(1 + 21-B)2k+1 by Lemma 5.2 and Lemma 6.2. But (1 + 21-B)2k+l <
(1 + 1/(33(2k + 1)))k? <e1/33 < 1024/993 so r < zky < r(1024/993).

Case 1: r > 1. Then zky > 1. Algorithm B replaces z by z' = z - 2a-i-1; and
z/ -2a-j-1 = z - 2a-j < y-1/k < z = z' + 2a-j-I

Case 2: r < 993/1024. Then zky < (993/1024)(1024/993) = 1; z is replaced by
Z z + 2a-j-1 and z' - 2aj1 - z < yl/k <z + 2a-j = Z/ + 2a-j-

Case 3: 993/1024 < r < 1. Then Algorithm B leaves z unchanged. I have
j < rlg8k] - 1 < lg8k so 2-j-2 > 1/32k. Thus (1 + 2-J-2)k > 1 + 1/32, so

7 2a-j-1\k / 2a-j-1\k 993 33
(Z + 2a-j-l)ky = Zky (+) > zky (1+ 2a?1) > 232 > >

On the other hand (1 -2-i-2)k < 32/33. So

(Z-a k_2 2a-j1 'k 1024 32 1
(z - 2a-j-1)ky = Zky(< z 2 a J <

z 2a+1 ~~~~993 33

Hence z - 2a-j1 < y1/k < z + 2a-3j-1 as desired.D

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1259

Lemrna 8.3. nrootb(y, k)(1-2-b) < y-/k < nrootb(y, k)(1 + 2-b) for b < lg 8k].

Proof. nrootb(y, k) appears as z in step 2 of Algorithm B when j = b. By Lemma
8.2, 2a < Z - 2a-b < y-1/k < Z + 2a-b < 2a+I. Then z2-b > 2a-b So z(1 - 2-b) <

z - 2a-b < y-1/k < z + 2a-b < z(l + 2 b) D

Newton's method: the idea. I am trying to find a root of h(z) = z-ky- 1.
Newton's method is to replace the first guess, z, by a much better guess, z-

h(z)/h'(z) = z + (z - yzk+I)/k. I repeat until z has the desired accuracy.
Newton's method roughly doubles the number of correct digits on each iteration.

To speed the computation, I compute the full-precision answer only on the last step;
I work with only 1/2 the digits in the previous step, 1/4 in the step before that,
and so on.

Newton's method: the algorithm. For b > 4 + rlg k], I define and construct
nrootb(y, k) by Algorithm N below. For the accuracy of nrootb(y, k), see Lemma
8.7. For the time spent by Algorithm N, see Lemma 8.4.

Algorithm N. To compute nrootb(y, k) for b > rlg 8k] + 1: In advance set b'
rlg 2k] + A(b - lg 2k])/2] and B = 2b' + 4 - lg k]. Note that b' < b.
1. Compute z <- nrootb' (y, k), by Algorithm B if b' < rlg 8k] or by Algorithm N if

b' > rlg8k] A+1.
2. Set r2 <- mul(truncB z, k + 1).
3. Set r3 <- truncB (POWB (z, k + 1) truncB y).
4. Set r4 - divB (r2 -r3, k). Now nrootb(y, k) = r4. LI

Lemma 8.4. For b > rlg 8k] + 1, Algorithm N cemputes nrootb(y, k) in M-time at
most T+AKU, where T = rlg4k] (P(k) + 1)M(Flg(66(2k + 1))]), K = P(k+ 1) + 1,
and U = (2b + 10 + O 8 + klg k] lg(b- lg 2k])-3])[(b + 6).

Proof. B - lg 2k] -5 = 2(b' - lg 2k]) = 2 (b - rlg 2k])/2], so B is either b + 5 or
b+6. Hence B+2b' < b+6+2(b'- rlg 2k])+2 rlg 2k] < b+7+(b- rlg 2k])+2 Flg 2k]
2b + 8 + lg k]. Note that rlg(b' - lg 2k])] = rlg(b- lg 2k]) -1].

Observe that b' > rlg 8k]. If b' > rlg 8k], Algorithm N calls itself to compute
nrootb/ (y, k). By induction, this call takes M-time at most T + KU', where U'
(2b' + 10 + F8 + lg k] rlg(b' - lg 2k]) - 3])u(b' + 6).

If b' = [lg 8k], Algorithm N calls Algorithm B to compute nroot [lg 8k1 (y, k). By
Lemma 8.1, this call takes M-time at most T. Note that in this case U' = 0, since
2 rlg 8k] + 10 + F8 + lg k] rlg(lg 8k] - [g2k]) -3] = 0.

So in either case step 1 of Algorithm N takes M-time at most T + KU'. By
Lemma 6.3, step 3 of Algorithm N uses Al-time at most P(k + 1)M(B) +AI M(B)
KM(B). Thus the total M-time used by Algorithm N is at most

T + KMII(B) + KU'

= T + KMAJl(B) + K (2b' + 10 + 8 + Alg k] rlg(b' - lg 2k]) - 3]) (b' + 6)

< T+K(B + 2b' + 10A+ 8A+ lgk] rlg(b' - rlg2k]) -3])u(b+ 6)

< T+ K(2b + 10 + A 8 + lgk] + A8 + lgkk] lg(b' - rlg2k]) -3])[t(b+ 6)

= T + K(2b + 10 + F8 + lgk] klg(b-Flg 2k])-33]) (b + 6) = T + KU

as claimed. O

1260 DANIEL J. BERNSTEIN

Lemma 8.5. Define w = ((k + 1)z - zk+Iy)/k. If z(1 +-E) = y-1/k and 6> -1/8k
then w < y-l/k < w(1 + 4kE2/3).

Proof. 1-kE < (1 +AE)-k, so k + 1 -Zky = k + 1-(1+- < k + kE = k/(zyl/k),

so w = (z/k)(k + 1 _ zky) < y-l/k Next (1 + 6)k > 1 + kE > 1 - 1/8 > 1/2, so
k + 1 > 2 > (1 +A E)k zky, so w > 0. Finally

y- llk
1 _ -(1 -ke) (1 + E) k _ 1-(1 - kE)(k + 1) 1 -ke

w (k + 1)(1 + 6)k -1 (k + 1)(1 + 6)k -1 k + 1

< 1-(1-kE)/(k-+ 1) _ 1-kE kE2 <4

- (k+ 1)(1 + kE)-1 k+ 1 1 + -+ kE-3

since 1 + (k + 1)? > 1-(k + 1)/8k > 1-1/4 = 3/4. D

Lemma 8.6. If z(1 -2-b') < y-1/k < Z(1 + 2-b) in Algorithm N then r4(1 - 2-b)

< y-l/k < r4(1 + 2 b).

Proof. Define w = ((k + 1)z - zk+?y)/k. The idea is that w is very close to y-1/k,
(r2 - r3)/k is very close to w, and r4 is very close to (r2 - r3)/k.

Define E by z(1 + E) = y-1/k, so that -2-b <6E < 2-b . Note that b' > rlg 8k] >

lg8k, so 2-bl < 1/8k, so -1/8k <6E < 1/8k.
B is either b + 5 or b + 6, so 25-B < 2-b. Abbreviate 6 8 21-B. Then 6 < 1/36,

6 < 1/(4k + 4), and 8(1 + 8) < 9. Also (2k)2-2b' < 21+rlgkl-2b' = 25-B - 168.
By construction r2 < (k + 1))z < r2(1 + 6), r3 ? zk+ly < r3(1 + 6)2k+3, and

r4 < (r2 - r3)/k < r4(1 + 8).
By Lemma 7.2, 7/8 < (1 - 1/8k)k < (1 + E)k = y lZ k, SO zky < 8/7. So

r3 zk+ly(+ 6) zky(l + 6) 8 1 + 6 9 2

r2 (k+ 1)z k+ 1 7k+ 1 7(k+ 1) 3

By Lemma 8.5, w < y-1/k, so

y Ilk >w kw (k + 1)z - zk+ly r2 r3(1 + A)2k+3

r4 r4 r2-r3 r2-r3 r2-r3

=1- _ (1 + 6)2k+3 1 > 1 (1 + 6)2k31 > 1-166
r2/r3 -1 >- (7k -2)/9

by Lemma 7.4.

On the other hand, by Lemma 8.5, y-1/k < w(1 + 4kE2/3), so

y -/k w(1 + 4kE2/3) w(l + (2/3)(2k)2 2b') w(1 + (32/3)6)

r4 r4 r4 r4

k(1 + A)w(1 + (32/3)6) (1 + A)((k + 1)z - zk+ly)(1 + (32/3)6)

r2 -r3 r2 -r3

(1 + 6)(r2(1 + 6) -r3)(1 + (32/3)6)

r2 -r3

= 1+ 6) (1 + 332 6 (+ 6
)< (1 + 6) (1 + 32

6) (1 + 36)

< 1 + 166

by Lemma 7.3. CI

Lemma 8.7. nrootb(y, k)(1 - 2-b) < y-1/k < nrootb(y, k)(1 + 2-b) for all b.

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1261

Proof. For b < rlg8k] this is Lemma 8.3. For b > lg8k] + 1, nrootb(y, k) is r4 in
Algorithm N. By induction z(1 -2-b) < y-1/k < z(1 + 2-b'), so r4(1-2-b) <

y-l/k <r4(1 + 2-b) by Lemma 8.6. LIi

Notes. Algorithms B and N are reasonably "tight": they do not use unnecessarily
high precision. As the reader can see, I pay for this tightness in complex proofs,
though the algorithms themselves are short and straightforward.

The basic outline of my method is well known, as is its approximate run time.
For Newton's method with increasing precision see [9] (which popularized [8]) or
[7, section 6.4]. For the specific case of inversion see also [15, Algorithm 4.3.3-R]
or [1, page 282]. For a controlled number of steps of binary search as preparation
for Newton's method see [4, section 3].

However, it is difficult to find a complete error analysis in the literature, let alone
an algorithm carefully tuned for speed in light of such an analysis. An algorithm
with results of unknown accuracy or an algorithm not even stated explicitly is
of little value for implementors.

A notable exception for k = 1 is [15, Algorithm 4.3.3-R], which is stated in full
detail and supported by tight error bounds; but Algorithm N will be faster, because
it pays close attention to the desired final precision.

For Newton's method generally see [26, section 9.4]. The inequalities in Lemma
8.5 follow from general facts of the form "when Newton's method is applied to the
following class of nice functions, the iterates exhibit the following nice behavior."

Binary search as a root-finding technique is also known as bisection. For bi-
section generally see [26, section 9.1]. My use of binary search is closer in spirit
to [26, section 9.1] than to [4, section 3] since I limit the precision of intermediate
calculations.

For large k, just as rk is probably best computed as exp(k log r), ri/k is probably
best computed as exp((logr)/k) by the methods of [9].

PART III. POWER TESTING

9. How TO TEST IF n = xk

Consider the problem of testing, given positive integers n, x, and k, whether
n - xk. I- could simply compute xk and check whether it equals n. But I can
eliminate most (x,n) more efficiently, by checking whether n = xkis consistent
with the first few digits of n and x.

Algorithm C. Given positive integers n, x, k, to compute the sign of n - xk: In
advance set f = Llg 2nj.
1. Set b +- 1.
2. Compute r - powb+rg8k] (x, k).
3. If n < r, print -1 and stop.
4. If r(1 + 2-b) < n, print 1 and stop.
5. If b > f, print 0 and stop.
6. Set b -- min {2b, f }. Go back to step 2. LII

The farther apart n and xk are, the more quickly Algorithm C can tell them
apart. Define a distance d on integers as d(i, j) = 0 when i = j, d(i, j)= Llg li - jl
when i :& j; I will express the speed of Algorithm C in terms of d(n, xk).

1262 DANIEL J. BERNSTEIN

Lemma 9.1. Set f = Llg 2nj. At the start of step 3 of Algorithm C, r < x k <

r(1 + 2-b). At the start of step 4, r K'n and Xk < r + 2f-b. At the start of step 5,
n < r + 2f-b

Proof. By Lemma 6.2 and Lemma 7.1,

r<xk<r(1~2b?~g4k12k-i r 12k-1
r < x < r 1+ <r(1 A 2b4) < r(1 +

2b)

If Algorithm C does not stop in step 3 then r < n < 2f, so r(1 + 2-b) < r + 2f-b.

If it also does not stop in step 4 then n < r(1 + 2-b). D-l

Lemma 9.2. When Algorithm C stops, it prints the sign of n - xk.

Proof. Use each piece of Lemma 9.1. If Algorithm C stops in step 3 then n < r;
but r < x k so n < x k. If it stops in step 4 then r(1 + 2-b) < n; but Xk < r(1 + 2-b)

so xk < n. If it stops in step 5 then b > f, so r < n < r + 1 and r < xk < r + 1, so
in-xkl < 1; both n and Xk are integers, so n = xk. -lI

Lemma 9.3. Set f = Llg2nj and g = max{1, f - d(n,xk)}. Algorithm C stops
before step 6 if b > g.

Proof. I prove the contrapositiye. If Algorithm C gets to step 6 then b < f. By
Lemma 9.1, r < n < r+2f-b and r < Xk < r+2f-b, so In - Xk < 2f-b. If n = Xk

then d(n, x k) = < f -b; if n + x k then d(n, Xk) = lg In _Xk |] < lg In _Xkl <

f-b. Either way b < f-d(n,k) Kg. FlI

Lemma 9.4. Set f = Llg 2n], bj = min {2i, f }, and g = max { 1, f-d(n, xk)}.
Then Algorithm C takes M-time at most P(k) EO<j<rlggl M(bj + Flg8k]).

Proof. Each iteration of step 2 uses time at most P(k)M(b + Flg 8k]), by Lemma
6.3. Notice that b[lgfi-i < f but b[lgfi = f. So Algorithm C uses first b - bo
then b <- b1, and so on through at most b <- b[Fgf . If j > rlgg] then j > 1 and

bj-l = max{2j-1,f} > max{2rlggl,g} > g, so Algorithm C stops before step 6
with b -- bj-1, so it never gets to bj. LII

Lemma 9.5. Set f = Ilg22n and g = max{1, f-d(n,xk)}. Then Algorithm C
takes M-time less than P(k) (4g + rlg 2g] rlg 8k])u(2g + rlg 8k]).

Proof. Set bj = min {2i,f}. If j < rlg g] then bj < 2i < 2g, so M(bj + rlg8k]) <
(23 + rlg 8k])u(2g + rlg 8k]). Now by Lemma 9.4 the M-time is at most

P(k) ? M(bj + rlg 8k]) < P(k) ? (2i + Alg 8k]),u(2g + Flg 8k])
o j[< Flggl o<?j<[lggl

< P(k)(2rFlg 2gl + lg 2g] rlg 8k])u(2g + rlg 8k])

< P(k) (4g + Flg 2g] rlg 8k])u(2g + rlg 8k])

as claimed. LII

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1263

Notes. My use of increasing precision is at the heart of my improvement over [4].
A 50-digit number that starts with 9876 is not an 11th power; the remaining 46
digits are irrelevant. In general, Algorithm C does not inspect many more bits of n
than are necessary to distinguish n from xk. The last step dominates the run time.

In Newton's method it is natural to double the precision at each step. But
Algorithm C could use any vaguely geometric progression. In practice I should
modify the b sequence to take into account the speed of multiplication and the
distribution of x and n.

Lemma 6.3 is hopelessly pessimistic about the time needed to compute xk to
high accuracy. Since x has very few bits, the first few multiplications use relatively
low precision. In fact, the P(k) factor in Lemma 9.4 should disappear as g grows.
Similarly, the bound from Lemma 6.2 is somewhat loose. A careful analysis would
show that, when b is large, step 2 of Algorithm C can use fewer than Flg 8k1 guard
bits. This is probably not worth the added complexity in practice.

Step 3 of Algorithm C compares a high-precision number, n, to a low-precision
floating-point number, r. The alert reader may have observed that this is a potential
bottleneck. The M-time in Algorithm C is essentially the precision of r; this may
be much less time than it takes to read the digits of n. Fortunately, one can check
whether n < r in time proportional to the size of r, so there is no difficulty. Similar
comments apply to step 4.

10. How TO TEST IF n IS A kTH POWER

Let n and k be integers larger than 1. Algorithm K checks whether n is a
kth power. The idea is to compute a floating-point approximation r to n 1/k; say
in/k_ r < 1/4. Then, if r is within 1/4 of an integer x, check whether xk = n.

This algorithm uses a precomputed approximvation y to n-1. See Lemma 10.2.

Algorithm K. Given integers n > 2 and k > 2, and a positive floating-point number
y, to see if n is a kth power: In advance set f = Llg 2nj and b = 3 + Ff/kl.
1. Compute r ?- nrootb (y, k).
2. Find an integer x with r - xl < 5/8.
3. If x = 0 or r - xl > 1/4, print 0 and stop.
4. Compute the sign of n - xk with Algorithm C.
5. If n - xk, print x and stop.
6. Print 0. D

Lemma 10.1. 1-t/(-t) < 1 + 2t and -t/(1 +t) > 1-2t if O < t < 1/10.

Lemma 10.2. r - n1/k I < 1/4 in Algorithm K if y(1 - 2-b) < n-1 < y(1 + 2-b).

Proof. Write 6 = 2-b. By hypothesis, y(l - 8) < n-1 < y(l + 8), so
y- /k(l + a)-1/k < nl/k < y-l/k(l _ 6)-l/k. By Lemma 8.7, r(1 - 6) < y /

< r(1 + 6). Note that 6 < 1/16 < 1/10. Apply Lemma 10.1 twice: first

r < Ilk< n1/k (1 + Il Ilk k (1 + 6) Ilk Ilk (1 + 6)112
< n <+ n V)'< n (I + n)l + n-- 1 (/ /)

~ -1/k2Il Ik
1 IkA - I21k + Ifk2-2-Ff/kl ?11k +

1264 DANIEL J. BERNSTEIN

second

y- 1/k 1/k 16)I
k

/k (k
_

6)1 =1/k Ilk (- _
6-1 1)

> 1/k -nl/2 > I l/kl- =1/k 2f/k-2-2Ff/kl > l/k 1
4'

Hence Ir - n/k < 1/4. Ci

Lemma 10.3. Set f [Llg22nj and b = 3 + [f/k] . Assume that y(1 - 2-b) <

n-1 < y(l + 2-b). If ' is a kth power, Algorithm K prints n 1/k. If n is not a kth
power, Algorithm K prints 0.

Proof. Algorithm K finds an integer x with r - xl < 5/8. By Lemma 10.2,
ir-nl/kI < 1/4, so |x -nlk < 1/4 + 5/8 < 1. If n is a kth power then x

and n1/k are both integers so x = n1/k. Then r - xl = r - n1/kl < 1/4 and x > 0,
so Algorithm K does not stop in step 3; in step 5 it prints x.

On the other hand, if n is not a kth power, then certainly nr x xk, so Algorithm
K does not stop in step 5. So it prints 0. LII

Let t be a real number such that t - 1/2 is not an integer. Write round t for the
nearest integer to t: the unique integer i with i - t < 1/2.

Lemma 10.4. Set f =Ilg2n] , g = max{1,f-d(n, (roundnl/k)k)}, and b
3 + Ff/kl]. Assume that y(- 2-b) < n-1 < y(l + 2-b). Then Algorithm K uses
M-time less than

(4g + [lg 2g] [lg 8k]) P(k)u(2g + [lg 8k]) + [lg 4k] (P(k) + 1)M([lg(66(2k + 1))])

+ (2 Lf/kj + AIlg fj [8 + lgk])(P(k + 1) + 1)4([f/k] + 9).

Proof. Define T = rlg 4k] (P(k) + 1)M([lg(66(2k + 1))]) . Note that b - [lg 2k=
[f/k] - [lgk] + 2 < [f/2] + 1 < f since f >?2.

Algorithm K first computes nrootb(y, k). If b < [lg 8k] then, by Lemma 8.1, this
uses M-time at most' T. If b > [lg 8k] then, by Lemma 8.4, it uses M-time at most

T + (P(k + 1) + 1) (2(b - lg 8k]) + F8 + Ig k] rlg(b - lg 2k]))- 1),u(b + 6)

? T + (2(f 1Ck - 1) + F8 + Ig k] rlg f - 1]) (P(k + 1) + 1)p(f 1Ck] + 9)
? T + (2 Lf Ik] + [8 + Ig k] Llg f])(P(k + 1) + 1)p([f 1k] + 9).

After computing r = nrootb(y, k), Algorithm K finds an integer x. It may invoke
Algorithm C; if it does, then r - xl < 1/4, and Jr - nl/k < 1/4 by Lemma 10.2,

so |x - n1/k < 1/2, so x = round nl/k* Finally, by Lemma 9.5, Algorithm C uses
M-time at most P(k) (4g + [lg 2g] [lg 8k])u(2g + [lg 8k]). CI

11. How TO TEST IF n IS A PERFECT POWER

To see whether n is a perfect power, I run through the primes p < lg n; I check
for each p whether n is a pth power. For a time analysis see the next section.

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1265

Algorithm X. Given an integer n > 2, to decompose n as a perfect power if possible:
In advance set f = Llg 2nj .
1. Compute y <- nroot3+rf/21 (n, 1).
2. For each prime number p < f:
3. Apply Algorithm K to (n, p, y); let x be the result.
4. If x > 0, print (x,p) and stop.
5. Print (n, 1). D

Lemma 11.1. y(l - 2 -3-F/P) < n < y(l + 23Ff/P1) in Algorithm X.

Proof. y(l -2-3-Ff/21) < n < y(l + 2-3-Ff/21) by Lemma 8.7; and p > 2. D

Lemma 11.2. If n is a perfect power, Algorithm X prints a prime number p and a
positive integer x such that xP = n. If n is not a perfect power, Algorithm X prints
(n,1)

Proof. By Lemma 11.1, y(- 2-3-Ff/P1l) < n < y(l + 2-3- rf /Pi). If Algorithm X
stops in step 4 then, by Lemma 10.3, xP = n.

Conversely, if n is a perfect power then n is a pth power for some prime p <
1gn < f. By Lemma 10.3, Algorithm X stops in step 4. LIi

Notes. The result of [4] is a perfect-power classification algorithm that runs in time
log3 n; on average, under reasonable assumptions, it runs in time log2 n/log2 log n.

The run time of Algorithm X is much better: it is essentially linear in log n,
given fast multiplication. The proof uses transcendental number theory. For further
discussion see section 12.

Algorithm X is not new. It is stated in, e.g.; [17, section 2.4]. But God is in
the details: without good methods for computing n I/k and for checking whether
xk = n, Algorithm X is not so attractive. The authors of [17] go on to say that one
can "save time" by adding a battery of tests to Algorithm X. Variants of Algorithm
X are also dismissed in [11, page 38] ("This is clearly quite inefficient") and [4].
Observe that, by putting enough work into the subroutines, I have made Algorithm
X quite fast-so fast, in fact, that typical modifications will slow it down.

I use the Sieve of Eratosthenes to enumerate the primes p < f. See [27] for
faster methods. Note that the best order of operations in Algorithm X depends on
the distribution of inputs; for example, if the input source is very likely to produce
37th powers, then p = 37 should be done first.

12. INTRODUCTION TO F(n)

Define

F(n) = , (lgp)max {1,lgn-d(n, (roundnl/P)P)}
2<p<lg n

for n > 2. Here p is prime, and round t means an integer within 1/2 of t.
F(n) has about lg n/ log lg n terms, labelled by prime exponents p < lg n. The p

term reflects the difficulty of determining that n is not a pth power. In each term,
the main factor max {1, lgrn - d(rn, (round nrl/P)P)} says how many bits of n agree
with a nearby pth power. If n is very close to a pth power then this factor is close
to Ig n. The minor factor Ig p represents the effort spent computing pth powers.

1266 DANIEL J. BERNSTEIN

F(n) is the subject of Part IV and Part V. Part IV gives lower and upper bounds
for F, and shows that the normal and average behaviors of F are comparable to
the lower bound.

Part V shows that F((n) is bounded by (lg n) l+e(n) for a certain function e E o(1).
The approach is through the following application of transcendental number theory:
there cannot be many perfect power.s in a short interval. This means that there are
not many perfect powers close to n, so not many of the main factors in F(n) are near
lg n. Note that the exponent 1 + e(n), albeit theoretically satisfying, is ridiculously
large for any reasonable value of n.

Lemma 12.1. Set f = Ilg2n I. For n > 2, Algorithm X takes M-time at most
(8F(n) + 6f Llg 16fJ3)M(2f + [lg 128fJ).

The reader may verify that Algorithm X does not use much non-M-time. Hence
Algorithm X takes time essentially linear in F(n) + log n, provided that it uses a
fast multiplication algorithm. Since F(n) is essentially linear in log n, the run time
of Algorithm X is essentially linear in log n.

Proof. Write c = Ilg fJ. Note that [lg f] < c + 1. Note also that Z2<p<f i/p < C.

Step 1 computes y = nroot3+[f/21 (n, 1). By Lemma 8.4 this takes M-time at
most 2M(8) + 2(f + 8 Ilg4f])M([f /2] + 9).

Each iteration of step 3 invokes Algorithm K for a prime number p < f. Write
g = gp = max{1,f-d(n,(rourrdnl/P)P)}. By Lemma 11.1, Lemma 10.4, and
Lemma 6.1, Algorithm K takes M-time less than

(4g + [Ig 2g] [lg 8p]) P(p)(2g +- [lg 8p]) + [lg 4p] (P(p) + 1)M([lg(66(2p + 1))])

+ (2 f/Jp] + Ilg fJ 8 + lgp])(P(p + 1) + 1)i([f/p] + 9)

<8g lgpJI (2f+c+4)+4Lf/p] (c?+1)p(f+9)
+ 2(c + 1) ((c + 2)(c + 4) + (c + 3)(c + 9) + c(c + 9)) u(2f + c + 7)

< (8g lgp + 4(c + 1)f/p + 6(c + 1) (C2 + 9c +12)) (2f + c + 7).

The total M-time is then less than M(2f + c + 7) times

2f + 16(c + 3) + E (8gp Igp + 4(c + 1)f/p + 6(c + 1)(C2 + 9c + 12))
2<p<f -1

< 2f + 16(c + 3) + 8F(n) + 4(c + 1)fc + 6f(c + 1)(C2 + 9c + 12)
< 8F(n) + 2f (1 + 4(c + 3) + 2c(c + 1) + 3(c + 1) (C2 + 9c + 12))
< 8F(n) + 6f (c + 4)3

as claimed.

Notes. F(n) is generally not the dominant term in Lemma 12.1; see Part IV. The
reader may be tempted to chop one or more lg f factors out of the other term by,
for example, using known bounds on the functions t, 2, 2 defined in section 14, or
by assuming that p(b) grows at least as quickly as lg b. However, this is a pointless
exercise: several variants of Algorithm X appear in Part VI, and it is easier to
achieve any desired run-time goal with one of those variants than with the original
algorithm.

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1267

13. PROOF OF THEOREM 1

In this section I combine all my results to prove Theorem 1: there is a perfect-
power classification algorithm that uses time at most (lgn)1+o(1) for n - oo.

Let T(n) be an upper bound on the time taken by Algorithm X for n > 2. As
discussed in section 12, one may take T(n) E (lgn)l+o(l) for n > 2, given fast
multiplication.

Define U(n) = max {T(m)/ lgm: m < n}lg n for n > 2.
Now T(m)/lgm E (lgm)'?(1) for m > 2, so U((n)/lgIn E (lgn)?(') for n > 2 by

Lemma 3.1. Hence U(n) E (lgrn)1+o(1).

To finish the proof I exhibit a perfect-power classification algorithm, Algorithm
PPC, and prove that it runs in time 2U(n).

Algorithm PPC. Given n > 2, to print (x, k) such that (1) x k = n and (2) x is not
a perfect power:
1. Apply Algorithm X to n; let (x,p) be the result.
2. If (x, p) = (n, 1), print (n, 1) and stop.
3. (Note that 2 < x < n.) Apply Algorithm PPC to x; let (c, k) be the result.
4. Print (c, kp). ElI

Lemma 13.1. If n = xP then pU(x) < U(n).

Proof. U((n)/ lg n is a nondecreasing function of n, so pU(x)/ lg x < pU(n)/ lgn I

pU(n)/plgx = U(n)/lgx. D

Lemma 13.2. Algorithm PPC spends time at most 2U(n) plus housekeeping.

Proof. Step 1 takes time at most T(n). If n is a perfect power then Algorithm PPC
calls itself recursively; by induction this takes time at most 2U(x). The total time
is at most T(n) + 2U(x) < U(n) + pU(x) < 2U(n) by Lemma 13.1. LIi

PART IV. ANALYTIC METHODS

14. INTUITION ABOUT F(n)

In this section, I give some motivation for the facts about F(n) proved in the
next section. The theme here is that F(n) is roughly lg n lg lg n.

F(n) is a sum over primes p. I will analyze it in terms of the following three
simpler sums: Y(t) =

E2<p<t
logp t; 02 (t) =

E2< log2 p tlogt - t; ?(t)

E2<p<t(l?gP)/P r11log t.
Fix p, and define u as follows: n is upn1'l/P away from the nearest pth power.

Then u is, intuitively, a random number between 0 and 1/2. Indeed, if n is randomly
selected from the interval [xP, (x + 1)P], then its distance to the nearest endpoint
ranges uniformly from 0 to ((x + 1)P - xP)/2 (1/2)pxP-1 (1/2)pnr1-/P.

These approximations break down when x nr/P is smaller than p, so assume
for the moment that p is at most lg n/ lg lg n.

The number of bits I need to distinguish n from the nearest pth power is about
lg n - lg upn1/P - (1/p) lg n - lgp - lgu. If in fact u were uniformly distributed
between 0 and 1/2, then the average value of lg u would be 2 f I/2lg adu -1 -

1/ log 2. So I estimate the number of bits, on average, as (1/p) lg n-lgp+1+1/ log 2.
Note that this is positive, since p < n

1268 DANIEL J. BERNSTEIN

As p grows past Ig n/ Ig Ig n, on the other hand, the pth powers become so widely
spaced that I usually need only a single bit of n.

Now consider F(n). F(n) compares n with the pth power of the integer closest
to nl/P; this is usually the nearest pth power to n. So I estimate that, on average,

F(n)
g (l Ign lng2p+(+ 1 2lgp + (lgp

p log 2 E~~~? og p<1g n/lglg n Ig 7-/ Ig Ig n<p<lg n

21 (Ig
n Ig

lg- (gn
Ig

+3(ln)
V
W(Ign)

log 2 2 lg Igl logln-'0 g Ig n l
9

g Ig n
lo e

log 2
lgIn loglglgnr+ilog2-+12

Ig Igng + lglgn log2 2

What makes F(n) difficult to analyze is that u is occasionally very close to 0.
Then - lg u is much larger than its usual value. If this happens for a few primes
p-as it does, for example, when n 32768 then F(n) will be noticeably larger
than expected. I will get a lower bound on F(n) by changing u to 1, but I cannot
get an upper bound in any analogous way.

Notes. See [28] for bounds on W. See [3, section 2.7] for a general approach to
obtaining bounds on functions such as t, t02, and ?.

15. ANALYSIS OF F(n)

Lemma 15.1 gives a lower bound for F(n), roughly lg lg n-lg lg lg n-i/ log 2 times
lg n. Lemma 15.2 gives a weak (quadratic) upper bound for F(n) . Lemma 15.4 (in
light of Lemma 15.3) gives a much better upper bound for the normal behavior of
F(n), roughly (1 + 2/log 2)(IgnIlglg n). Combining Lemmas 15.2, 15.3, and 15.4
produces about the same bound for the average behavior of F(n). A more careful
analysis, omitted to save space, shows that the average for 2f-K < n < 2f is at
most (2/ log 2)f (f -1) + (12/ log 2) V(f -1), roughly 2 lg n Ilg lg n, if f > 10.

These results translate directly into facts about the run time of my perfect-power
decomposition algorithm, Algorithm X. See Lemma 12.1.

Lemma 15.1. If n > 4 then

F o(n) > 2 (1l I) lgn - 2 292 (2 rl)

Proof. Note that lglgrn > 1. Fix p < lgrn/lglgrn, so that p < lgrn < nl/P. Set
x = roundn

If n > xP then

n- xp = (n 1/P - x)(nl-1/P + xn -2/p +... + Xp-1)

< 1(/ + +
P= P

1-1/p. < - (n -l/P + n1-l/P + ...+ n-/) = nl-/
-

2 ~ ~ ~ ' 2

If n < xP then

XP - n = (x -n1/P)(XP-1 + Xp-2nl/P + ... + nl-/P) < P XP

< P /p + < Pr-1/p (i +)P Pl-l/p l/2

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1269

Either way In-x xP < pnl-1/P, so d(n, xP) < (1- 1/p) lgn + Ilgp. Hence

F(n) > E (gP) (p Ign g =f
I

(ln) log2
n

02 Iggn) 1o22
p<lg n/ Ig lg

as claimed. O

Lemma 15.2. F((n) < t(lg n) lg n/ log 2.

Proof. lg n- d(n, (round n </P)P) Ig n, and 2<p<lg n lgp = (lgI n)/ log 2.

For the next two lemmas I say that n is exceptional for p if it is within
n1-1/P/ lg2 n of a pth power. I say that n is exceptional if it is exceptional for
some prime p < lg n.

Lemma 15.3. There are at most 23+f /(f - 1) + 22+f /2(f - 1) exceptional integers
n in the interval 2f-1 <n < 2f.

Proof. Fix p. Set T = 2f-f/P/(f - 1)2; if n is exceptional for p then n differs from
some pth power by less than T. Write I = [2f-1, 2f - 1].

Let S be the set of integers x between [2(f-1)/P - 11 and 12f/P + 1] inclusive.
Say In-yPI < TwithrniE I. Then there is anx E S such that In-xPI < T: if
y E S, take x = y; if y > L2f/P + 1], take x = 12fl/P + 1]; if y < [2(f-1)/P -11,
take x = [2(f-1)/P -11.

There are L2f/P] - [2(f 1)/P] + 3 < 22+f/P elements x E S. Each x produces at

most 2T + 1 integers exceptional for p. Thus there are at most 22+f/p(2T + 1) <
23+f/(f - 1)2 + 22+f/2 integers in I exceptional for p.

There are at most f-1 primes p, so there are at most 23+f /(f-1) +22+f/2(f-1)
exceptional integers in I. O

Lemma 15.4. F(n) < ?(lg n) lg n/ log 2 + (2 lg lg n + 1) t(lg n)/ log 2 if n is not
exceptional and n > 4.

Proof. By hypothesis d(n, xP) > lg n1-/P -2 lg lg n - 1 for any x and any p < lg n.
So lgn-d(n,xP) < (1/p) lgn + 21glgn + 1. Thus

F(n) < - (lgp) ((1/p) lg n + 2 Ig lg n + 1)
p<lg n

= S (
p

Ign+(21glgn+l)lgp (lggn)rIgn)+21glgn+;19(I)

p<lg n

note that the sum is nonempty since n > 4. El

Notes. F(n) usually behaves like lg n lg lg n, but it behaves more like 2 lg n lg lg n
when n is a power of 2 with a sufficiently smooth exponent. Is F(n)/lgnlglgn
unbounded?

PART V. TRANSCENDENTAL METHODS

16. MULTIPLICATIVE DEPENDENCE

I call xO,... ,xn multiplicatively dependent if there are integers ao,... an,
not all zero, with xao ... 1.

1270 DANIEL J. BERNSTEIN

The following lemma, quoted without proof, is a special case of a theorem of
Loxton and van der Poorten.

Lemma 16.1. Let xo,... ,x be multiplicatively dependent positive integers with
> 3. Then there are integers ao,... , an, not all zero, with x"* x* n = 1, and

|aj I < 3n n (log Xo) ... (log Xn).

Notes. Lemma 16.1 follows from [21, Theorem 5(A)], with D = 1, w(Q) = 2, and
A(1) = log 2; note that 1 < log xj and 2(n!/(log 2)n) < 3nn.

17. LINEAR FORMS IN LOGARITHMS

The height of a nonzero rational number a is H (a) = max{Ii I, lij}, if a = i/i
in lowest terms. The height of 0 is 0.

The following lemma, quoted without proof, is a special case of a theorem of
Loxton.

Lemma 17.1. Fix c > 1, n > 1. Let a1,... ,an be multiplicatively independent
positive rational numbers. Let

/511 012 ... iOln

0B21 0B22 ... iB2n

O/5l iOc2 .. * * iBn

be a rank-c matrix of rational nuribers. Fix Aj > 4 and B > 4 such that H(aj) <

Ai and H(13ij) < B. Write Q = (log Al) ... (log An). Write

Al (13i1 1/312 * * * 31mn1 (1o0 e
A2 J i 1321 22 ... m Ylog a)109 |

~Ac /Ocl ic2 * in 109 an)

Then, for some i, lAil > exp(-(16n)200n(QlogQ)l/ClogBQ).

Notes. A central theorem of Baker [5] states that a single nonzero linear form in
logarithms cannot be exceedingly close to 0, or in fact to any algebraic number.
Loxton's theorem [20, Theorem 4] generalizes Baker's theorem to handle several
independent linear forms in the same set of logarithms. Lemma 17.1 follows from
[20, Theorem 4] with d= 1.

The constants 16 and 200 here can easily be reduced.

18. MORE INEQUALITIES

Lemma 18.1. If x1ki E [L, U] and x2k2 E [L, U] then k1 logxi - k2 10g x21 <
log(U/L).

Lemma 18.2. For u > 1000 set T = (1/10) u/u jlog2.56u. Then T > 1, 4T+2 < 'u,
200T log 16T < u/T = 10 au log 2.56u, 6T < eu, and T(7+lg T+u/ log 2-lg log 2) < u.

Lemma 18.3. If v > 1 andt > 5 then log(tv +tv-1) < -2vloglog((t-+-1)/(t-1)).

Lemma 18.4. If log log 16 < t < 1600 then t - log log 2 < 40\ logt.

Lemma 18.5. For n > exp exp 1000 write t = log log n and u = log log 2n. Then
6u3 exp(30 /u-log 2.56u) < exp(40 tlogt).

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1271

19. POWERS IN SHORT INTERVALS

In this section, I combine the lemmas stated in the previous three sections to
show that a short interval [L, U] cannot contain many perfect powers. (These results
are due primarily to John Loxton. See the notes at the end of this section.)

What I really count is the number of exponents k such that there is a kth power
in [L, U]. Lemma 19.2 is my workhorse: it says that there can be very few "large"
exponents k. Lemma 19.4 gives an upper bound for the number of prime exponents
k. Corollary 19.5, included here for historical reasons, counts the number of perfect
powers in [L, U] when U = L + L.

Lemma 19.1. The matrix

/ki +tal ta2 ... tar
tal k2 +ta2 * tam

9 tal ta2 ... km +tamr

has determinant k, ... km(1 + talI/ki + ta2/k2 + + tam/km) for kl,... km r 0.

Proof. Subtract the first row from all succeeding rows; divide column i by ki; add
each column to the first column. The resulting matrix is upper triangular, with
1+tai/ki+ta2/k2+?- .+tam/km in the top left and 1 elsewhere on the diagonal. O

Lemma 19.2. Fix an interval [L, U] with 1 < U/e < L < U. Fix an integer
C > 1. Fix K > 4 such that

K > (16C)200C log U (log U)l/C((C + 1) log log U)2
- log log (U/L)

and

K> (160)200Clog U
K >(16C)200C l log(U/L) (log 6CC + (2C + 1) log log U)2.

Let S be -a set of integer pairs (x, k) with Xk E [L, U], x > 4, k > K. Assume that
k and k' are coprime whenever (x, k) and (x', k') are two distinct pairs in S. Then
#S < C + lgC! + ClglgU.

Note that log U > 1 and -loglog(U/L) > 0.

Proof. Step 1. Let (XI, k1),..., (xm, km) E S be multiplicatively independent;
here I say that (xI, ki), ..., (xm, km) are multiplicatively dependent if x1, . . x, cm
are multiplicatively dependent. I claim that m < C.

Suppose not: suppose there are m > C + 1 multiplicatively independent pairs
(x1, k1),.. ., (xmr, km) E S. Then, in particular, xi,.. ., xc+l are multiplicatively
independent. Put B = max {kj: 1 < j < C + 1} and Q = Hl1<i<C+1 log xj. Notice
that

BQ < JiJ kjlogxj < (1ogU)C+l.
1<i<C+l

1272 DANIEL J. BERNSTEIN

Now

k, logxi-kc+l logxc+l (ki 0 0 -kc+i \ logxi
k210gx2-kc+llogxc+l 10 0 O h -kc+1

I: . ~~~~~log xc+i
kc log xc - kc+? log xc+F, \0 ... kc -kc +l

The conditions of Lemma 17.1 are met: each xj is a positive integer; the matrix
has rank C; xj > 4 and B > K > 4; H(xj) = xj; H(O) = 0 < B; and H(-kj) =

H(kj) = kj < B. Hence, for some i,

Iki log xi - kc+1 log xc+l I > exp(-(16C)200C(Q log Q)1/0 log BQ).

Apply Lemma 18.1 and take logarithms:

loglog(U/L) > -(16C)200C(Q log Q)1/ ~log BQ.

Hence

K(-loglog(U/L)) < (16C)200CKQ1/C(logQ)1/ClogBQ

< (16C)200CK1+0/CQ0/C(logBQ)1/C logBQ

(16C)200C (KC+ 1
log)X (logBQ)1+1/c

1<i<C+l

/ 1/C
< (16C) 200C (kilogxi (log BQ)2

1 <i<C+l

< (16C) 20C i? 1 logU ((C+ 1)loglogU)2
1 <i<C+l

= (16C)2OC (log U)1+1/C((C + 1) log log U)2

< K(-loglog(U/L)).

Contradiction.
Step 2. Now fix a maximal multiplicatively independent subset of S, say

(Xi,ki),(X2,k2))...,(xm,km). Then m < C. If m = 0 then #S = 0 < C +
lg C! + C lg lg U, so assume m > 1.

I construct a matrix as follows. Consider the primes q dividing xlx2 ... xm. The
matrix has one row for each q, namely ordq x1, ordq x2,... , ordq xm.

The m columns of this matrix are independent. Indeed, if al, a2,... , am are
integers such that a1 ordq xi + -+am ordq xm = 0 for every q, then ordq H3 x = 0,
so Hlj xaj = 1. The xj's are independent, so every aj must be 0.

Hence the matrix has m independent rows. Fix ql, q2, qm such that the
corresponding rows are independent. Write

Cordql Xi ordql X2 ... ordql xm
ordq2 Xi ordq2 X2 ... ordq2 xm

Q=

ordqm xl ordqm X2 ... ordqm Xm)

for the matrix formed from these rows.

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1273

By construction det Q is a nonzero integer. Each entry of Q is bounded by Ig U,
so Idet Ql < m!(lg U)m < C!(lg U)C.

Step 3. I claim that, for any (x,k) E S other than (xl,kl),. .,(xr,km), k
must divide det Q.

Let (xo, ko) be any element of S different from (xl, kl), . . . , (xT, km). Then ko
is coprime to k1, . . . , km, by hypothesis on S.

Since (xl, k1),. .., (xn, kn) is a maximal multiplicatively independent subset of
S, xo, x1,. .. , xT must be multiplicatively dependent. The hypotheses of Lemma
16.1 are satisfied: each xj is a positive integer larger than 3. Hence there are
integers ao, ... , a, not all zero, with x0 ... x'm = 1, and

aj I < 3mn (log xo) ... (log xm).

Since x1,.. ., xn are independent, ao must be nonzero. Without loss of generality
I assume that gcd {ao,. . . , am} = 1; if not, divide each aj by the common gcd.

Suppose that ao/ko + al/k, + . + am/km ? 0. Consider the matrix

(ki + koal/ao koa2/ao koa /ao
9 = (koa /ao k2+ koa2/ao koam/ao

koal/ao koa2/ao km + koam/ao

By Lemma 19.1, e has determinant

ko k, . km (aO +a, + ,.+_)

aO ko ki kmn

which is nonzero. Hence e has rank m.
Next observe that

(k logxi-ko logxo /'
k2l0gX2-kologx0 1 (

kkm log xm-ko log xo) log /
Indeed,

ki log xi - ko log xo = ki log xi + - (-ao log xo)
aO

ki logxi + ? (a, logxl + + a, logxm).
aO

Put B = 6mm(logxo) ...(logx,)max{kj :O<j<m} and Q = Hl1<i<mlogxi.
Notice that

BQ < 6mm(log U)2m+1 < 6CC(log U)2C+l.

Again the conditions of Lemma 17.1 are met: each xj is a positive integer; the
matrix has rank m; xj > 4 and B > 4; and the matrix entries have height at most
B. Hence, for some i, ki logxi - ko log xo > exp(-(16m)200m(Q log Q)1/m log BQ).
Apply Lemma 18.1 and take logarithms:

log log(U/L) > -(16m)200m (Q log Q)1/m log BQ.

1274 DANIEL J. BERNSTEIN

So

K(- log log (U/L)) < (16m) 200mKQ1/m (log Q) 1 /m log BQ
1 /m

< (16m)200m Km Fi logxi) (logBQ)2
l<i<m

1 /m

< (16C)200C
(

ki log) X /(log BQ)2
l<i<m

< (16C)200C(log U) (log 6CC + (2C + 1) log log U)2

< K(-log log(U/L)).

Contradiction.
Hence ao/ko + ai/ki + + am/km = 0. But ko is coprime to k1,.. ., km, so ko

must divide ao.
Consider the column vector V = (ai,a2,. .. ,am). Since xa'x2a2 Xam = x -ao

I have a1 ordq x1 + a2 ordq x2 + ... + am ordq xm =-ao ordq xo for any prime q.
In other words ao divides QV, so ao divides (adj Q)QV = (det Q)V, so ao divides
(det Q)aj for each j. But gcd {al, a2,... ,am} 1, so ao must divide det Q. Hence
ko divides det Q.

Step 4. For every pair (x, k) e S, other than (x1, ki), .I. ., (xm, km), I have shown
that k divides det Q 7& 0. Different pairs have coprime k's, by hypothesis, so det Q
is divisible by the product of all those k's. Each k is at least 2. Hence there are no
more than lg Idet Ql < lgC!+Clglg U pairs (x, k) other than (x1, k1),. .., (xm, km).
Finally m < C. Cl

Lemma 19.3. Fix an interval [L,U] with U/e < L < U and U > expexp 1000.
Let S be the set of primes k such that there is a kth power in [L, U]. Then

#S < (log log U) 3 + log U -exp (30VIog log Ulog(2.56 log log U)))

Proof. Define u = loglogU, T = (1/10) +u/log2.56u, and C =TJ.
Apply each piece of Lemma 18.2. First T > 1 so C > I so T < C + 1 < 2C.

Hence

(16q)200C(log U)1/C < (16T)200T (log U) 2/T

exp (200Tlog 16T+ T <exp(30 /ulog2.56u).

Furthermore 6+C+lgC!+ClglgU < C(7+lgC+lglgU) < T(7+lgT+lglgU)
T(7+lgT+u/log2-lglog2) <u3.

Set

(1q200C log U (lgUi/u K = 4 + (16C?? 1l /)(log U)1/CU3 - log log (U/L)

<4+ - log U 3
< 4 + _log log (U/L) u3 exp(30 /u log 2.56u).

Now (C + 1)u < (2T + 1)u < u3/2 so

K > (16C) 200C log (U/L) (log U) 1/C ((C + 1)u) 2.

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1275

Furthermore,

log 6CC < Clog6C < (2C + 1) log6T < (2C + 1)u < (2T + 1)u < (1/2)u3/2,

so

K > (16C)200C log U -(log U)l/C (log 6CC + (2C + 1)u)2
- log log (U/ L)

> (16C)200C l log (U/L) (log 6CC + (2C + 1)u)2.

Finally I count the primes k E S. There are at most K - 1 primes k < K. For
each k > K select an integer x such that xk E [L, U]. Consider the pairs (x, k).
By Lemma 19.2, there are at most C + lg C! + C lg lg U pairs with x > 4. Since
U/L < 3, there is at most one power of 3 in [L, U], and at most two powers of 2.
Hence

#S < K +2+C+ lg C! + C lg lg U

-log log (U/L) 25u"
< (+ - o log U/L exp(30 lo?g log U log2.6)

as desired. C]

Lemma 19.4. Fix n > expexp 1000. Set u = loglog2n. Fix v with 1 < v <
log5 n. Let S be the set of primes k such that there is a kth power in the interval
[n-nl-l/v, n + nl-l/v]. Then #S < 3vu3exp(30 vulog 2.56u).

Proof. Set L = n-n1-l/v and U = n + n-1/` < 2n. By Lemma 18.3, log U <
-2v log log(U/L). Also U > n > exp exp 1000, and U/L < (1 + 1/5)/(1 - 1/5) < e,
so #S < (log log U)3(1 + 2v exp(30 /log log U log(2.56 log log U))) by Lemma 19.3.
Finally log log U < u. O

Corollary 19.5. For n > 16, there are fewer than exp(40 v/log log n log log log n)
perfect powers in the interval [n, n + V/ni].

Proof. Let S be the set of primes p such that there is a pth power in I = [n, n + n].
Each perfect power in I is a pth power for some prime p. On the other hand, I
is too short to contain two pth powers: if xP > n then (x + 1)P > xp + pxp-l >
n + pnl-'/P > n + n. Hence the number of perfect powers in I is at most #S.

Write t = loglogn. I will show that #S < exp(40 tlogt). For t < 1000 this is
easy. If p E S then p < lg(n + n) < lg 2n. So #S < lgn = exp(t - loglog 2) <
exp(40tlog_t) by Lemma 18.4.

For t > 1000, apply Lemma 19.4 with v 2. Set u = loglog2n. Then #S <
6u3exp (30/u -log 2.56u) . Finally, by Lemma 18.5, #S < exp(40 -logt). Cl

Notes. Corollary 19.5 was stated in [20, Theorem 1]. There is a gap in the proof in
[20]: it incorrectly assumes that, in my notation, ao/ko + al/ki +--- + am/km / 0.
(Note that "-ani+ibj/b.m+i" in [20] was a typo for "+am+lbj/bm+ij')

John Loxton has closed the gap, and has graciously allowed me to present his
correction here. His idea is expressed above in Step 2 and Step 4 of Lemma 19.2.
Other than this, the approach here is the same as the approach of [20, Theorem 1],
modified slightly to handle more general intervals [L, U].

The conclusion of Lemma 19.2 could easily be improved. Each column of the
matrix Q has sum at most (lgU)7K. From this one can prove with Hadamard's

1276 DANIEL J. BERNSTEIN

inequality [15, exercise 4.6.1-15] or with Gershgorin's inequality see [13, problem
6.1-3] that the determinant of Q is at most ((lg U)/K)m.

In general the bounds in this section are very far from best possible. A more
careful study would produce many quantitative improvements and perhaps some
qualitative improvements.

Let S be the set of exponents k such that there is a kth power in [L, U]. One
could prove a bound on the size of S as follows. Lemma 19.3 supplies a bound call
it m on the number of primes in S. Every k E S is built up from those primes.
Hence the size of S is at most the number of products < lg U of those primes, which
is at most the number of products < lg U of the first m prime numbers, which in
turn can be estimated by analytic techniques. See [28] and [10].

20. FINAL F(n) ANALYSIS

In this section, I use Lemma 19.4 to bound the function F(n) introduced in
section 12. This upper bound is in (lgn)1+(l).

Lemma 20.1. Fix n > expexp 1000. Set u = loglog22n. Then

F(n) < (lg n Ig lg n) (I + 3u3 exp(30Vfulog2.56u)lg(4lgrn).

Proof. Write g(p) = (round nl/P)P. Also abbreviate K= 3u3 exp(30 Tu log 2.56u).
The critical idea here is to sort the primes p by d(n, g(p)). Let c < lg n be the

number of primes between 2 and lgrn. Let P1,P2, . ,p, be the primes, in such an
order that d(n, g(pj)) is a nondecfeasing function of j.

Now F(n) = EI<j<c(lgpj)maxtl,Ign-d(n,g(pj))J. I estimate this sum in
two pieces: first where 1 < j < K, second where K < j < c.

There are fewer than K terms in the first piece, and each term is less than
lg n lg lg n, so the sum of the terms in the first piece is less than K lg n lg lg n.

In the second piece, set v = j/K > 1. I have j < c < lgrn and K > 3 so
v < log5 n.

Suppose that lgrn- d(n,g(pj)) > 1 + (1/v)lgn. Then

In- g(pi) < 2d(ng(p))+I < 2d(n,g(pj))+1 < 2(1-1/v) lgn = n1-1/v

for all i < j. So there is a pith power within n1-1/v of n for 1 < i < j. But that is
impossible, since by Lemma 19.4 there are fewer than Kv = j primes p with a pth
power so close to n.

Hence lgrn - d(n,g(pj)) < 1 + (1/v) lgn. So the sum of this piece is at most

ZK<j<c(lg Ig n) (I + (K/j) lg n) < (lg Ig n) EI<j<c(1 + (K/j) lg n) < c lg lg n +
Klgnlglgnlg2c. Cl

Notes. Various constants here can of course be improved.

PART VI. PRACTICAL IMPROVEMENTS

21. THE 2-ADIC VARIANT

In this section, I describe a 2-adic variant of Algorithm X. With this variant, I
can work with integers rather than floating-point numbers; I no longer need guard
bits; I can jump directly into Newton's method without a preliminary binary search;
and a proper error analysis takes a few lines rather than several pages.

It will be convenient to restrict attention to odd n. See section 22 for a method
to handle even n.

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1277

Motivation. To check if n is a kth power, I compute a tentative kth root of n an
integer x such that no integer other than x can possibly be the kth root of n. Then
I test whether xk = n.

To find x in Part II and Part III, I constructed a number that was close to a
kth root of n in the usual metric. I used the same metric again to check whether
xk = n: I computed xk in low precision to see whether it was close to n.

Nothing in the original problem suggests this metric. The 2-adic variant uses a
different metric, where i and j are close if i - j is divisible by a high power of 2.

Notation. This section deviates from the notation of Parts 1, 11, and III: r, y, and
z are odd integers rather than positive floating-point numbers.

Lemma 21.1. If 2i 2j (mod 2b+1) and b > 1 then i2 = j2 (mod 2b+1).

2-adic approximate powers. Fix positive integers k and b. For any integer
m define pow2,b(m, k) = mk mod 2b. See section 6 for methods of computing
pow2,b(m, k) without many multiplications. As I compute pow2 b(m, k), I keep
track of an "overflow bit" to figure out whether mk mod 2b = Mik.

Checking tentative kth roots. Here is a straightforward algorithm for checking
whether xk = n.

Algorithm C2. Given positive integers n, x, k, to see if n = x k: In advance set
f = [lg22nj.
1. If x = 1: Print 0 if n = 1. Print 2 if nr$ 1. Stop.
2. Set b <- 1.
3. Compute r <_ PoW2 b(X, k). Simultaneously figure out if r = xk.

4. If n mod 2b $ r, print 2 and stop.
5. If b > f: Print 0 if r = xk. Print 2 if r $ xk. Stop.
6. Set b - min {2b, f }. Go back to step 3. D

Lemma 21.2. Algorithm C2 prints 0 if and only if n = xk.

Proof. If n- = xk then r = pOW2,b(x, k) = Xk mod 2b = n mod 2b so Algorithm
C never stops in step 4. Hence it stops in step 5. When it does, b > f, so
r = n mod 2f =n - Xk. Thus it prints 0. Conversely, if it prints 0, then xk = r =
n mod 2f = n. O

2-adic approximate multiplication and division. Fix b > 1. For m an integer
and k a positive integer write mul2,b(m, k) = km mod 2b*

If k is odd, write div2,b(m, k) for the unique integer between 0 inclusive and 2b
exclusive such that m _ k div2,b(m, k) (mod 2b).

Finding 2-adic approximate kth roots. Fix an odd integer y and a positive odd
integer k. I will find an approximate negative kth root of y by Newton's method.
For motivation see section 8. (Question: Why do I insist that k be odd? Answer:
Square roots introduce a bit of difficulty. See Algorithm S2 below.)

1278 DANIEL J. BERNSTEIN

For each b > 1, I define and construct an odd integer nroot2,b(y, k), between 0
and 2b, by the following algorithm:

Algorithm N2. Given an odd integer y and positive integers b, k with k odd, to
compute nroot2,b(y, k): In advance set b'= Fb/2].
1. If b = 1: nroot2,b(y, k) = 1. Stop.
2. Compute z <- nroot2,b' (y, k) by Algorithm N2.
3. Set r2 <- mul2,b(z, k + 1).
4. Set r3 <- YpoW2b(z, k + 1) mod 2b
5. Set r4 <- div2,b(r2- r3, k). Now nroot2,b(y, k) = r4. D

Lemma 21.3. If k is odd and r = nroot2,b(y, k) then rky mod 2b = 1.

Proof. If b = 1 then r = 1 and y mod 2 = 1.
If b > 2 then r shows up as r4 in Algorithm N2. Note that b' < b. By induction

zky mod 2b' = 1. So zky = 1 + 2b'j for some integer j.
Note that 22b' 0 (mod 2b). So (k - 2b'j)k kk - k2b'jkk- = kk(1 - 2b'j) by

the binomial theorein.
By construction r2 (k + 1)z, r3 zk+ly and kr4 - r2-r3. Hence kr4

z(k + 1 - zky) = z(k -2b '). So

kk k _ k -2b'j)k (1 + 2b' j)kk(l 2b'j) k (I - 22b'j2) k

But kk is odd, so rky = r 1ky =I (mod 2b) as claimed. D

Finding 2-adic approximate square roots. Again fix an odd integer y. For
each b > 1, I define and construct nroot2,b(y, 2) by the following algorithm:

Algorithm S2. Given an odd integer y and a positive integer b, to compute an
integer nroot2,b(y, 2): In advance set b'= [(b + 1)/2].
1. If b = 1: nroot2,b(y, 2) is 1 if y mod 4 = 1, 0 otherwise. Stop.
2. If b = 2: nroot2,b(y, 2) is 1 if y mod 8 = 1, 0 otherwise. Stop.
3. Compute z <- nroot2,b' (y, 2) by Algorithm S2.
4. If z = 0: nroot2,b(y, 2) = 0. Stop.
5. Set r2 <- mul2,b+1 (z, 3).
6. Set r3 <- y pow2,b+l (z, 3) mod 2b+1.
7. Set r4 <- (r2 - r3)/2 mod 2b. Now nroot2,b(y, 2) = r4. D

Lemma 21.4. Set r = nroot2,b(y, 2). If i2y mod 2b+1 1 for some odd integer i
then r #, O. If r # 0 then r2y mod 2b+l = 1.

Proof. First consider b = 1. If y mod 4 = 1 then r 1 so r2y mod 4 = 1. If
y mod 4 = 3 then r = 0 and i2y mod 4 = 3 for any i.

Next consider b = 2. If y mod 8 = 1 then r = 1 so r2y mod 8 = 1. If y mod 8 : 1
then r = 0 and i2y mod 8 = y mod 8 : 1 for any i.

If b > 3 then r shows up as r4 in Algorithm S2. Note that b' < b. If z = 0 then
by induction i2y mod 2b'+1 is never 1, so i2y mod 2b+1 is never 1; and r = 0.

If z 7& 0 then by induction z2y mod 2b'+1 = 1. So z2y = 1 + 2b'+1j for some
integer j. Note that (1 - 2b'j)2 = 1-2b'+1j + 22b'j2 1 - 2b'+1j (mod 2b+1) since
2b' > b+ 1.

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1279

By construction r2 - 3z (mod 2b+1), r3
=

Z3y, and 2r4 - r2 r3. Hence
2r4 z(3 -z 2y) z(2 - 2b'+lj). By Lemma 21.1 r -z2(1 - 2b'j)2 Thus

r2y 2 z2 bjy(1-2b'j)2 (1 + 2b'+lj)(1 - 2b'+1j) 1 22b'+2j2 - 1

as claimed. El

Perfect-power decomposition. I imitate Algorithm K from section 10: to see if
n is a kth power, I compute and then check a tentative kth root.

Algorithm K2. Given a positive odd integer n, an integer k > 2 such that either
k = 2 or k is odd, and an odd integer y (see Lemma 21.5), to see if n is a kth power:
In advance set f = Llg 2nj and b = f f/k].
1. Calculate r <- nroot2,b(y, k) .
2. If k = 2: If r = 0, print 0 and stop.
3. Check if n = rk with Algorithm C2. If so, print r and stop.
4. If k = 2: Check if n = (2b- r)k with Algorithm C2. If so, print 2b - r and stop.
5. Print O and stop. Lii

Lemma 21.5. Set f = Llg 2nj and b = f/k] . Assume that yn mod 2b+1 = 1. If
n is a kth power, Algorithm K2 prints nl/t. If n is not a kth power, Algorithm K2
prints 0.

Proof. Case 1: n is not a kth power. Then n 7& rk and n + (2b-r)k, so Algorithm
K2 does not stop in steps 3 or 4. So it prints 0.

Case 2: n = x k, and k is odd. By Lemma 21<3, rky mod 2b = 1. Furthermore
yn mod 2b = 1 so rk _ n = xk (mod 2b).

Put c = rk-1 + rk-2x + + xk-l; each term in this sum is odd, and there are
k terms, so c is odd. But 2b divides rk -xk = (r - x)c so 2b divides r - x. Both r
and x are positive integers smaller than 2b, so r = x. Hence n = rk; Algorithm K
prints r in step 3.

Case 3: n = xk, and k = 2. By Lemma 21.4, r is nonzero, since yx2 mod 2b+1

1. By Lemma 21.4 again, r2y mod 2b+1 = 1. Hence r2 9 (mod 2b+1>

Either r _ x (mod 4) or r--x (mod 4). Say r x; then r + x--2. Now
2b+1 divides r2 - X2 = (r - x)(r + x), and only one power of 2 divides r + x, so
r x (mod 2b). Both r and x are positive integers smnaller than 2b, so r = x, so
Algorithm K prints r in step 3.

If r _-x (mod 4) then r :& x so r2 = 4 n so Algorithm K does not print r in
step 3. However, 2b - r -x (mod 4), and 2b+1 divides (2b - r)2 _ x2, so as above
2b r r-x (mod 2b). Thus 2b - r = x and Algorithm K prints 2b - r in step 4. D

Algorithm X2. Given an odd integer n > 2, to decompose n as a perfect power if
possible: In advance setf = Llg 2nrJ.
1. Compute y <- nroot2, [f/2] +l (n, 1).
2. For each prime number p < f:
3. Apply Algorithm K2 to (n, p, y); let x be the result.
4. If x > 0, print (x,p) and stop.
5. Print (n, 1). CI

Lemma 21.6. If n is a perfect power, Algorithm X2 prints a prime number p and
a positive integer x such that xP = n. If n is not a perfect power, Algorithm X2
prints (n, 1).

1280 DANIEL J. BERNSTEIN

Proof. By Lemma 21.3, yn mod 2Ff/2]+1 = 1. If Algorithm X2 stops in step 4 then
xP = n by Lemma 21.5. If Algorithm X2 never stops in step 4 then, by Lemma
21.5, n is not a pth power for any prime p < f, so n is not a perfect power. O

I could synthesize Algorithm X and Algorithm X2. For each k, I can compute
a tentative kth root x by either Algorithm N or Algorithm N2; I can then check
whether xk = n by either Algorithm C or Algorithm C2. After Algorithm N it
is probably best to try Algorithm C2 first; after Algorithm N2 it is probably best
to try Algorithm C first. I could run Algorithm C and Algorithm C2 in parallel,
stopping as soon as either algorithm sees that n $ x.

It is possible to convert n into base q for q > 2, and then use the q-adics instead
of the 2-adics. This is probably not worthwhile in practice, unless for some strange
reason n is already known in base q. But it may be worthwhile to compute n mod q.
See the next section for further discussion.

Notes. See [15, exercise 4.1-31] for an introduction to the 2-adic numbers.
Two q-adic applications of Newton's method are generally known as "Hensel's

lemma." The first is the use of Newton's method to refine a q-adic root of a
polynomial; see [30, page 14] or [12, page 84]. The second is the more general use
of Newton's (multidimensional) method to refine a q-adic factor of a polynomial;
see [15, exercise 4.6.2-22], [22, Theorem 8.3], or [25, page 40].

See [15, exercise 4.4-14] or [8] for a fast method of converting n into base q.
My previous perfect-power run-time analysis does not apply if I use Algorithm

C2 in place of Algorithm C. The results of Part IV would remain valid, but to prove
that the resulting perfect-power detection algorithm runs in essentially linear time
I would need 2-adic versions ofthe theorems in Part V, and in particular of [20,
Theorem 4].

22. TRIAL DIVISION

As usual fix n > 2. In this section I discuss several tricks based on computing
n mod q for one or more primes q.

If n has no small prime divisors, lower the exponent bound. If n is odd
and n = xk then x is also odd. So x > 3 and k < 1og3 n. More generally one may
compute n mod q for all primes q < T, for some bound T. If n mod q is always
nonzero, one need not check exponents past logT n.

If n has a prime divisor, find its order. What if n mod q = 0? First compute
the number ordq n of factors q in n, together with n/qordq n. Then check, for each p
dividing ordq n, whether n/qordq I is a pth power. Otherwise n cannot be a perfect
power. (Note that n/qordq n may be 1, in which case no testing is necessary.)

Recall that the 2-adic method in section 21 requires that n be odd. This is not a
serious restriction. If n is even, the method here ends up checking whether n/2ord2 n

is a pth power, for various primes p; and n/2ord2 I is odd.
There are several plausible ways to compute the number of factors q in n.
If q = 2 then ordq n is the number of 0 bits at the bottom of n's binary expansion.
If q > 2, I do a binary search upon the number of factors. The idea is to

compute n mod qC and Ln/qcj for some integer c ` (logq n)/2. If n mod qC $ 0
then ordqn = ordq((n mod qC); if n mod qC = 0 then ordqn = c + ordq((n/qc).

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1281

Chop c in half and repeat. This method takes essentially linear time given fast
multiplication and the algorithms from section 8.

I could instead do a linear search; this amounts to always taking c = 1 in the
above description. This will be faster than a binary search on average. I could
compromise with a sequence of c that is at first optimistic but backs off quickly if
necessary. For example: begin with c = 1, double c if n mod qC = 0, and chop c in
half if n mod qc :4 0.

Check the character of residues of n. If n is a kth power, and q is a prime with
q mod k = 1 then n(q-l)/k mod q is either 0 or 1. A non-kth power has roughly a
1/k chance of passing this test.

Check the residues of tentative roots. If n = xk then n mod q = Xk mod q.
So, given n mod q, I can try to weed out a tentative root x by calculating the kth
power modulo q of x mod q. In practice this test is quite powerful: if n :& xk then
very few primes q divide n - xk.

In this test q need not be prime. It might be convenient to check whether n agrees
with xk modulo 232, for example, although this is redundant if x was constructed
by 2-adic methods.

One could develop a fast randomized power-testing algorithm along these lines.
Start from a tentative root x. First check if xk < 2n. Then check if n mod q equals
xk mod q for a set of "random" primes q with product larger than n. This test will
succeed if and only if n = xk. If n #& Xk then one will, on average, test very few q's.

Check for small divisors of tentative roots. If n is not divisible by any primes
q < T, and n = xk then x is not divisible by any primes q < T. So I can throw
away any tentative root x that has prime factors smaller than T. This is much
weaker than testing whether n mod q = xk mod q for each q < T, but it is also
much faster.

Notes. See generally [4] for precedents. The approach of [4] is, for each k, to
precompute a database of primes q with q mod k = 1, and then to systematically
compute the characters n(q-l)/k mod q for each q in the database. [4] also suggests
(1) checking whether n is divisible by small primes, (2) lowering the exponent bound
if n is not divisible by any small primes, and (3) finding ordq n (with a linear search)
if q divides n.

My binary search method for computing ordq n is a straightforward optimization
of the following procedure: first apply [15, exercise 4.4-14] to write n in base q;
then see how many of the low "qits" are zero.

The best way to compute n mod q for many q simultaneously is by binary
splitting; see, e.g., [1, page 291].

See [19] for an overview of practical and theoretical methods for checking whether
x (or n) has a prime factor smaller than T.

In some applications one may know n mod q, or a representation of n from which
n mod q is easy to derive. Victor Miller points out that if n is represented in the
factorial base [15, equation 4.1-10] then it is easy to compute n mod q for small
primes q.

I have many options here. Each subset of options poses a new optimization
problem-e.g., if I use characters as in [4] but with fast arithmetic and binary
splitting, how much trial division should I do? for which an exact answer will

1282 DANIEL J. BERNSTEIN

depend heavily on characteristics of the computer at hand. Having not yet solved
all such problems, I do not feel competent to declare one algorithm the "winner."

REFERENCES

1. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, Reading, Massachusetts, 1974. MR 54:1706

2. Robert S. Anderssen and Richard P. Brent (editors), The complexity of computational problem
solving, University of Queensland Press, Queensland, 1976.

3. Eric Bach, Jeffrey Shallit, Algorithmic number theory, MIT Press, Boston, Massachusetts,
1996. MR 97e:11157

4. Eric Bach, Jonathan Sorenson, Sieve algorithms for perfect power testing, Algorithmica 9
(1993), 313-328. MR 94d:11103

5. Alan Baker, The theory of linear forms in logarithms, in [6], pp. 1-27. MR 58:16543
6. Alan Baker, David William Masser (editors), Transcendence theory: advances and applica-

tions, Academic Press, 1977. MR 56:15573
7. Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM, Wiley, New York, 1987. MR

89a: 11134
8. Richard P. Bren-t, The complexity of multiple-precision arithmetic, in [2], pp. 126-165.
9. Richard P. Brent, Fast multiple-precision evaluation of elementary functions, Journal of the

Association for Computing Machinery 23 (1976), 242-251. MR 52:16111
10. E. Rodney Canfield, Paul Erd6s, Carl Pomerance, On a problem of Oppenheim concerning

"factorisatio numerorum", Journal of Number Theory 17 (1983), 1-28. MR 85j:11012
11. Henri Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin,

1993. MR 94i:11105
12. Albrecht Fr6hlich, Martin J. Taylor, Algebraic nun-mber theory, Cambridge University Press,

Cambridge, 1991. MR 94d:11078
13. Roger A. Horn, Charles A. Johnson, Matrix analysis, Cambridge University Press, Cambridge,

1985. MR 87e:15001
14. Donald E. Knuth, The art of computer programming, volume 1: fundamental algorithms, 2nd

edition, Addison-Wesley, Reading, Massachusetts, 1973. MR 51:14624
15. Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,

2nd edition, Addison-Wesley, Reading, Massachusetts, 1981. MR 83i:68003
16. Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field

sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993. MR 96m:11116
17. Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Mark S. Manasse, John M. Pollard, The number

field sieve, in [16], pp. 11-40. MR 96m:11116
18. Hendrik W. Lenstra, Jr., private communication.
19. Hendrik W. Lenstra, Jr., Jonathan Pila, Carl Pomerance, A hyperelliptic smoothness test.

I, Philosophical Transactions of the Royal Society of London, Series A 345 (1993), 397-408.
MR 94m:11107

20. John H. Loxton, Some problems involving powers of integers, Acta Arithmetica 46 (1986),
113-123. MR 87j:11071

21. John H. Loxton, Alfred J. van der Poorten, Multiplicative dependence in niumber fields,' Acta
Arithmetica 42 (1983), 291-302. MR 86b:11052

22. Hideyuki Matsumura, Commutative ring theory, Cambridge University Press, Cambridge,
1986. MR 88h:13001

23. James Munkres, Elements of algebraic topology, Addison-Wesley, Reading, Massachusetts,
1984. MR 85m:55001

24. Henri J. Nussbaumer, Fast polynomial transform algorithms for digital convolution, IEEE
Transactions on Acoustics, Speech, and Signal Processing 28 (1980), 205-215. MR 80m:94004

25. Michael E. Pohst, Computational algebraic number theory, Birkhauser, Basel, 1993. MR
94j:11132

26. William H. Press, Brian P. Flannery, Saul P. Teukolsky, William P. Vetterling, Numerical
recipes: the art of scientific computing, Cambridge University Press, Cambridge, 1986. MR
87m:65001a

27. Paul Pritchard, Fast compact prime number sieves (among others), J. Algorithms 4 (1983),
332-344. MR 85h:11080

DETECTING PERFECT POWERS IN ESSENTIALLY LINEAR TIME 1283

28. J. Barkley Rosser, Lowell Schoenfeld, Approximate formulas for some functions of prime
numbers, Illinois Journal of Mathematics 6 (1962), 64-94. MR 25:1139

29. Arnold Schonhage, Volker Strassen, Schnelle Multiplikation groJ3er Zahlen, Computing 7
(1971), 281-292. MR 45:1431

30. Jean-Pierre Serre, A course in arithmetic, Springer-Verlag, New York, 1973. MR 49:8956
31. E. T. Whittaker, G. N. Watson, A course of modern analysis, 4th edition, Cambridge Uni-

versity Press, 1927. MR 31:2375 (1962 reprint)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720
Current address: Department of Mathematics, Statistics, and Computer Science, The Univer-

sity of Illinois at Chicago, Chicago, Illinois 60607-7045
E-mail address: djb0pobox. com

	Cit r427_c429:

