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COMPUTATIONS OF CLASS NUMBERS 
OF REAL QUADRATIC FIELDS 

ANITHA SRINIVASAN 

ABSTRACT. In this paper an unconditional probabilistic algorithm to compute 
the class number of a real quadratic field Q(Vdi) is presented, which computes 
the class number in expected time O(dl/5+E). The algorithm is a random 
version of Shanks' algorithm. 

One of the main steps in algorithms to compute the class number is the 
approximation of L(1, x). Previous algorithms with the above running time 
O(dl/5+E), obtain an approximation for L(1, x) by assuming an appropriate 
extension of the Riemann Hypothesis. Our algorithm finds an appoximation 
for L(1, x) without assuming the Riemann Hypothesis, by using a new tech- 
nique that we call the 'Random Summation Technique'. As a result, we are 
able to compute the regulator deterministically in expected time O(dl/5+E). 
However, our estimate of O(dl/5+E) on the running time of our algorithm to 
compute the class number is not effective. 

1. INTRODUCTION 

The result proved in this paper is the following: 

Theorem. Fix e > 0 and let d > 0 be a fundamental discriminant. Then the 
class number h of the real quadratic field Q(x/d) can be found, via a probabilistic 
algorithm, in expected time O(dl/5+E). 

In 1970, Daniel Shanks ([14]) gave a deterministic algorithm for computing the 
class number of an imaginary quadratic field of negative discriminant d. His algo- 
rithm used a simple yet powerful technique that he called baby-steps-giant-steps. 
Under the assumption of an appropriate extension of the Riemann Hypothesis 
(ERH), Shanks' algorithm can be shown to have running time O(ldl1/5+E). 

Later H. W. Lenstra, Jr. [8], Schoof [12] and R. A. Mollin and H. Williams [10], 
just to name a few, modified Shanks' algorithm to run in real quadratic fields. They 
gave algorithms with probabilistic running time O(dl/4+E) without asssuming the 
ERH, and with deterministic running time O(dl/5+E) assuming the ERH. 

In this paper a probabilistic algorithm is presented which is a version of Shanks' 
algorithm that does not assume the ERH and has an expected running time of 
O (dl/5+e ). 

There are two different routines in Shanks' original algorithm where one needs 
to assume the ERH in the analysis of the running time. We first give a simplified 
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overview of Shanks' algorithm: The first step in Shanks' algorithm is to get a good 
approximation to 

L(1, X) = ]I 
I 

(p_ P 
pprime 

where (d) is the Legendre Symbol. This is done by simply taking the product over 

the primes p = O(dl/5+E); that this is a 'good enough' approximation is assured by 
assuming ERH. A good approximation for L(1, X) ensures a good approximation for 
hR, where R is the regulator, because of Dirichlet's formula which is the following: 

(1.1) h = d|lr L(1,X) for d <-4, 
1 R L(1, X) for d > 0. 

The next step is to find a good approximation for R, from which we deduce an 
approximation for h; in fact h is shown to lie in an explicitly computed interval 
(L, L + 1). The final step then is to find a subgroup H of the class group of order 
> 1, in which case h equals IH ([HIH + I). This is because the order of H divides 

at most one integer in (L, L + 1) (since the length of the interval is less than the 
order of H), which must exist and must be h (since the order of H must divide h, 
which lies in this interval). We determine such a subgroup H by finding generators 
for H. We find such generators onre at a time, looking for forms that lie outside the 
subgroup generated by the forms already found. ERH guarantees that there is a 
set of generators of the form (a, b, c) for the whole class group, with all the values 
of a = O(log2 d), and thus can be found rapidly. 

In the modified algorithm presented here, the assumption of ERH is removed 
using the following "random" techniques: 

The first new idea is that of a Random Summation (see section 2), a method 
that can be used to give a good and rapid approximation to certain sums involving 
many summands. 'Random summation' is used to approximate a sum that can be 
used to evaluate L(1, X): 

L(1, X) 
d 

n>1 

We neglect the tail end of this sum for n > d2, as it is smaller than the admissible 
error and then add up "randomly selected" terms in the remaining sum up to d2. 
Hence we obtain an interval which contains hR with very high probability. 

Note that the random summation technique provides a correct interval only with 
high probability and so it is possible that the interval obtained does not contain 
hR. However this is detected by the algorithm for computing the regulator, which 
is deterministic. Hence either the regulator is computed correctly or the algorithm 
terminates without an answer, in which case we conclude that the interval provided 
by random summation is incorrect. In this case we simply repeat the random 
summation. In section 2 we prove that the probability of obtaining an incorrect 
interval via random summation is less than de. Thus after at most de tries of 
random summation, we obtain a correct interval. 

In section 4 we show that given an interval containing hR, R is computed deter- 
ministically in time O(dl/5+E). 
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The second new idea involves that part of the algorithm where one needs to find 
a set of forms that generate the whole class group. Although it has been previously 
proposed that one could select forms 'randomly' from the class group to do this, we 
do not know of a reference where a suitable 'random procedure' has been described 
and appropriately analyzed. We do this here. 

Although we are able to determine a suitable unconditional upper bound on the 
running time of this part of the algorithm, we do so by invoking Siegel's theorem 
6.8, which involves a constant which cannot be explicitly determined. Thus we 
are unable to explicitly determine the actual constant that the 'O' abbreviates in 
the stated running time of O(dl/5+E), although one would, in practice, know the 
algorithm had ended and the correct answer given. 

We also give a description of an algorithm for computing the regulator of a real 
quadratic field. This is in most respects the same as previous algorithms, like [8], 
[10] and [12], other than the major changes as described above. We have tried to 
give an exposition that would benefit both the calculator and the running time 
analyser. 

An overview of the contents presented is as follows. 
In section 2 the details of the random summation technique and an approxi- 

mation for L(1, x) and hence for hR are presented. In section 3 the algorithms 
necessary for the computation of the regulator are presented. In section 4 we prove 
that the regulator can be computed deterministically in expected time O(dl/5+E). 
In section 5, we prove that given a set of generators, the running time for the com- 
putation of the order of the subgroup generated is O(dl/5+E), which is the second 
part of Shanks' algorithm. Section 6 deals with tLe problem of selecting a random 
form. An algorithm together with the probability analysis is presented. Also the 
proof of the main theorem is given here. In the last section 7, we discuss the prac- 
tical aspects of the algorithms and in particular that of the random summation 
technique. 

2. THE RANDOM SUMMATION TECHNIQUE 

The key new idea used is the 'Random Summation Technique'. We use this to 

approximate the sum S =ZL?<d2 (9) where (d) is the Jacobi symbol. This is 
odd n 

related to h(d), via the formula above, since 

odd d 
n odd p odd prime ( p 

We consider M independent random variables Yi. Each such random variable 
can take on any odd integer value n in the range 1 < n < d2, each with probability 

n, i.e. for 1 < i < M we have 

A2 Probability {Y =n} n - for 1 < < d2 and n odd, 

where A is defined by 1 (since the total probability must be 1). 
n<d2 
n odd 

Let Xi be the random variable (d) for 1 < i < M. 
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We then look at the random variable Xl + X2 + + XM. Its expected value 
is M times that of any one of the Xi's, as they are all independent and have the 
same distribution. 

So we have 

E(X1 + X2 + + XM) = ME(X1) = ME((Y )) 

X,M(- -=AM E ( ) = AMS. 
n<d2 n<d2 
odd n odd n 

Therefore S = E(X1 + + XM); that is we can approximate S by summing 
up the M Jacobi symbols Xi that result from randomly choosing values for each 
random variable Yi (with the probability distribution as described above). 

An Approximation for L(1, X). We have 

prime p ( p 

( 2) 2) ddIie ( p) odd prime p 

Here (d) is the Jacobi symbol defined for odd integers n. (We remove the "2 
factor" from the product, since this can be computed separately. This simplifies 
the problem in that we do not have to deal with even n, which would require 
defining the Kronecker symbol, an extension of the Jacobi symbol.) To compute 

(d), we have 

d 0 ifd=O mod2; 

(2) I 4 1 if d-1 mod8; 
-1 if d-ii5 mod 8. 

Thus to approximate L(1, X), we approximate the sum Z 
odd n 

Proposition 2.1. For any integer d which is not a square, 

( d) 8 
n~ <8 

odd n 

Proof. The proposition can be proved using elementary properties of the Legendre 
symbol and partial summation. C 

We have 

(d) 

n<d 2 

odFd n 
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Proposition 2.1 shows that the sum S is within -d- of the complete sum, Z 
odd n 

Hence an approximation to S will provide an only slightly weaker approximation 

to E ( 
odd n 
We do this using the Random Summation Technique described above by taking 

M [Idl 1/5] random variables Yi. The approximation we use for S is then A 
M 

A1 EXi. The following claim shows how good this approximation is. 

Proposition 2.2. Fix e > 0. Let A -JM Ei1 Xi (where the independent ran- 

dom variables Xi are as described above) and S= En (2+ Then 
odd n 

Probability {A-SI A>dl1/1oE} < 1 

Proof. We use Chebyshev's Inequality ([11]), which states that if X is a random 
variable with mean ,u and variance u2, then 

2 

(2.1) Probability{fX - Al > 6} < 62 

for any 6 > 0. 
M 

We apply this to the random variable X = M E Xi, which has mean u tA S 
-i=1 

and variance 

M A. JA 
n odd 

(n,d)==1 

Taking 6 Id we get from (2.1) 

(2.2) Probability { MEXi -AS > .}< 2J Id-2 <d2 

since 

52< A >E 

n<d2 

n odd 

The result follows as dl, < idilIo- E 

Lemma 2.3 ([5]). Let Rn = 1 ,= - log ( 2 + 2) Then 

jRn - ~' < 24I 
{Rn-1 '24n2 

where y lim Rn is Euler's constant. 
n--oo 
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Lemma 2.4. 

< 1+logIdl. 
A2n 

1<<n<d2 
nr odd 

Proof. Let u be the biggest odd integer less than or equal to d2. Then 
u 

=1+ - + - + ...+ - < I + 2 - dxc<l1+ 2 ogu < 1+log Idl. F- 
A 3 5 u 2jX2 

1 

Proposition 2.5 . Let M= [Idl1/5]. Fix E > 0. Then for Idl sufficiently large, 

Probability { n 
: Xi < >- M }_ > 

{ nd AM I_dI1/lo-E Idl 

Proof. Using Proposition 2.2 (with E replaced by j), Proposition 2.1 and Lemma 
1~~~~~ 2.4, we have, with probability > 1I - 

1 
/ 

_d I M (d) (d) 

AM ri t n AM S S n ? 
= odd flnd2 > 

n odd n odd 

1 +log dl + 8 < 1 

Idl 1/10-E/2 Idl - 
jdj1l/10-,e 

for Idl sufficiently large. D 

We now look at an approximation for I A 

Proposition 2.6 . Let M [Idl /5. Define A by 

1 d2\i [ 21 i - i 
log 

(d ) log ([2]+ 2 + 2 E 
- 

-2- log (M+ 1 
Then 

1 1 1 
A A 16M2 

Proof. We have 

A 
n<d 2 i<d2 2i<d2 i<d2 i<[Fd1 

n odd 

Therefore, with Rn as in Lemma 2.3 

1 1 _ 177 1 
A-= 

= 
Rd2-2 R[d2/2] -- Rm 

so that by the triangle inequality 

- - -= < IRd2 - -YI +- I R[d2/2] -Y| + 2 IRM - -yl A A22 
1 1 1 3 1 

24d4 48 ([d21) 
2 48M2 48M2 16M2' 

for Idl > 4, by Lemma 2.3. 
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Thus we now have an approximation for Zodd . ( namely 

A= EXi 
AM i=1 

and as a result we have an approximation for L(1, X) that we denote by L(1, x). 
We now give an algorithm to compute L(1, X). 

Algorithm 2.7 (Approximation for L(1, X)). 
1. Compute M = Fldl 1/5]. 

2. Compute A, where 

1~~~~~~~~1;E )i(2)2g(2]+2)+2Et2log ( 
A M 

3. Choose M random odd integers Yi, with 1 < Yi < d2 and 

A2 Probability {Y? = n - for 1 < n < d2 and n odd, 

and where A is defined by E 1. (See section 7 for details on this step.) 
n<d2 
n- odd 

4. Compute the Jacobi symbols Xi (di) for 1 < i < M. 
5. Compute 

A XAXi. 

6. L(Ij X)=(-( 1) A. 

Using the above approximation for L(1,x) in Dirichlet's formula (1.1), we get 
an approximation for h in the case when d < 0 and an approximation for hR in the 
case of d > 0. In the rest of this section we discuss only the real case (d > 0) as the 
case when d < 0 is analogous (see section 7). We have from (1.1) hR = Vd"L(1, X). 
The approximation we use then for hR is 

(2.3) ( (~~~~~d) I) 1 1 M 
(2.3) hR =vdX 

where M = Fdl/5] and each Xi is a random variable which satisfies 

d A2 Probability Xi for-l<n<d2 nodd. D 

Theorem 2.8. Fixc e> 0. Then, for d sufficiently large, we have 

Probability{ hR - hR Kd2/s6} > 1<-d 

where hR is described above in (2.3). 
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Proof. We have 

hR-hRt~~ 
d I 

(1 2)2dEn) 
I I 

m 

( ( 2 )2 2 ( n A M .EX M 

k\k\2}2} 
rn odd Z=1 

< d(l(d 
I 
) { (d) _ 

M 

? M x 

< d.2{dl/liol+ 16M2} 

with a probability bigger than 1- l, using Proposition 2.5 and Proposition 2.6 
M 

and the fact that E Xi < M. Now, since 16M2 < 11/10 we have 
i=l1 

IhR - hR < 3Ad <d2/5+E. w 

We now look at the running time for computing hR. 

Theorem 2.9. The running time for computing hR using (2.3) is O(dl/5+E). 

The two major computations are the computations of 1 and the evaluation of 

the [dl/5] Jacobi symbols, Xi= (id). Now 1is comprised of a few logs and [dl/5] 
reciprocals. There are efficient algorithms (see [1]) to compute logs and reciprocals 
in time 0 (log2 d), so the running time to determine \ is O(d'/5+E). 

The Jacobi symbol (Q) can be computed in time O(log2 d) ([13]). As we compute 

[dl/5] of these with a, b < d2 the running time here would be O(dl/5+E). 
So the running time for computing hR is O(d1/5+E). 

3. COMPUTATIONS IN REAL QUADRATIC FIELDS 

In the following two sections, d will denote a positive integer that is a funda- 
mental discriminant and all forms are binary quadratic forms of discriminant d. R 
is the regulator of the real quadratic field Q(Vd). 

We assume that the reader is familiar with the theory of binary quadratic forms 
([2] and [3]). We write f o g for the composition of two forms f and g and fg for 
the product, which is the form obtained by composition of f and g followed by 
reduction. We write (fn)0 for the composition of f with itself n times and fn for 
(fn)0 followed by reduction. 

We fix a form in the principal cycle and denote this form by 1. 
We bring the attention of the reader to the fact that all constants here are effec- 

tive unless stated otherwise, i.e. a << b (or a =O(b)) means there is a computable 
absolute constant k, such that lal < kb. Thus all algorithms are deterministic. 

Also e > 0 is any arbitrarily small real number. 
We use the infrastructure of real quadratic fields, discovered by Shanks ([15]). 

The notations used are explained below. For further details the reader is referred 
to [8] and [12]. 

The notation 8(f, g) stands for the distance defined modulo R between two forms. 
6o(f, g) is the unique number which satisfies 0 < 6O(f, g) < R and 6o(f, g) =(f, g) 
mod R. 
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p(f) denotes the form that is right adjacent to the form f on the cycle containing 
f. Similarly p-1 (f) stands for the form left adjacent to f. 

Lastly we point out that in all our computations, d is assumed to be sufficiently 
large so that all fixed powers of log d are absorbed into de. 

Lemma 3.1. Let F and G be forms on a cycle. Let x be a real number such that 
6(F, G) _ x mod R and jxl < R. Then either 60(F, G) = lxl or 60(G, F) = lxl. 

Proof. The proof folloxvs using the definition of distance. Ci 

Lemma 3.2. Let F and G be forms on a cycle of length t such that pn(F) = G, 
where 0 < n < t. Then n < 460(F,G) + 1. 

log 2 

Proof. We have that 60(F, G) = 
E- 6o (p'(F), p+ 1(F)). As the sum of any two 

consecutive summands here is greater than log 2([8]), we have 2 

nlog 2 if n is even 
60(F,G) > j(n- 1)log 2 if n is odd 

which gives 60(F, G) > (n-i) log 2 and hence n < 46o(F,G) + 1.I 4 log 2 

Lemma 3.3. Given distinct forms F and G on a cycle, 60(F, G) can be computed 
in time O(60(F, G) log2d). 

Proof. Let t be the length of the cycle. Then there is an integer n with 0 < n <X, 
such that pn (F) = G. We compute the forms p(F), p2 (F), p3 (F),. . ., pn(F) = G, 
keeping track of the distances. Then 

n-1 

60(F, G) = - 60 (p (F), p (F)) 
i=O 

Now the n reductions can be computed in time O(n log2 d). Computing the dis- 
tances takes time O(nlog2 d) using efficient algorithms as in [1]. By Lemma 3.2, 
we have n < 460(F, G) + 1. Hence the total time taken is O(6o(F, G) log2 d). DG 

log 2 

Lemma 3.4. Given a real number x with R > x > 0 and a form F on a given cycle, 
we can compute forms f and f ', with 60 (F, f) x + E1 and 6o(f', F) = x + E2, 
where lErl, E21 < lo2d in time O(xlog2d). 

Proof. Starting with F on the given cycle we compute the forms 

F,p(F),p2 (F),... 

keeping track of the distances, till we reach a form, say pn+l (F), whose distance 
from F is at least x. Let f = pn (F). It can be shown that f satisfies the conditions 
in the theorem. 

By Lemma 3.2, n < 46o(F2f) + 1 0 (x). As each reduction takes time 0(log2 d), 
the total time taken is 0 (x log2 d). 

The proof for f' is similar, only we use p-1 instead of p. DG 

Lemma 3.5. Let x be a real number with 0 < x = 0(d). Suppose R > log2 d. 
Then we can find a form G on the principal cycle with 

8(1,G)_x+y modR 

where y = 0(log d) in time O(log5 d). 
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Proof. Let n be the largest power of 2 that is smaller than x, i.e., 2' < x < 2n+1. 

Thus 1 < x/2' < 2. Let fo = p(l) so that 8o(1, fo) = x + Eo, where EOI < 1lo d 

It can be shown that given a form f such that 8(1, f) = x + E mod R with 

EJ = O(log2 d), we can determine a form f', such that 8(1, f') =-x +E' mod R 
with IE'l < log d in time O(log4 d), where f' is computed by basically squaring the 
form f. But then Lemma 3.5 follows by an induction hypothesis, for given fo as 
above, we just successively compute fi,f2,.. ., f, with 6(1, fj)= xj +Ej mod R 
where each IEj I < log d. Evidently the time taken will then be O(n log4 d) and the 
result follows since n = O(log d). DG 

Lemma 3.6. Let G be a form on the principal cycle, such that 2d1/5 < 8o(1, G) < 
R. Then we can find an approximation 8o(1, G) for 6o(1, G) with 3. 

8o(1, G) = 8o(1, G) + O(log d) 

in tiTne 0 (d /5 log2 d + So(1,G) log4 d in time ~~~~~d1/5 

Proof. Let m and n be integers such that 

(3.1) [8o(II G)] = m[d1/5] + n with 0 < n < [d1/5]. 

We first find a form f with 8o(1, f) = [d1/5] + O(log d), using Lemma 3.4. Let k > 1 
be the least integer such that EKjiT 8o(fi, fi?l) > &o(1, G). Let fk = p-(G). 
Then from Lemma 3.2 and (3.1) above we have n = 0(dl/5). To find k, we compute 
the baby steps, 

GI p- IS) p-2 (G), . ,p-n (G), 

and the giant steps, 

f,f2X, f.** ,f2, 

compare the lists and find a match. Using Lemma 3.3, 60(fk-1, G) can be found 
in time O(d1/5 log2 d). 

Using Lemma 3.5, we can find a form G' in time O(log5 d), with 

(3.2) (1, G') -(k - 1)[d1/5] + x mod R 

where x = 0(log d). 
We can also find 80(G',fk1) in time O(klog4d) - Q(8o(1d,,5g d), by Lemma 

3.3. 
We then have 

8o(1, G) =o(1, G') + 8o(G', fk-1) + 60(fk-1, G) = 8o(1, G) + O(logd), 

where 8o(1,G) (k- 1)[d1/5] +?o(GI, fk-l) +60(fk-l, G). D 

Lemma 3.7. Let R >> log d. Given an integer x with 0 < x = 0(d), it takes time 
O(log5 d) to check if x -nR + e for some integer n and e = 0(log d). 

Proof. By Lemma 3.5 we can find a form F in time O(log5 d), with 

&(1,F)iiix+y modR, 

where y = O(logd). If x-nR+?e mod R, then 8(1,F) -nR+?e+y mod R. By 
Lemma 3.1 either 60 (1, F) = 0 (log d) or 60 (F, 1) = 0 (log d). 
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Consider the case when 6o(1, F) = O(log d). Let F = pm(l) for some integer m 
with 0 < m < X, where t is the length of the cycle. Then to find 6o(1, F) we must 
perform m reductions starting from 1. From Lemma 3.2 we have m < 46o(l F) + - 

log 2 

O(log d). Hence the total time taken is O(log5 d). 
The case when 6o (F, 1) = O(log d) is dealt with similarly. 
If neither 6o(1, F) nor 6o(F, 1) is O(log d), then x 7 nRR+ O(log d) for any integer 

n . C 

4. COMPUTATION OF R 

Proposition 4.1. Let d be a fundamental discriminant. If R is the regulator of a 
real quadratic field Q(vd) and h is the class number, then hR < vd log d. 

Proof. Hua ([7]) showed that L(1, X) < 2 log d + 1 < log d. By Dirichlet's formula 
(1.1) for d > 0, we have hRv= "L(,X) < vd logd. LI 

Theorem 4.2. A suitable approximation to the regulator R can be computed deter- 
ministically in expected time O(dl/5+?) (in fact the approximation will differ from 
R by at most O(d-1/2)). 

Proof. This is a three step procedure. First let us assume that R = O(d1/5 log2 d). 

Step 1. R = O(d1/5 log2 d). 
Starting from the form 1, we cycle through the principal cycle keeping track of 

the distances till we reach the form 1 again. If we find a form F on the principal 
cycle such that 6o(1, F) > dc1/5 log2 d, then R > dc1/5 log2 d and we go to step 2. 

Step 2. R ?> d1/5 log2 d. 
We have Dirichlet's formula for d > 0: 

p prime ( p 

We find an approximation for the product above by using random summation 
on the corresponding sum as discussed in Section 2. This gives an approximation 
for hR with an error of O(d2/5+?) in time O(dl/5+?). Thus we have 

(4.1) hR A+E 

where E (d2/5+e) 
By Lemma 3.5 we can find a form F in time O(log5 d) with 

6(1,F)=_ +?x--E+x modR 

where x = O(log d), by (4.1). Assume E < 0 (the case when E > 0 is similar); then 
using Lemma 3.6 we find an approximation 8o(1, F) for 6o(1, F) such that 

(4.2) 6o(1, F) = 6o (1, F) + O(log d). 

As 8(1, F) =_ o(1, F) mod R and as E = hR-A from (4.1), we have 

(4.3) hR = A + O(log d) 

for some integer h, where A = A - 6o(1, F). 
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Now if h is divisible by integer q, then A= nR + O(log d) for some integer n by 
q 

(4.3). Conversely if q < d1/5, and A = R + 0(logd), then h qn. 
-A 

~~~~q 
Whether or not - = nR + 0(log d) for some integer n (and thus whether q 

q 
divides h), may be checked in time O(log5 d) using Lemma 3.7. Thus we may test 
h for divisibility by all primes < d'/5 in time 0(dl/5+?). Dividing out all such 
primes (and their powers) from h; we will have determined R at this step (via 
(4.3)) provided all prime divisors of h are less than d1/5. 

Let h1 be the product of all the primes (with multiplicity) greater than d1/5 
that divide h; we may assume h1 7 1, so h1 > d1/5. Let A' = ,so that 

hIR= A' + 0(logd). 

By Proposition 4.1, hR < vd-logd, thus from (4.1) we have A = O(dlogd). 
As 60(1,F) < R, we obtain 60(1,F) = 0(R) = 0(,d-flogd) from (4.2). Thus 
A = A -o (1, F) = O( log d) and so A' = O(V log d). Thus hi R = O(v log d) 
which gives R = Q(\/d-logd) = O(d3/10 log d), as h1 > d1/5. 

Now we move on to the third stage of the algorithm. As d3/10 log d -O(d2/5), 
we assume that R= O(d2/5). 

Step 3. d1/5 log2 d < R = O(d2/5). 

Let 

(4.4) [R] = m[dl/5] + n where O< n < d1/5 and m = 0(d1/5). 

We first compute, using Lemma 3.4, a form f on the principal cycle with 

8o(I,f) = [dl/5] +0(logd). 

We take f0 to be 1. Then for any j> 1, we have 

S 6o(f ,fi?l) > j[d2/5] 
i=0 

Hence if j > 2(m + 1), then 
j-1 

S 6o(fi, fi+1) > (m + 1) [d1/5] > R 
i=-o 

from (4.4). 
Let k < 2(m + 1) be the smallest integer such that 

k-1 

(4.5) E S o(ff, f+?) > R. 
i=o 

Let fk = pS(l) so that, by Lemma 3.2, we have s < 46o(1 f k) + = S. To find k we log 2 
compute the baby steps, 

1, p(l), p2(1)1 . IpS() 

and the giant steps, 

f f2 f3.. f2(m+) 

and find for a common element in the two lists. 
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We have now 

(4.6) R = 6(1, fk-1) + 60(fk- 1)= k[dl/5] + O(d1/5 log2 d). 

By Lemma 3.5 a form G can be found in time O(log5 d), with 

6(1, G) _ k[dl/5] +y mod R 

where y = O(logd). Using (4.6), we have 6(1, G) _ R + E mod R, where F 
O(dl/5log2d). As IEj < R, by Lemma 3.1 we have either 6o(l,G) = IEj or 
6o(G, 1) = IELI Using Lemma 3.3, E can be found in time 0(E log2 d) = 0(dl/5+E) 
and we have R= 6(1,G) -F. DG 

The running time in Theorem 4.2 is the expected running time. This is because 
we get an approximation for hR using random summation. The algorithm to com- 
pute R is deterministic and if indeed the approximation for hR is correct, then the 
answer we get for R is correct. In the case when the interval provided by random 
summation is not correct, the algorithm does not give an answer. We then repeat 
random summation to get another interval. As the probability of getting a wrong 
interval using random summation is < 1 I the expected number of steps for getting 
a correct interval is 0(d6) and thus R is computed in expected time 0(dl /5+?E). 

5. COMPUTATION OF h 

When R ?> d2/5, we determined the value of h as one of the steps in calculating 
R during the algorithm presented in Theorem 4.2: 

Theorem 5.1. If R >> d2/5, then h can be found in deterministic time 0(dl/5+?) 
with probability greater than 1 - 

Proof. We follow the procedure in Step 2 of Theorem 4.2. In this case we obtain 
that h = h. Now h < vd7logd/R < d'/I0 by Proposition 4.1. But h = h is 
completely determined by the algorithm in Step 2 of Theorem 4.2 when it is this 
small. D 

When R << d2/5+?, we compute h by our version of Shanks' algorithm. To begin 
with, we approximate the value of L(1, x) (where X is the real, primitive, non- 
principal character mod d) using the Random Summation method, as discussed in 
Section 2. By Dirichlet's formula (1.1) for d > 0, this leads to an approximation 
for hR: 

hR = A + 0(d2/5?c) 

As R has already been computed we get an approximation for h: 

h = 
A + ?( R) 
R R 

So we have now found an interval (L, L + I ) containing h, where L - > and 

I= 0( d/ ). So far our algorithm has taken time 0(dl/5+E) (by Theorem 2.9 and 
Theorem 4.2). 

The second part of the algorithm is to determine a subgroup of the class group 
of order > 1. We do this by 'randomly' choosing forms, which we hope lie outside 
the subgroup that we have already obtained, so building an even bigger subgroup. 
There are two practical difficulties that we need to discuss in detail: First, given a 
subgroup H and a form g, how do we determine the size of the subgroup generated 
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by H together with g? This is what we will do in the rest of this section. Second, 
we need to be precise about what we mean by 'randomly' choosing forms, and we 
also need to analyse the probability that our 'randomly chosen' form will lie outside 
the subgroup that we have already generated. We discuss this in section 6, where 
we also show that this part of the algorithm runs in expected time O(dl/5+?) (see 
the Main Theorem in section 6). 

In the remainder of this section we will prove the following result. 

Theorem 5.2. The running time for computing the order of a given subgroup of 
the class group of a real quadratic field, given a set of 0(d6) generators of the 
subgroup, using baby-steps-giant-steps, is O(dl/5?26). 

Lemma 5.3. Let d1/5 < R = O(d2/5+E). Let F be a reduced form. Then in time 
0( d15 d) it can be checked if F is a principal form. 

Proof. Let 

(5.1) [R] = m[d1/5] + n with O < n < d1/5. 

We first compute using Lemma 3.4, a form f on the principal cycle with 

8o(1, f) = [d1/5] + 0(log d) 

in time O(d1/5 log2 d). In exactly the same manner as in Theorem 4.2, Step 3 we 
define the integer k < 2(m + 1) as the smallest integer such that 

k-I 

(5.2) Z6o(f fi+?) > R. 
i-O 

If F 1, then F and 1 lie on the same cycle. So let r be the smallest integer such 
that 

r 

(5 3) Zao(fi,fi?l) > 0o(1,F). 
i=O 

Clearly r < k - 1 from (5.2). Now 

80(F, fr?+) < 80(F, fr+?) + 60r(fr F) = 60(fr 1fr+?) 

We can also show that 

(5.4) 6o(F, fr+1) < [dl/5] + O(log2 d). 
Let t be the least non-negative integer such that 

(5-5) fr+l = pt(F) 

From Lemma 3.2 and (5.4), we have 

(5.6) t < 4([d1 /5] + 0(log2 d)) + 1 = T. 
log 2 

We now compute the baby steps: 

F, p(F), p2 (F), p3 (F) pT(F) 

and the giant steps: 

f f2 f3... f k 

If F ,v 1, then from (5.5) it is clear that a match will be found in the two lists 
above. 
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From (5.6), we see that the number of baby steps is O(d1/5) and hence the baby 
list is computed in time O(d1/5 log2 d). 

Now k < 2(m + 1) and from (5.1), we have m < [d5R] I thus the number of giant 

steps is 0(d ') = 0(d'/5+-) as R = O(d2/5+?). Thus the giant list takes time 
O(dl/5+?) to compute, as a product can be computed in time O(log3 d). 

Thus if F - 1, theri a match is found between the baby forms and giant forms 
in time O(dl/5+?). If a match is not found in time O(dl/5+?), then F and 1 are not 
in the same cycle and hence F is not principal. D 

Finding the Order of an Element f. We first find a number n, in the interval 
(L, L + I) such that fn = 1: 

Suppose L < n < L + and fn = 1. Write n = L + s,with 0 < s < 1. Thus we 
wish to find s such that 

fL+s = O ? < s <. 

We now present an algorithm to do this in time O(dl/5+?); there are two cases, 
depending on the size of R. 

Case 1. R << dl/5+e 

Let u = [I/dl/5]. We can write s = a+bu, with 0 < a < u, and 0 < b < [dl/5]. 
Then 

fn = fL+s = fLfa+bu 1 

or 
fLfa = (f-u)b.. 

Let g f-u. To find a and b, we compute the elements 
(5.7) fL,fLf,fLf2 fLfu-1 

and 

(5.8) 1,g,2 9 -9 

This requires computing O(dl/5+?) products as O(d2/5+?). Hence the time 
taken is O-(dl/5+?) since a product can be computed in time O(log3 d). 

For each form f in the list (5.7) we compute all the reduced forms equivalent to 
f (i.e., all the elements in its cycle) and compare this new list with the list (5.8) 
for a common element. Now if I is the length of a cycle, then I < 4R ([8]); hence log 2e 
each cycle is computed in time O(R log2 d). Thus the time taken for computing all 

of the cycles is O(uRlog2 d) = Q( R d), where u =[dT] as in the imaginary 

case. As I = Q(d( R), the total time taken is O(dl/5+26). 

Case 2. dl/5?c < R <K d2/5+e 

We wish to find an integer s such that 
fL+s < s <. 

We compute the elements 

fL+?1fL+2 .. L+-1 
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For each of these elements we check if it is in the principal cycle using Lemma 5.3. 

This is done in time Q(lRlog d) o(dl/5+2), as I = O(d2/5?E) 

Thus we have found an integer n in (L, L + 1) with fl = 1. To find the order 
of f, we first factor n as n = p" ... .p'. To find the order of f, for each prime p 
dividing n, we find the exact power of p that divides o(f), as follows: We compute 

the powers, f p, f , and so on and check each time if the form is in the principal 
cycle. If f Pr is in the principal cycle and fP r is not, then pe-r is the highest power 
of p dividing o(f), where pe is the highest power of p in n. 

Computing a power of f takes time O(log4 d) by using repeated squaring method. 

By Lemma 5.3, it takes time 0( R/5 d) to check if an element is in the principal 

cycle. As e, r = O(logrn), we perform O(log2 d) such checks and thus the time taken 

to find the order of f is O(R 105 d) = O(dl/5+2E)I as R = O(d2/5+E). 

Finding the Order of a Subgroup. Suppose we wish to find the order of the 
subgroup (f, g). Let of (g) denote the smallest power of g that is also a power of f 
(note that this means the reduced form in the class of that power of g). Then the 
order of (f, g) is o(f) * of (g). So now we wish to find of (g). We know of (g) divides 

o(g), so we first compute o(g) and then factor it and find the highest power of each 
prime p which divides of (g), as follows: 

We compute go(g)/P, gI(g)/P I .... Each time we check whether we get a power of 
f that is if the power of g lies in the subgroup generated by f (see next paragraph). 
If gO(g)/Pr is a power of f, but go(9)/Pr+l is not, and pe is the highest power of p 
dividing o(g), then pe-r is the hi,ghest power of p dividing of (g). 

The powers of g can be computed using repeated squaring method, in time 
O(log4 d). 

Suppose we have picked k forms. Let Gk = (f,.. ., fk) be the subgroup gener- 
ated by fl, . . , fk and let Nk denote its order. Then the current subgroup is Gk. 
Let OG(f) denote the order of f in G, i.e. the smallest power of f that is in G. Let 
Os = OG81- (fs) for each s = 1, 2, .. . , k Then Nk = 01 02 *.. ok- 

We assume here that k is at least 2. If Nk is less than 1, then we have still not 
determined the class number. So we pick another form, say g and find the order of 

(Kf, I * , fk, g), which equals Nk OGk (g). Therefore we wish to find OGk (9). From the 
discussion at the beginning of this section, this requires computing certain powers 
of g and checking if they do or do not lie in Gk. 

Determining if a Given Form Belongs to a Given Subgroup. 

Lemma 5.4. Let k > 2 and Nk = 0102 ... Ok. Let t be such that 0102 ... Ot < d1/5 

and 01.. .Ot+ > d1/5. If m= = then 

01 .. Ot * m < d15 and + Ot+2 *...Ok < 3N .m < ([0t?i] )3d1/5' 

Proof. Note first that 

d */51 
Oi ... Ot-m =Oi1... Ot[ < ?d1/5. 
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Since [x] > x2 for any x > 1, we get m > 2d1O5. Therefore 

0t?2k (O~i ?i0t0?20 (Ot?i?i 0t?1 ..Ok +t2.O Ot 
( 

.. Ok 
] 

I < Ot+2 ..Sk 
( +1 + 

+) Ot= ... Ok 

20, . Ot 2Nk Nk 
< l t+ ...Ok + Ot+2 ...Ok = l O2 +t2... Ok< 3 

since 0t+2 * Ok < dl/5 

Suppose we wish to check if gc is in Gk, i.e. if there exist integers ci, with 
0 < ci < Oi, such that 

(5.9) gc = f ...fkck, for some 0 < ci <O. 

Case 1. R 4< dl/S?c. We write f Cl ... fCk as 

C1 rct . fa+bm eCt+2 tCk 
fl ... f Jt ft+1 Jt+2 ... f*k 

where 0 < a < m, 0 < b < [? +] 

Then we have from (5.9) 

(5.10) c fj-Ci f-Ct . ft+ = (ftm)b ct+ fk 

To find ci, for 1 <i <k, we make the two lists: 

(5.11) gc fal .ft t ff Ia 0 ?<ai<OiforI<i<tand0<a'<m 

and 

(5-12) (ft+1) ft+2 fk 0 < ai < Oi for t + 1 < i < k and 0 < b <[ ] 

For each element in the list (5.12) we compute all the elements in its cycle and 
compare this list with (5.11). By Lemma 5.19 each cycle has length O(R), so time 
taken to compute a cycle is 0(R log2 d) by Theorem 2.8. By Lemma 5.4 there are 
less than 3 J/5 elements in the list (5.12), thus as Nk < T the computation of all 
the cycles takes time O( Rl k)2 d). 

Case 2. dl/5?c < R <K d2/5?c 
In this case to check if (5.9) holds, we compute the elements 

g-CfCl ..fkCk, 
0 < C < Oi, 

and check for each entry, if it is in the principal cycle. By Lemma 5.3 each check 
__R_1_g d) io R log2d) takes time 0(RlJg d), so the total time taken is d1/5 d), as there are Nk ele- 

ments in the list and Nk < 1. 
Going back to computing OGk(g), as e, r = 0(logn), we need to check for 

O(log2 d) forms, if they lie in GK. Thus the time taken is Q(R110g4 d) = 0(dl/5+2E) 
as -= Q( R )d 

Tying together the results above, we have proved Theorem 5.2. 
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6. PROBABILITY ANALYSIS 

Choosing a Random Form. We now present an algorithm to choose a 'random' 
form from the class group and give a lower bound for the probability that this 
form lies outside a given subgroup. This algorithm chooses a form (A, B, C) of 
discriminant d with 1 < B < d2. 

Algorithm 6.1. We will choose a binary quadratic form (A, B, C) of discriminant 
d with 

1 < B < d2 and < A < where q= d-d 

Step 1. Choose B from 1 to d2 with uniform distribution, i.e. select any given 
integer B in the range 1 < B < d2, with probability d. 

Step 2. Factor 4 (using the methods in [9]). Let 4p be the 
prime factorization. 

Step 3. Select a random factor A < q as follows. 
Choose k random numbers r1, r2, .. . I, rk, where 0 < ri < ci. 
Take A1 = p1l ..plk. 

If A1 < q, then let A= A1. Otherwise, repeat step 3. 

Step 4. C - 4A 

Let e > 0 be fixed. Let r be the divisor function. Then given any one particular 
form f, the probability of choosing a form (A, B, C) equivalent to f using the above 
Algorithm 6.1 is: 

d2 
E 
I 

I(A,B) f) 

B-i T(4) 
Al B2d l else 
1<A<q 

> I fi (A,B) f, 
- jdjd 1<B<de 2 0 else 

Al B2-d 
4A14 

1<A<q 

= 1 #{(AB) f:1 < B < d2 A < q} 

since B 2-d < d(4 so that -F B ?-d d< ldl for Idl sufficiently large [see Theorem 315 

in [6]]. 
Let A = f{(A, B) f: 1 < B < d2, 1 < A < q}. We proved above that 

(6.1) Prob{ (A, B, C) f 
} 
> Idl E+2 JAI. 

We define now an equivalence relation 'V' on the set A as follows: (A1, B1, Cj) V 
(A2, B2, C2) if and only if A1 = A2 = A and B1 -B2 mod 2A. Hence each equiv- 
alence class is represented by a unique form (A, B,C) with 1 < B < 2A. The 
equivalence class represented by (A, B, C), 1 < B < 2A, is 

{(A,B+2Ax): x c 2,I < B+2Ax < d2} 
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the number of elements in this set is + 1, since 1-B < X < d2-B and 
[2AJ 2A ~c~ 2A 

O > 1-B > -1 as 1 < B < 2A and so 0 < x < d2-B -2A 2A 
Thus summing over all such equivalence classes we have the following proposition. 

Proposition 6.2. For each form f of discriminant d, we have 

#{(A B) f: 1 < B < d2 1 < A < q}= S ( 2 +1 
(A,B),f/ 
1<B<2A 
1< A q 

Lemma 6.3. Let (a, bl, cl) and (a, b2, c2) be two reduced forms of discriminant 
d > 0 with a > 0 and b - b2 mod 2a. Then b, = b2. 

Proof. As b1 _ b2 mod 2a there is an integer x such that 

b2= b, + 2ax. 

As (a, b1, cl) and (a, b2, c2) are reduced, they satisfy 

O <b1 < V', 

(6.2) ~ ~ ~ ~~v - bi <2a < vfd + bi . 

Likewise 

O < b1 + 2ax < 4, 

(6.3) 4v'd- (b, + 2ax) < 2a < vd? + b + 2ax. 

As v'di - b1 > 0 from (6.2), we have from the second part of (6.3) that -2ax < 2a 
and so x > 0. Also from the first part of (6.3) we have x < 2abi and as < I 
from (6.2), we have that x < 0 and hence x = 0 and so b, = b2. E 

Lemma 6.4. Let f be a form of discriminant d. Then 

f 1 - ford <0, 

(a,b,c) is reduced a Vd Iogd for d > 0. 
(a,b,c)-f 

a>O 

Proof. If d < 0, then there is a unique reduced form F with F f. If F = (a, b, c), 

then by an easy consequence of the definition of a reduced form, we have a < K l 

Thus 1 > 
31. a - Tdl 

If d > 0, then there is a cycle of reduced forms equivalent to f. Let 1 be the 
length of the cycle. Then the number of forms (a, b, c) in a cycle with a > 0 is - 
as the a values of the forms in a cycle alternate in sign. Now if (a, b, c) is reduced 
we have as a consequence of the definition of a teduced form, lal < v'i =1 > - 

lal N/d 
and thus 

Z 1 R 

(a,b,c) is reduced 2 log d 
(a,b,c)-f 

a>O 
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Lemma 6.5. Let f be a form of discriminant d, and q = V(d4 -d)/4. The map 
q5: {(a, b, c) f: (a, b, c) is reduced and a > 0} T:= {(A, B) f: 1 < A < 
q and 1 < B < 2A}, defined by /(a, b, c) = (a, B) where B is the least positive 2 
residue of b mod 2a, is an injection. 

Proof. If d < 0, then /(a, b, c) = (a, b, c) c T, and the result follows immediately. 
Now let d > 2 and suppose that (a, b, c) f is reduced with a > 0. It is 

easily verified that (a, B) (a, b, c) and hence to f. As (a, b, c) is reduced, we have 
a < /i. As Vd-i < q so a < q and hence (a, B) c T as required. 2 2 

Next we show that q is indeed an injection: Suppose that fi = (a1, bl, cl) and 
f2 = (a2, b2, C2) are reduced forms, both equivalent to f, with a,, a2 > 0 and 
+(fi) = q(f2). Then (a1, B1) = 0(f1) = q(f2) = (a2, B2) and so a, = a2 = a, say. 
But then b1 _ B1 = B2 -b2 mod 2a, and so b, = b2 by Lemma 6.3. However 
since ai = a2 and b1 = b2 we evidently have c1 = C2, and so fi = f2, and thus q is 
indeed an injection, and the lemma follows. EZ 

Corollary 6.6. Fix e > 0. With the hypothesis of Lemma 6.5, we have for Id 
sufficiently large 

E ~ E > Tf_ I ford<0, 
A=1 (A,B)>f 1d Ilogd ford> 0. 

1<B<2A 

Proof. By Lemma 6.5 we have 

2 

Z 1 EI1> S 
1 

A=1 (A, B)>f (a,b) is reduced 
1<s<2A (a,b)-f 

a>o 

and the result follows from Lemma 6.4. EZ 

Theorem 6.7. Fix 6 > 0. Let f be a form of discriminant d. The probability of 
choosing a form equivalent to f, using Algorithm 6.1, is greater than 

1 
{ IdIl/2+E for d < 0, 

R 
IdJl/2+E 

for d > 0, 

if Idl is sufficiently large. 

Proof. From (6.1) and Proposition 6.2, we know that the probability of choosing a 
form equivalent to f using Algorithm 6.1 is 

1 dl2+t E (F[ A )d2-B I q d 2- B > ~ ~ A +1)> S S 2A JdJ2+?E/2 (A,EBf / - 8Ad A=1 (A,B|f A 

1<B<2A 1<B<2A 

1 dB _ 1 q/2 
Jd2E2A=1 (A,B>q 

A 8dl/ = (A, B>-J 
1<B<2A 1<B<2A 

since B < 2A < q and the result follows from Corollary 6.6. E 
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The Probability of Choosing a Form Outside a Given Subgroup. In the 
algorithm for computing the class number, we need to choose a form F outside a 
given proper subgroup H. We now compute the probability that F lies outside H, 
where F is chosen using Algorithm 6.1. 

Theorem 6.8 (Siegel [4]). For every e > 0 there exists an ineffective constant ce > 
0 such that 

L(,X) > c,q-' 

where X is a real primitive non-principal character mod q. 

Theorem 6.9. Fix e > 0 and let Idl be sufficiently large. Let F be a form of 
discriminant d chosen using Algorithm 6.1. If H is any given proper subgroup of 
the class group G, then there is an ineffective positive constant c, such that 

Prob {FF H} > c% e 

Proof. We first observe that IHI < h since it is a proper subgroup. Therefore there 
are at least h classes in G that are not in H. Now 2 

Prob {F g H} I Prob{F f } 
f?H 

where the sum is over a set of representative forms f from the equivalence classes 
of G\H. By Theorem 6.7 and the comments just above, we have 

r h 2r{hId /2+e { h for d < 0 ZfoH dl/22\ E 2dl~/2+2E 
fr> 

L(1,X) c/ 
IdlE Id I2,E 

where the last two inequalities follow from Dirichlet's Theorem (1.1), and Siegel's 
Theorem 6.8. EZ 

The Main Theorem. Fix 6 > 0 and let d > 0 be a fundamental discriminant. 
Then the class number h of the quadratic field Q(v'2) can be found, via our proba- 
bilistic algorithm, in expected time O(dl/5+E). 

Proof. The algorithm consists of two steps. In the first step, an approximation h for 
h is determined using Dirichlet's class number formula and the Random Summation 
technique. This is done by first approximating hR and then R. Thus by Theorem 
2.9 and Theorem 4.2 the expected time taken is O(dl/5+E). 

Hence we obtain an interval (L, L + l) which contains the class number, with 
I = ? R 

In the second step, the precise value of h is found using Shanks' baby-steps- 
giant-steps technique. Here we pick forms using. Algorithm 6.1 and compute the 
order of the subgroup generated by them until we find a subgroup with more than 
I elements. By Theorem 5.2, the time taken to compute the order of a subgroup 
using baby steps giant steps is O(dl/5+?). 

Say we have a subgroup H whose order is less than 1. If we pick a form F using 
Algorithm 6.1, then by Theorem 6.9, the probability that it does not belong to H 
is > 'e. Thus we will get at least one form outside H, with probability - 1, after 
we pick O(d') forms using Algorithm 6.1. 
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Moreover, as h has at most 1og2 h < log2(L + I) prime factors, we need pick at 
most O(log(L + l)dE) = O(d2E) forms to get h. 

Hence the total expected running time for finding h is O(dl/5+E) after replacing 
e by e/2 in the proof above. O 

7. DISCUSSION 

In this concluding section we discuss the details of the algorithms presented and 
look at the running times of various computations involved. 

Random Summation. One of the key tools used in our algorithm is that of 

'Random Summation'. This is used to evaluate the sum S = Lf<d2 nwhere 
odd n 

(d) is the Jacobi symbol. 
We could enhance the accuracy of the approximation for S by computing the 

exact sum up to d&/5, and then only approximating the remaining terms of the sum 
S. Thus we wish now to approximate the sum 

d2 (d 
S1 = f (n). 

n 
n=[d' 5] 
n odd 

We do this using Random Summation, wherein we consider the M = [dl/5] random 
variables Yi, 1 < i < M, where 

Prob{Yi = n}=with < i < M n odd and [dl5] < n < d2, 

and A is defined by 

d2 

n 
n=[dl/5S 
n odd 

We then let Xi = (Yi). The reason that this can be used to approximate S, is 
that the 'expected value' of each Xi is precisely AS1. 

We run into a practical difficulty: How do you choose an integer n in the given 
range, with probability exactly A ? As we do not know how to do this, we propose 
an algorithm that is practical and chooses n with probability close to, but not 
exactly, n. 

This practical algorithm will choose a random odd integer n in the range [dl/5] < 
n < d2. Let Y' denote this random selection. The algorithm chooses an integer n 
with probability close to, but not exactly equal to, the desired probability (i.e. ). 
We then let X' = (y). It can be shown that this new method of approximation 
works just about as well as the theoretical approximation obtained earlier. 

Algorithm 7.1. Let K = [dl/l?], and select 6 to get (1 + 6)K - d2/[d1/5]. For 
1 < k < K, we let Ik denote the interval ([dl/5](1 + 6)k-1, [dl/5](1 + 6)k], and let 
Ek be the number of odd integers in Ik. 

Step 1. Choose an integer k uniformly from [1, K], i.e. each integer is chosen with 
probability K. 
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Step 2. Choose an odd integer n uniformly from Ik, i.e. each integer is chosen with 
probability E. 

Step 3. Let Y' = n and let X' = (yd,). 

WVe now wish to determine the 'expected value' of the random variable X'. Now, 
if n C Ik, then Prob {Y' = n} = KE; and so, the 'expected value' of X', 

(7.1) ~~~~d 2 K Z E(i 

(7.1) E(X') = , (d )Prob { Y' = n} = E: 

I 
E 

I 
d) 

n=[d' /5] nk=1 KfElkEIk 
n 

n odd n odd 

Note that 6 = 91og1d + 0 ( ) 
9 lo ( + 0(6)) and K = d1l10 + 0(1) 

d1/10(1+O(6)). Also Ek - 2[dl/5](1?(5)kl+0(1); and, since 2[d1/5] > d1/0 log d, 
thus Ek 2 [dl/5](1 + 68)k-1(I + 0(8)). Now, if n C Ik, then n - [d1/5](1 + 8)k - 1 

(1 + 0(8)), so that 1 ( 2 + 0(1)). Therefore, from (7.1), 

E(XI) = ( + OM)EL n (n) 
n odd 

- _8S1(1 + 0(b)) S1 (I + 0(6)). 
K6 ~~9 log dS( 

Finally, since IS1, = 0(logd), thus S1 = 9 lo dE(XJ)+O ( In Proposition 2.5 

we saw that we are prepared to allow the error O(1/d1/10-) when approximating 
S, and thus Si; so we see that replacing the random variables Xi by X' will not 
significantly alter the power of algorithm, whilst rendering it practical. 

Probability Analysis. The class number is computed exactly. However the al- 
gorithm is completed in an expected running time since the random summation 
technique is used and forms are chosen randomly. 

We also remind the reader that our lower bound for the probability that a form, 
chosen using Algorithm 6.1, lies outside a given subgroup (Theorem 6.9) depends 
on Siegel's theorem (Theorem 6.8). Thus although the algorithm is practical, our 
estimate on its running time is ineffective as Siegel's constant is ineffective. However 
Tatuzawa ([16]) has provided an actual value for Siegel's constant which holds for 
all but at most one value of d. 

The Imaginary Case. As there is no regulator in the case when d < 0, the 
algorithm is simpler. We use random summation to approximate L(1, X) and then 
Dirichlet's formula to compute an approximation for h. Next we carry out the 
second part of Shanks' algorithm to find h exactly. 

However, unlike the real case, here we do not have the means to verify if an 
interval provided by random summation is indeed correct. Hence although the 
algorithm may provide the wrong answer, it does so only with very low probability. 
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