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ACCELERATED SPECTRAL APPROXIMATION

RAFIKUL ALAM, REKHA P. KULKARNI, AND BALMOHAN V. LIMAYE

ABSTRACT. A systematic development of higher order spectral analysis, intro-
duced by Dellwo and Friedman, is undertaken in the framework of an appro-
priate product space. Accelerated analogues of Osborn’s results about spectral
approximation are presented. Numerical examples are given by considering an
integral operator.

1. INTRODUCTION

In [10] Osborn considered numerical solution of an eigenvalue problem for a
compact operator 7' on a complex Banach space X and obtained error estimates
for the approximation of eigenvalues, eigenvectors and spectral subspaces, when
a sequence (T,) of compact operators approximates 7' in a collectively compact
manner. In [11] Vainikko obtained similar results under (discrete) regular approx-
imation. Subsequently, numerical solutions of eigenvalue problems for compact as
well as noncompact operators have been studied extensively ([1], [3], [4], [6], [7],
[90).

In [5] Dellwo and Friedman developed a new approach to the spectral approxima-
tion of a compact operator by solving a polynomdal eigenvalue problem of a higher
degree. The eigenvalue problem associated with the qth degree operator polynomial
was referred to as the gth order spectral analysis of T, ¢ = 1,2,.... They proved
that, if A is a nonzero eigenvalue of T' of algebraic multiplicity m and ascent [, then
the gth order spectral analysis provides sets o4, of approximate spectra associated
with A\, which satisfy the order relationship
max A= ' = 0 (T =TT ).

Hegq,n

Several numerical examples were considered to illustrate the effectiveness of higher
order spectral analysis. However, the exact nature of the set o4, was not specified.

In this paper an attempt is made to develop a methodology for a systematic
study of higher order spectral analysis. We transform a polynomial eigenvalue
problem associated with a higher order spectral analysis to an equivalent ordinary
eigenvalue problem in an appropriate product space. We thus obtain error estimates
for accelerated approximation of eigenvalues, eigenvectors and spectral subspaces
in exactly the same fashion as the ordinary spectral approximation. We consider a
cluster A of nonzero eigenvalues of T' of total algebraic multiplicity m < oo and show
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that the gth order spectral analysis provides exactly m eigenvalues Ag 1, .. s Agn,m
(counted according to their algebraic multiplicities) near the cluster A. If X and j\q,n
denote the weighted averages of the eigenvalues in A and of their approximations
Agn,1s- -+ s Agn,m, respectively, and if € < min{|A| : A € A}, then

ARl < (T~ T ar

where C is a constant independent of n and g. This gives an accelerated analogue
of Osborn’s result for the approximation of the arithmetic mean A\. We also prove
that

IS 1
= Sanl =0 (5T - Tl

This estimate improves upon the result of Dellwo and Friedman quoted earlier.
If A consists of a single eigenvalue A of ascent [ > 1, then error estimates for the
approximation of A by individual eigenvalues Ay 1, ... , Ag,n,m is obtained-by taking
the [th root of the above-mentioned error estimates. This slower convergence is
illustrated in the last section by considering an integral operator. We give similar
estimates for the approximation of eigenvectors and spectral subspaces as well.
Results analogous to the improved error estimates given in Theorems 3 and 4 of
[10] will be given in another paper. The methodology developed in this paper can be
used to obtain accelerated analogues of various spectral refinement schemes which
will be discussed in subsequent papers.

In Section 2, we give improved versions of results from [10] for the sake of com-
pleteness and for use in the subsequent sections. In Section 3, we develop a frame-
work for higher order spectral analysis and obtain accelerated analogues of the
results in [10] for the approximation of a cluster of eigenvalues, eigenvectors and
spectral subspaces of a bounded linear operator.

2. PRELIMINARIES

Throughout this paper X will denote a complex Banach space and BL(X) the
Banach space of all bounded linear operators on X along with the operator norm.
For T in BL(X), let o(T') and p(T) denote the spectrum and the resolvent set of
T, respectively. We consider a nonempty subset A of o(T) \ {0} which is separated
from the rest of the spectrum of 7" and from 0 by a simple closed positively oriented
rectifiable curve I' lying in p(T"). Let ¢(T") denote the length of I'. For z € p(T), we
let

R(?) = (T - 2I)7},

1

is the spectral projection associated with 7" and A. We assume that rank P =
m < 0o. Then A consists of eigenvalues \q, ... , A, of T, counted according to their
algebraic multiplicities. For nonzero subspaces Y and Z of X, let

6(Y,Z) = sup{dist(y, Z2) : y € Y, |ly[ = 1}.

so that

Then

8(Y, ) = max{8(Y, Z),6(Z,Y)}
is known as the gap between Y and Z. For T € BL(X), we denote by R(T) and
N(T) the range space and the null space of T, respectively.
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In this section we consider a sequence (7,,) in BL(X) which satisfies
(H1) : (J|/T]) is a bounded sequence,
(H2) : (T —T,)T|| — 0 and ||(T — T,)T,|| — 0 as n — oo.
While it may be possible to weaken these hypotheses to some extent, they allow a
simplicity in the presentation and are easy to check in several important examples.
For z € p(T,), we let
Ru(2) = (T — )7

Lemma 2.1 (Nair [9]). Let E be a closed subset of o(T) \ {0} and &6 =
min{|z| : z € E}. Then there is a constant ¢ such that

<c.
max | R()| <
Let ngy be a positive integer such that

(T~ T0)?)| < 6* and &1 |(T — Tn) Tl <
for all n > ng. Then E C p(T,) and

N[ O

T — Tl
L (2)] < 2 = onll <
rzneaécHR (2)|| < 2¢; [1 + 5 <

for some constant co and all n > nyg.

For a proof of this result we refer to [9]. Letting F =T' in Lemma 2.1, we see that
T C p(T},) for all large n. Let

Po = 27m/Rn

denote the spectral projection associated with 7, and I'. It can be seen, as in the
proof of Theorem 3.1 of [9], that

|(P—P,)P|| =0 and ||[(P— P,)P,|| — 0 as n — oc.
Hence rank P, = rank P = m for all large n (cf. [9], Proposition 2.2.).
Theorem 2.2 (Osborn [10]). For all large n,

- (T .
$(R(P), R(P) < WWeseymin (1T~ Lol 1T~ Tdiace 1}
where ¢1 and ¢y are as in Lemma 2.1 with E =T.

Proof. The proof of Theorem 1 of [10] shows that

8(R(P), R(P) < W esco|[(T — Ty

Since, with 6 = min{|z| € T'},
IT = T | < 1T - TPl < A7~ 1)1 -0,

as n — 00, we take ng so large that §(R(P), R(P,)) < 1/2.
As dim R(P,) = dim R(P) < oo, by a result given by Kato [§],

8(R(P), R(P,))
§(R(Py), R(P)) < 1= 8(R(P), R(P,))

< 28(R(P), R(P,)).

Thus
S(R(P), B(P) < “Dereo (T - 1) e
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By interchanging the roles of 7' and T,,, we obtain

8RR, B(PY) < Werea)| (T, — Thjag .

]
Since rank P, = m for all large n, o(T,,) N Int T' consists of m eigenvalues
Anis-++ » An,m Of Ty, counted according to their algebraic multiplicities. Let
N /\n,1+"'+)\n,m
Ap =
m

denote their arithmetic mean.
Theorem 2.3 (Osborn [10]). For all large n, the maps
Ap = Porep) R(P) — R(P,) and B, = Prep,): R(P,) — R(P)
are isomorphisms, |A;Y| < 2,||B,; | <2 and
A=Al < 2min {|Pull (T = To)ireeyll, 1P T = To)ireen I} -
If A = {\} and the ascent of X\ equals l, then for each j =1,... ,m,
A= Anl' < 2min {enl|Pall (T — Tn)irep)ll, dall Pl INT — T)jreen I}

where

-1
e = > IMre) = A T Al T F A Rep) — Tirepy ¥,
k=0

-1

dy = Y Mirep,) = Tojren I ¥ IMRep,) — By 'TBy| .
k=0

Proof. The argument given in the proof of Theorem 2 of [10] shows that A, is
bijective and ||A,!|| < 2 for all large n. The same argument shows that B, is
bijective and || B || < 2 for all large n. Define T = Tig(py and T, = A, T, A,.
Then

A—An| = %Itrace (T =) < |IT = T
= sup{||A,'P.(T — T)z| : = € R(P), ||| = 1}
< 2|Pu|l (T = T) |repyll-

If A = {\} and the ascent of A is I, then since (Aljgr(p) — ) = 0, we have for
j=1...,m

A= 2nslt < I jaee) = T)' | = (M gy — Tn)' = (M rpy — Tl

-1
1Y (Mrepy = To) ™ R(T = T) (Mrepy — T)*|
k=0

IA

Similarly, defining T, = Tn|r(p,) and T = B, 'TB,, we obtain the other estimates.
The proof of the estimates for |A — A, ;|! is adapted from [4], p. 685. O

Let A = {A} and [ be the ascent of A. We state the following theorem from [10].
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Theorem 2.4 (Osborn [10]). Let A, be an eigenvalue of Ty, such that A\, — X as
n — oo. Suppose that w, € N(T, — A1) with |\wy] = 1. Then there is some
Up, € N(T — A\I) such that

11
tn — wall < c{I(T —Tu)repll} "

where ¢ is a constant independent of n.

3. A FRAMEWORK FOR HIGHER ORDER APPROXIMATION

Let g be a positive integer and X, denote the set of all column vectors x =

[@1,...,2,)t with z1,... ,z, in X. Define

[%lloo = max{(j;]| : 5 =1,...,q}.
Then X, is a Banach space with respect to the norm || |. We shall identify
the adjoint space of X, with the set of all column vectors x* = [z},... ,z;]* with
zi,..., %y in X*. Define

%12 = ll2Tll + - - - + [l
If we let
(x, x") = (z1, 27) + - + <xq’ x;%
then it is clear that |(x, x*}| < ||X||co||x*||1- We have X; = X and we let Ty =T.
Now let g > 2. Consider the operator T, : X; — X, given by

Tq[.'lll, cee ,axq]t = [Tl‘l,.’lll, e ,ZL‘q_l]t.

Then T, can be written as the ¢ X ¢ matrix

T 0 - - 0
I 0 - --- 0
0 .
0 - 0 I O

We have ||T;|lcc = max{1,||T||}. For nonzero z € C, it can be easily seen that
T, — 21, is invertible if and only if T'— 21 is invertible, and then (T, — 2I,)~* can
be written as the ¢ x ¢ matrix

R(2) 0 ... 0
Re) I 0
z
R(z) T T
201 gt T
Thus o(T,) \ {0} = o(T) \ {0}. In particular, T' c p(Ty) and o(T ;) NIntl' = A. Let
L -1
Pq = ——2—7—{{ F(Tq - ZIq) dz

denote the spectral projection associated with Ty and A. Since 0 lies outside I, we
have ‘
P,[z1,..., 24" = [Pz1,5121,. .. ,Sq—171]",



1406 R. ALAM, R. P. KULKARNI, AND B. V. LIMAYE
where

1 R(2)
—2% r Zj
Now [z1,...,z4]" € R(Pg) if and only if z1 € R(P),z2 = S1%1,...,%4 = Sq_171.
Hence the operator J, : R(P) — R(P,) given by

qu = [x,SIQ); ey Sq_l-'l;]t, HAS R(P)7

is a surjective isomorphism and

Sj=— dz, j=1,...,q—1.

rank P, = rank P =m.
Next, the spectral projection associated with T} : X7 — X} and A = {X:xeA}
is given by
P (ol 2] = [P*a + St zh+ - + S 1 2%, 0, 0.
Thus [z],...,z;]* € R(P} ) if and only if 2} € R(P*),z3 = --- = z} = 0. Hence
the operator K, : R(P*) — R(P} ) given by
Kyz* = [z%,0,...,0]", z* € R(P*),
is a surjective isomorphism. Also,
(Jqz, Kqz™) = (z, ") for all z € R(P) and z* € R(P*).

Next, consider A € A and let Py (resp. P,) denote the spectral projection
associated with T" and X (resp., Ty and ). Then rank P = rank P) just as before,
so that the algebraic multiplicity of A as an eigenvalue of T, is the same as the
algebraic multiplicity of A as an eigenvalue of T". Consider

D,\ ZPA(T—)\I) and D>\ ZP)\(Tq—)\Iq).

Then
Dilz1,..., 2" = PA(T —MN)z1, 1 — A\Ta, ... ,Tq—1 — AZ,)*
= [P\(T — MX)zy, Sx1(T — NX)z1,. .. ,Sxg-1(T — X)z1]t,
where
S>\,j=—L R(?)dz, j=1,...,q—1,

27i Jp, 2
' being a simple closed curve which isolates A from the rest of o(7T") and from 0.
By the usual techniques of contour integration, it can be seen that Sy ;P\ = Sy ; =
PySyj for j=1,...,9— 1. Hence

DA[xl, e ,axq]t = [D}ﬂ)l, SA,lD)\xl, e ,S)\’q_1D>\.'111]t.
Similarly, for k = 2,3,..., we have
D’;[xl, N ,:L‘q]t = [D’fxl, SA,lD’;xl, ooy SA,q_lD’;wl]t.

Thus for any positive integer k, we have D% =0 if and only if D¥ = 0. This shows
that the ascent of A as an eigenvalue of T, is the same as the ascent of A as an
eigenvalue of T. Thus we see that the eigenvalue problem

To=Xp, 9€X, ¢#0
is equivalent to the eigenvalue problem
Te®@, =20, ®,€X,, ®,#0
for each ¢ =2,3,....
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Let (T5,) be a sequence in BL(X). We have X; = X and we let Tq, = T).
Let now ¢ > 2. Forn = 1,2,..., let A,, = T — T,, and consider the operator
Tyn : Xqg — X4 given by

t
g—1

. ,
Tonlz1,... 24" = E AT xit1, X1, .-, Tg—1
=0

Then T, can be written as the q X q matrix

T, AT, --- --- AT,
I 0 0

0

0 0 s T 0

We consider the eigenvalue problem

Tq,anvn = AQvan,n’ Qq,n € Xq’ Qq,n # 0'

¢
Then it is easy to see that ®,, = [qﬁq,n, LA Pain } , where the first com-
Agn (Agn)?
ponent ¢, , € X satisfies
g—1
(Agn) I = Z(/\q,n)q_l_JAzzTn $gn =0
=0

(cf. (2.4) of [5]). The case ¢ = 1 is considered in Section 2. For the rest of the
paper we let ¢ > 2 and assume that

(H1) (||T%|) is a bounded sequence,

(H2") (T — T,,)?| — 0 as n — oo.

Note that the results of Section 2, where ¢ = 1, do not hold under the hypotheses
(H1) and (H2’). As a simple example, consider X = C? and

a ab an  apby _
S I P F) NI

where a, b, a,, b, are nonzero complex numbers with b # —a and a,, — a,b, — b as
n — 00. Then o(T) = {0,a + b}, while o(T},) = {an, b, }. Thus the nonzero simple
eigenvalue a + b of T is not approximated by the nonzero eigenvalues a,, and b, of
T,.
We have

Tg,nlloo
(Tg — Tqn)Tqllo
”(Tq - Tq,n)Tq,n”oo

Since ||AZ]] — 0 as n — oo, there is an integer ng such that ||A2| < 1/2 for all
n > ng. As

ma'x{ 1’ ”Tn“ + ”AnTn“ +o 4+ “AgflTn”},
[AZ]] + AR + - - + AL T,
|ALT.

A IA

(Tnll 1|AZ 1972, if 7 is even

J
izl < { [t ihayove, it on
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and Z |AZ||F < 2 for n > ng, we have
k=0
”Tq,n“oo < max{ 1, 2(| T + [|AnTRI)},
(Tqg = Ton)Tallo < 2(Tnll + 1AZT,|)IAZ],
[(Tg = Tgn)Tamlloo < max{||Toll, ATl }|AZ].

As ||T,,|| is bounded, this shows that | Ty, | e is bounded in ¢ and n,
(Tq = Tgn)Tqllo =0 and  [[(Tg — Tgn)Tgnlleo =0

as n — oo, uniformly for ¢ = 2,3,.... Thus the sequence (Ty ) satisfies the
hypotheses (H1) and (H2) of Section 2 uniformly in ¢ = 2,3, ... .
The following two identities will be useful. For nonzero z in C,

2l — Ay AT, AIT,
(%) —Z—<z1—z7 =2l =T+ =122,
J=
=1 Aj q ]
AIT, ANi(zI -T) AT
(%) 2l — ZO J” R Zo 2 T opq
J= J=

3.1. Main results. We prove an important estimate.

Proposition 3.1. Letmin{|\| : A€ A} > €. Ifthe curve ' liesin {2z € C: |z| > €}
and ¢c; = max |R(2)||, then

£(T)ey

“(Tq - Tq,n)lR(Pq)”oo < omea—1

(T = T0)4rp)l
for allm and q.

Proof. For x = [z1,... ,z4]" € X,, we have

t
qg—1
(Tg— Ton)x= |Anz1 = Y AJTo3541, 0, ... ,0} :
Jj=1

Since
PqX = [PCL‘l, 511121, ey Sq_l.’lfl]t,

it follows that

t
q—1
(Tg — Tgn)Pex = |(AnP — )  ALT,S;)1, 0, ... ,o} :
j=1
By the definitions of P and §;, we have

1

-l q j
AP =S AIT,S; = _5% /F [An -3 A:J.T"] R(2)dz.

j=1 j=1
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But the identity (*+) shows that

=1 A g=1 A;
AIT, AT,
An = = R(z) = T—zI+zI—z;7 R(2)
J]= J=

L

9. AJ _ q
- T—zI+ZA”(ZIj T) ¢ 85T\ gy

24
7=0

AqR z)

qlA

=1 23 29

J
Sn

y

d
since TR(z) = I + zR(z). Since 0 lies outside T, —; =0 forj=1,...,q s0

r ?
that

[(Tq = Tgn)PeXlloo = [ AL,
where y; = (—L (Z)d ) z1. Now if x € R(P,), then 1 = Pz, € R(P) and
27t Jp 2971
since P commutes with R(z), we see that y; € R(P). Also, |ly1]| < é(—g—jrfel?”_—ml—lj and
hence
T,-T ar ) T-T,
Il( )Ryl < 5= (T = T)4rep) -

d

It follows that if one fixes an integer ¢ > 2, then the results given in Section
2 become available for the operators T, and T, and accelerated analogues of
Theorem 2.3 and Theorem 2.4 would follow immediately. However, the constants
appearing in various error estimates will depend on ¢. In order to find the nature
of this dependence on ¢, we proceed as follows. It may be mentioned that the use
of the norm || |lco on X, (instead of the commonly used norm || ||2) allows us to
achieve our aim.

First we consider the invertibility of Ty, — 21,.

o SN
Proposition 3.2. (a) If z # 0 and 2] — Z —'Z‘J— is invertible in BL(X), then
7=0
Ty n — 21, is invertible in BL(X,).
(b) Let E be a closed subset of p(T) and 0 € E. Then there is a positive integer
no such that for alln > ng and ¢ =2,3,..., we have E C p(Ty.).
If, in fact, min{|z| : z € E} > 1, then for alln > ng and ¢ =2,3,...,

max [(Tq — qu)_lnoo <Ci and max (Tq,n — ZIq)_lnoo <Gy

for some constants C1 and Co independent of n and q.

Proof. (a) Let

Apn(z) =21 — ZAT k=1,...,q.
3=0
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For z # 0, let By n(z) denote the inverse of Ay, (2). Then it can be verified by
direct multiplication that the inverse of Ty, — 21, is given by the ¢ X ¢ matrix

[ —B, I—ByA, z(I—B,Ay) - cos 29721 — ByAg_1) |
B, —BjA: -3
2 — - I_BqA2 29 (I_Bqu_l)
z z
—Bq —B;Al —B;IA2 —Bq;4q_2 ‘ ?
T
-B, —B,A —B,Ay —B,A4s —B,Ay
L zq—l zCI“‘l zq—2 e z2 z _

where we have written B, for By ,(z) and Ay for Ag ().
(b) Since E is a closed subset of C and 0 ¢ F,min{|z| : z € E} = § > 0. Since
|75 || is bounded and max |R(2)|| < oo, there is some M > 1 such that

(maxtren) {1, 12270 <
2

6
Since ||A2|| — 0 as n — oo, there is a positive integer ng such that ||A2]| < i for

alln > ng. Let 2 € E and n > ng. As M > 1 and ||A2]|'/2 < 6, we see that 2] — A,
is invertible.
By the identity (*), we have

z4

Agn(2) = 221 — A)" (u o AT )

Again, since

| AL T | 2% ””—n”q/2 if q is even
el 7 ] 1AnTel T ” — n||(q /2 if ¢ is odd,
it follows that
1/ 25T <1,
Hence for all 2z € E,n > ng and ¢ = 2,3,..., the operators zI — T + —— AIT,

(and consequently) A, . (z) are invertible in BL(X ). By (a) above, it follows that
E C p(Ty,n) for all n 2 ng and ¢ = 2,3,.
Next, assume that § > 1. Then

[(Tq — ZIq)_lnoo

IA

k
max g R, I Z,—l— Lo g

IN

1
IR + 5—-

Thus
gleag”(Tq - ZIq)_luoo < Cy,

where C] is a constant independent of q.
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We have noted earlier that as n — 00, ||[(Tq—Tq,n)Tqlloo and || (Tq—Tgn)Tqnllco
tend to 0 uniformly in ¢ = 2,3, ... . Hence we can assume, without loss of generality,
that for all n > ng and ¢ = 2,3,...,

6
[(Tq— Tq,n)2||oo <& and Cil(Tqg = Tgn)Tymlloo < 9
By Lemma 2.1 applied to the operators Ty and T, we have
. T,—T,n
[(Tgn — 2L) oo < 201 |1+ l—q———ﬁ—q—’—”—“i < Oy, say.

0

We remark that the condition min{|z| : 2 € E} > 1 cannot be dropped from
part (b) of Proposition 3.2, that is, if min{ |z| : z € E} < 1, then ||(T, — qu)_1||oo
may tend to infinity as ¢ — oco. The simplest example is obtained by letting X = C
and for a fixed ¢ € C,

Tr=cx, z€X.
Then for z € C with z # cand z # 0 and for z € X, (T — zI) "'z = z/(c — 2), so
that

(Tq _ ZIq)_l[fL'l,. B ,xq]t — [ T Z1 T2

c—2" zlc—z) =z
1 T2 Zq '
297 He—2) 2971 z '

(T, — 21,)"![1,0,...,0]" = ! LI ! t
? e B c—2z" z(c—2z)"" " T2 e—2)]’

yeeey

Since

we have
1

Ty — 2L) Moo > ——7—-.
”( q z q) ”00 = |Z'q_llC—Z|

Thus if |2 < 1, then [|(T, — 2I;) 7! c tends to infinity as ¢ — oco.
Taking £ =T, we see that for all n > ng and ¢ =2,3,..., T C p(Ty,»), so that

1 -1
n=— "5 - n — I
P‘Iv 27 \/1_‘ (Tq, Z q) dZ

defines the spectral projection associated with Ty, and Ag, = 0(Ty,) NInt T

Theorem 3.3. If min{|\| : A € A} > 1 and the curve T lies in {z € C: |z| > 6},
where 6§ > 1, then for all large n and q = 2,3,... , we have

max ||(Tq — qu)—luoo <C1 and max||(Tyn— qu)_luoo <y
zel z€l

for some constants Cy and Cy, independent of n and q. Also,

LT

(T~ Ton)Palloe < )Gy — Ty )T
LT

1Py~ PoPolle < SOGHI(T, ~ Ty e

LT

“(Tq - Tq,n)Pq,n”oo < 5(7;6202”(Tq - Tq,n)Tq,n |<><>>
(T)

“(Pq - Pq,n)Pq,n”oo < —2_0102”(Tq - Tq,n)Pq,nHOO'

™



1412 R. ALAM, R. P. KULKARNI, AND B. V. LIMAYE

In particular,
[(Pg—Pgn)Pqllc =0 and [[(Pg—Pgn)Pgnllcc =0
as n — 0o, uniformly in ¢ =2,3,....
Proof. By part (b) of Proposition 3.2, we have

max ||(Tq - qu)_luoo <Ci, max|(Tgn — ZIq)_lnoo < Cy
zel zel

for all n > ng and ¢ = 2,3,... . By using the resolvent identity it follows, again as
in the proof of Theorem 3.1 of [9], that
1 _ _
(Pg—P¢n)Py = “oni . (Tg,n — 21g) 1(Tq,n = Tg)Py(Tq — 21y) 'dz,
1 _ _
(Py—Pyn)Pgn = o . (Tq — 21y) 1(Tqm = Tg)Pgn(Tgn — 2I4) 'dz.
Further,
1 _
(Tg—T¢n)Pg = T oni . (Tq = Tgn)(Tq — 21,) Ydz
1 1 _
= Ton . ;(Tq —Tyn) [Tq(Tq —zI,) T Iq] dz,
and
1 _
(Tq = Tgn)Pgn _%/F (Tq = Tgn)(Tqgn — 21y) Ydz
1 411 _
= 3 )k ;(Tq = Tyn) [Tgn(Tgn — 21) 7t — 1] d.

1 d
The desired results follow by noting that 5 / 5 = 0, as I' does not enclose
r

0, and ||(Tg — Tgn)Tylloo — 0, [[(Tg — Tqn)Tqnlleoc = 0 as n — oo uniformly in
q=2,3,.... O

In order to treat the case when min{|A| : A € A} < 1, we consider a scaling of
the operator 7. Let o be a positive number. Then

o(aT) ={ar: A e o(T)}.

Also, if X is an isolated eigenvalue of T" having finite algebraic multiplicity and Py
is the corresponding spectral projection, then a\ is an eigenvalue of o1 with the
same spectral projection, since

1 1
_ —wh™! - _ “1dy — Py
57 ar(aT wl) ™ dw 5 /r(T zI)7'dz = Py
Let Ty(a) and T, ,(c) denote the operators obtained by replacing T and T}, by
oT and oT, in T, and Ty, respectively.
Lemma 3.4. For a > 0, let Dg(a) : Xq — X4 be given by
Dy(Q)[z1, ... yz4]" = [T1,022,... ,ad 1z )"
Then . )
(a) Tg(@) = (Dg(@)) " (@Tq)Dg(), Tyn(a)= (Dg(a))™ (aTqn)Dy(c),

0(Ty(a)) ={ar: A€ o(Ty)}, o(Tqn(a))={ar: A€ o(Tyn)}
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(b) Let Py(a) and Py n(c), respectively, denote the spectral projections associ-
ated with the operators Tq(a) and Tq (o) with respect to the curve ol'. Then

(1) Pq(a) = (Dg(@)) " PgDy(a), Pgn(@) = (Dg(@)) ™ Py Dg(a),

(iD) [z1,. ->xq] € R(P ( ) (resp., R(Pgn(a))) if and only if

[z1,az2,...,a% 1zt € R(Py) (resp., R(Pgn)),

(iii) rank Py (@) = rank Py, rank Py ,(a) = rankPq n-

Proof. (a) Considering the g X ¢ matrix representing the operator Ty and the ¢ X ¢
diagonal matrix diag (1,c,...,a?"!) representing the operator D,(a), we obtain
Ty(a) = (D, ()t (aT¢)Dg(ax) by direct multiplication. Since T4(a) and o'T, are
thus similar operators, their spectra are identical. The consideration for Ty, () is
exactly the same.

(b) We have
Py(a) = _5712_2 aF(Tq(O‘)_qu)_ldw
= —3= | (D) (0T, — ul) 7' Dy(a)du
= D) (=557 [T~ 51)71d2) Dy(a) = (Dy(a)) ' PyDyfa).

Now x belongs to R(P4(a)), that is, Pg(a)x = x if and only if P, Dq(a)x = Dg()x,
that is, Dq(o)x belongs to R(P,). This implies that rank P,(a) = rank P,. The
consideration for P, () are exactly the same. |

Theorem 3.5. For all largen and all g =2,3,..., let
Yon ={z1 € X : [71,...,24]" € R(Py,n) for some zo,... ,z, € X}.

Then
(a) rank Py, =rankP, =rank P = dimY;,.
(b) Let min{|\| : A € A} > €. Then for all large n and all ¢ =2,3,. ..,

B(R(P), ¥y) <~y min {7~ Tl I — T)7Tol}

for some constant C, independent of n and q.

Proof. First we consider a special case when min{|\| : A € A} > 1. In that case, we
assume min{|z|: z €T} =6 > 1.
(a) Since

“(Pq - Pq,n)2”oo < “(Pq - Pq,n)Pq”oo + ”(Pq - Pq,n)Pq,n”ooa

it follows from Theorem 3.3 that there is a positive integer ng such that for all
n > ng and all ¢ = 2,3,..., we have ||(P; — Py,)?|lc < 1, so that rank P, ,, =
rank P,. We have already noted that rank P, = rank P for all g. Next, since § > 1,
we note that for j =1,... ,¢—1,
1 R(z)

IS = 1= 5 [ SR < 55
¢(I)
or

A max|R(2)]

IA

max || R(z)[| = ¢, say.
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Thus for z € R(P), we have

[Jgzlloo = max{|lz||,[[S1z], ..., [|Sg-12l}
< max{L [|S1]], -, | Sq-1 [ Hlll
< max{l,c}z.

Let ¢1,...,¢m be a basis of R(P) and ¢7,...,¢% be the corresponding adjoint
basis of R(P*). For j = 1,... ,m, let ¥ , ; denote the first component of P, J;¢;.
For k =1,...,m, we have K,¢} = [¢},0,...,0]*. Hence
(d’q,n,j» ¢i) = <Pq,an¢j’ Kq¢l:>
for 7,k,=1,... ,m. Now fix j,1 < j <m. Then
IPgnteds — Jq¢j”oo = [[(Pgn— Pq)Pqu¢j||oo

S NPgn —Pg)Pqlloo [[J465ll0

< max{l,c}[|[(Pgn — Pg)Pqlloo [¢5l]-
Since [|(Pgn — Pg)Pglloc — 0 as n — oo uniformly in ¢ = 2,3,..., by Theorem
3.3, we see that forall k =1,...,m

(Yangr Ok) — (Jgbis Kq@k) = 65k

as n — 0o, uniformly in ¢ = 2,3... . This shows that there is a positive integer ng
such that for all n > ny and all ¢ = 2,3,..., the m x m matrix [(¢¥gn,;, i) is
nonsingular, and hence, {{g.n.1, - .= ;¥g,n,m} is alinearly independent subset of Y .

Thus dim Y, > m. On the other hand, dim Y, < dim R(P,,) = rank P =m
for all large n and all ¢ =2,3... . Hence, dim Y, ,, = rank P =m.
(b) We have

8(R(P),Yy n) =sup{dist (z,Yy ) : z € R(P),|jz| =1}.

Consider z € R(P) with ||z|| = 1 and J,z = [z, S1z,...,Sez]t. If y1 € Y, then
there is some y € R(Pgy,) with y = [y1,... ,yg). Since ||z — y1|| < [|Jgz — ¥|loo, We
have

dist(z,Yy ) = inf{||lz—wl|:v1 € Yy}

< inf{|lJgz — ylleo : ¥ € R(Pgn)}-

Let x = Joz/||Jgz|l0o, s0 that x € R(P,) and ||x|s = 1. Thus

dist(z,Ygn) < || Jg2]loo nf{l|x — ¥lloo : ¥ € R(Pgn)}
Vg2l oo 6(R(Pyg), R(Pyg,n))

max{1, c}6(R(Py), R(Pgn)) x|,

since ||Jyz|lo < max{1,c}||z|, as we have just seen. This implies that
§(R(P),Yqn) < max{1,c}6(R(Py), R(Pg,n))-

But since min{ |A| : A € A} > 1, it follows from Theorem 3.3 that
6(R(Pg), R(Pgn)) < [(Pg = Pgn)Pyllc — 0

as n — oo uniformly in ¢ = 2,3.... Hence, we can choose ng so large that
6(R(P),Yyn) <1/2foralln > ny and ¢ = 2,3,... . Since dim Y, ,, = dim R(P),
we have

A

INIA

§(R(P), Ygn)

8(Yqn, R(P)) < 1 5(R(P),Y,,)

< 26(R(P),Yq,n)



ACCELERATED SPECTRAL APPROXIMATION 1415

(see [8], p. 264-269). Thus
5(R(P),Yyn)

max{6(R(P),¥gn),6(Ygn, R(P))}
26(R(P),Yqn)
2max{1,c}6(R(Py), R(Pgn))
2max{1,c}8(R(P,), R(Pyn))-
Since || Tq,nllco is bounded in ¢ and n, and

[[(Tg = Tg,n)Tlloc— O, [(Tq — Tqn)Tqnllc — 0

as n — oo uniformly in g, Theorem 2.2 applied to the operators T4 and T, shows
that

INIAIA

N /(T )
BR(P,), R(Py.)) < )10y min (JI( Ty — Ty lloos

T
||(Tq - Tq,n)IR(Pq,n)”w} )

where sup,cr [[(Tq — 2I4) " loo < C1 and sup,cr ||(Tqg,n — 214) 7 loo < Ca. But by
Proposition 3.1 with € = 1, we have

{(T)e
1Ty~ Tyl € LT ~ L)
Also,
”(Tq - Tqyn)IR(Pq,n))”oo < ”(Tq - Tq,n)Pq,n”oo

or

< DK, ~ Ty Tyl
(I)

< ) q

— 27‘&'6 C2UAnTn”7

as we have already seen. (Note that min{|z|: z € T} =6 > 1.) Thus
B(R(P), Vo) < Cmin {|(T = T )i (T = To)* T}

for all large n, ¢ = 2,3, ... and some constant C, independent of n and q.

Finally, we consider the general case when min{|\| : A € A} > e. We choose
a = 1/e and consider the scaled operators Tq(a), Py(a), Ty n(c) and P, (a). By
what we have just proved and by Lemma 3.4,

rank P, , = rank P, (o) = rank Py(a) = rank P,
for all large n and ¢ = 2,3... . Also, P(c)) = P and the first components of the
elements of R(P, ,(a)) and R(P,,) are the same, that is, Y, (o) = Y, . Hence
there is a constant C(«) independent of n and ¢ such that
8(R(P),Yyn) = &(R(P(a)),Yyn(a))
< C(e)min {||(aT — aTo)4repoy |, (0T — aTo)7aT, |}

max{a, a?}C(a)

= ey min {||(T' = T.)4rp)ll; (T — Tn) T} -

Hence the result. O
Recall that A = {\q,..., A}, where each Aj,j = 1,...,m, is an eigenvalue of

T counted according to its algebraic multiplicity and

M+ A

—

A=
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Since rank Py, = m for all large n and all ¢ = 2,3,. ..,
0(Tqn) N Int T'={Agny15---, Agnm

where each A\gj,7 = 1,...,m, is an eigenvalue of T, , counted according to its
algebraic multiplicity.

These are the eigenvalues obtained from gth spectral analysis of T In the words
of Dellwo and Friedman, they comprise the legitimate portion of the gth order
approximate spectra associated with A.

Let
;\ - ’\q,n,l +-t ’\q,nﬂn'
q,n m

Theorem 3.6. Let min{|\| : A € A} > €. Then for all large n and all ¢ = 2,3,. ..,

.. c .
A=Al < 5 min { T = To)mceyll, T = T)7Tll }

for some constant C, independent of n and q.
If A = {)\} and the ascent of A\ as an eigenvalue of T is l, then for each i =
1,...,m, we have
!

A= Agnil < min { (T — Tn) el |(T = T0) Tnl| }

for some constant C', independent of n and q.

ea—1

Proof. First we consider a special case when min{ |A] : A € A} > 1. By Theorem
3.3, there is some mng such that for all n > ng and all ¢ = 2,3,..., we have
(Pg — Pgn)Pqlloc < 1/2. It follows that for all such n and ¢ = 2,3,..., the
map Ag, from R(P,) to R(Pg,) given by x — P, ,x is an isomorphism and if
A}, denotes the inverse map from R(P,,,) to R(P,), then |A_ ] ||co < 2. The same
argument also shows that the map B, ,, from R(Pg ) to R(P,) given by x — Pgx
is an isomorphism and || B}, ||ec < 2. We choose T so that min{|z| : 2 € T} =6 > 1.
Then by Proposition 3.2, we have

¢(T)

LT
IPalleo < 5201 and [Pyale < 512

2
where C; and C are independent of n and g. Noting that the algebraic multiplicity
of each A; as an eigenvalue of T, is equal to its algebraic multiplicity as an eigenvalue
of T, and applying Theorem 2.3 to the operators T, and Ty ,, we have

Ij‘ - 5‘q,nl < 2min{”Pq,n ”oon(Tq - Tq,n)IR(Pq)“wa
”Pq“oo“(Tq - Tq,n)IR(Pq,n)”w} .
But by Proposition 3.1 with € = 1, we have

02)

/T
2Py nllool(Tg = Tyn)ir@ylloo < —(ﬂ )02“<Tq = Tan)ir@) lloo
{r) ., 4r)
< TOQ ?Cl ”(T - Tn)q|R(P) ”a
and
T
20|Py[looll(Tg = Ton) @y lloo < %OIIKTq = Tan) iRy, oo
T T
< QOIQO2”(T — Tn)an”a

T 2mwd
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as in the proof of Theorem 3.5(b). Thus
A=Al < Cmin {[(T = T0)9aep)ll; 1T = Tn) Tl }

for all large n,q = 2,3,... and some constant C, independent of n and gq.

Now let A = {)\}, so that A = \. We have noted that the ascent of \ as an
eigenvalue of T, is equal to its ascent as an eigenvalue of T, namely [. Again,
applying Theorem 2.3 to the operators T, and T, we have for j =1,... ,m,

[\ — )‘q,n,j|l < 2min {Cq,n“Pq,n”oo“(Tq - Tq,n)IR(Pq)“oo,
DnlPglloo(Tq = Tan)ireq,mlloc } 5

where

Con = Z Mg pep,) — AnTonAgnlc ™" ALy pep,) — Tq|R(Pq)”]go’
k=0

I—-1-k -1 k
Do = > IMapp, .y~ Tamppe, e " I ope, ) ~ BanTBanllS
k=0

Note that min{|z| : z € '} = § > 1. Therefore, for j =1,... ,m we have
A= Agngl' < C min {|(T = To)drep) Iy (T — To) Tl }

for all large n,q = 2,3, ... and some constant C’,4ndependent of n and g.

Finally, we consider the general when case min{ |A\| : A € A} > e. We choose
a = 1/e and consider the scaled operators T4(a) and Ty (). By Lemma 3.4,
we find that a\,...,a\, are the eigenvalues of T,() inside the curve oI’ and
OAgn,1s. -+ OAgn,m are the eigenvalues of Ty () inside the curve al’, counted
according to their algebraic multiplicities. By what we have just proved, there is
some constant C'(a), independent of n and ¢ such that

lad — adgn| < Cla ymin { [|(aT — aT»)4rp) ||, (T — aTn)aTy || },

so that
max{1, a}C(a)

|>‘ - >‘q7n| < eq—1

min {||(T = Tn)4r(p)ll; (T = Tn) Tull }
as desired. If A = {A}, then the ascent of a\ as an eigenvalue of T,(a) equals I.
Hence the estimates for |\ — Agn ;%5 =1,... ,m, follow similarly. O

If A = {A} with |A\] > € and f is an analytic function in the neighborhood of A,
then by the functional calculus it is easy to see that for all large n and ¢ = 2,3, ...,

1 & C
52 Non)| < g win {[(T = T)drepll 1T = To) Tl }

where C'is a constant independent of n and q. The above-mentioned estimate is, in
fact, an accelerated analogue of a result of Descloux, Nassif and Rappaz ([6], [7]).

Next, we consider approximation of an element of R(P) by an eigenvector ob-
tained from a higher order spectral analysis of T.
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Theorem 3.7. Let x = [z1,... ,z4)" be an eigenvector of T, corresponding to
an eigenvalue in Agp, such that ||z1]| = 1. If min{ |A| : X\ € A} > ¢, then there is a
constant C' such that

C
lz1 = Pe1|l < 2= (T = Tn) T
for all large n and ¢ =2,3,... .
Proof. Since Pyx = [Pz1, S121,...,S-121]" and Py ,x = x, we have

21 — Pz1|| < [|x = Pyx[loo = [|(Pgn — Pg)PgnXlco-

If min{ |\ : A € A} > 1, then |x||cc = ||z1]| = 1 and hence Theorem 3.3 shows
there is a constant C' with

o1 = Parl] < |(Pon = Po)Pyllos < Cll(Tgn = Ty Tynlloo = CINT = To) T

If min{|\| : A € A} > ¢, then, as before, we choose oo =1/e and consider the
scaled operators Ty (), Py, (a), T4(a) and Py(a). Since P(a) = P and the first
components of the elements of R(P,,(a)) and R(P,,) are the same, there is a
constant C'(«) such that

a?C(a)

q—

lz1 — Pz1|| < C()|[(eT — aTy) ey = (T = T%) T

0

The result in Theorem 3.7 was also obtained by Dellwo and Friedman in [5].
Let A = {)\} and [ be the ascent of A. Let A\, , € Ag, such that A;, — X as
n — oo uniformly in ¢ = 2,3,....

Theorem 3.8. Let |\| > €. Suppose that

t
Won = |W .. . e N(T,,, — Agnl
o { P g ,(’\q,n)q_l] (T anla)

with ||wgn| = 1. Then there is some uq, € N(T — AI) such that

1/l
o~ gl < O { T = L) e}

for allq=2,3,..., where C is a constant independent of q and n.

Proof. Consider the particular case when |A\| > 1. Then for all large n and ¢ =
2,3,..., |Agnl > 1. Thus ||[Wgnlle = [|[wgnll = 1. Applying Theorem 2.4 to the
operators Ty and T, ,, we obtain some ug, € N(T; — AI,) such that

1/
[Won —Ugnllc <C {“(Tq - Tq,n)IR(Pq)HOO} .

Since ug,;, = Jqug,, for some u,, € N(T — AI), Proposition 3.1 (with e = 1) shows
that

1/
lwg,n — vgnll < [Wom — Ugnllee < c’ {“(T - Tn)qIR(P)“} )

for some constant C’, independent of n and gq.
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Finally, to treat the general case, we choose o = 1/e¢ and consider the scaled
operators Tq(a), Pg(a), Ty n(a) and Py (). Since P(a) = P and the first com-
ponents of the elements of R(P, ,(a)) and R(Py,,) are the same, there is a constant
C’(a) such that

1/1
tg,n — wanll < C'() {|I(eT = aTn)4r(ry |}
1 1/
=@ {ZIT - T el } - O
Hence the result follows.

4, NUMERICAL EXAMPLES

Let A\ be a nonzero defective eigenvalue of T of algebraic multiplicity m and ascent
{ > 1. We illustrate by numerical examples how the weighted arithmetic mean Xq,n
gives a better approximation than do the individual eigenvalues Ag.n,1,. - , Agn,m»
provided by the gth order spectral analysis when ¢ = 2, 3,4, 5, 6.

Let X = C([a,b]) and T be an integral operator given by

b
Tx(s) :/ k(s,t)z(t)dt, ze€ X, s€a,b,

where the kernel k& is continuous on [a,b] x [a,b]. In actual computations, T is
replaced by its approximation T given by

M
Tz(s) = ZwéM)k(s,téM))z(th)), ze X, sé€lab],
j=1

where M is very large. Here the nodes th),... ,ts\y) in [a,b] and the weights
w™ . w in C gi d f
R ) give a convergent quadrature formula

M
Qx = ngM)z(th)), z € X.
j=1
Consider & finite rank operator T, given by

Thxr = Z(m, zi)zj, x€X,

j=1
where z1,... ,z, are in X and z3%,... ,z} are in X*. Then the eigenvalue problem
for Ty, can be reduced to an eigenvalue problem for the matrix A, , where
AQ AW 4l
I, 0 ... . 0
Agn = 0 :
0 o - I 0

Here A = [(Akz;, x7)] for k =0, 1, ...,q—1 and I, is the n x n identity matrix.
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Note that this matrix eigenvalue problem is of size ng. If |T — T,|| — 0, then
both |[(T'—T,)4rp)ll and [[(T' —T,)?T,|| are less than or equal to a constant times
|7 —T,||?. Thus if we keep n fixed and increase the order g of the spectral analysis,
then the size of the matrix eigenvalue problem increases arithmetically with respect
to ¢ while the accuracy of the spectral approximation increases geometrically.

Example. Let a =0,b =1 and

[ s—=t/2, if 0<s<t<l1
k(s*t)‘{ ¢/2, if 0<t<s<l.
1
Then each \; = W, j=1,2,...,is an eigenvalue of T' of algebraic mul-
tiplicity m = 2 and ascent | = 2. We have chosen the nodes and weights as follows:
— 1
o Z—@-, if 4 is odd,
T ﬂ if 7 is even
M b b

and
wi™) = 7\12 i=1,..., M.
These are obtained by the compound Gauss Two Point Rule on [0, 1].

For n <« M, let wgn), o wd and tﬁ"’, ..., be the weights and the nodes,
respectively, associated with the compound Gauss Two Point Rule on [0,1]. Let
egn), ..., e be the hat functions corresponding to the nodes t%"), ot We
consider the following two approximations of the integral operator T'.

i) Nystrom Approximation:

TNz(s) = > wiVk(s, t{)z(™), zeC(0,1]), se(0,1].
j=1

ii) Projection Approximation:
n
TP = 7, T, where m,2z = Zz(tg."))eg»n), z € C([0,1]).
Jj=1

Note that the sequence (7)) satisfies the hypotheses (H1) and (H2), but ||~ T.Y||
does not tend to 0 as n — oo (cf. [3], p. 197). On the other hand, |T'— T.F|| — 0
as n — oo (cf. Theorem 4.5 of [3]).

Let A denote the arithmetic mean of the two eigenvalues of T which are close
to the largest eigenvalue A = 1/72 of T. Also, let Agn1 and Agp2 denote the

eigenvalues provided by the gth order spectral analysis which are close to X, and

Agm = ﬁﬂ—;—AM. We have taken M = 500 and n = 10, 20, 30, 40. The following

computations were performed on HP9000/700 model J200 in single precision with
an accuracy of 7 digits and in double precision with an accuracy of 15 digits. These
numerical results illustrate that, in general, the rate of convergence of the ), , to
) is faster than that of the individual eigenvalues \gn,1 and Ag 2.
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CALCULATIONS IN SINGLE PRECISION

TABLE 4.1. ¢=2, TABLE 4.2. ¢ =2,

Nystrom Approximation Projection Approximation
n (5‘ —Agm,l (5‘ = Agn.2 (5‘ - 5‘q,n| n |/~\ —Agnil |/~\ — Agn,2] |/~\ - j‘q,n(
10 | 8.96x10~% [ 9.50x 104 | 9.23x10~* 10| 5.29x 1075 | 5.29%x 1075 | 9.79x 106
20 | 2.15x 1074 | 2.36x107* | 2.25x10~* 20 | 3.81x107° | 3.81x1075 | 5.74x 1077
30 [ 1.02x107% | 1.02x1074 | 9.98x10~5 30| 2.00x107% | 2.00x10~% | 7.45%x 108
40 [ 1.44%x1075 | 9.78x107% | 5.61x 105 40 | 3.37x1075 | 3.35x1075 | 8.19x 1078

TABLE 4.3. ¢=3, TABLE 4.4. ¢q=3,

Nystréom Approximation Projection Approximation
n | A= Agnal | A= Agn.zl I:\_:\q,n| n |5‘_’\q,n,1| |5‘_’\q,n,2| A= Ag,nl
10 | 6.69x107°% | 6.69%x1075 | 1.37x10° 10 | 1.88x107% | 1.88x 1075 | 2.98x10~8
20 | 3.25%x1075 | 3.25%x1075 | 8.94x 107 20 | 6.91x1075 [ 6.89x1075 | 7.45x10~8
30| 3.93x107% | 3.87x107% | 3.05x10~7 30| 5.75%x1075 | 5.75%x1075 | 5.96 x10~8
40 | 4.67x1075 | 4.67x1075 | 1.04x10~7 40 | 1..99%1075 | 1.98x 1075 | 5.96x 108

TABLE 4.5. ¢ =4, TABLE 4.6. ¢ =4,

Nystrém Approximation Projection Approximation
n lj‘ = Agn,| IS\ = Agm.2l lj‘ _ 5‘q,n| n l:\ —Agn,1l l:\ — Agn.2| |:\ — 5\q,n|
10 | 2.65x 1075 | 4.27%x1075 | 8.08 x10~6 10 | 1.7¥x107°% | 1.71x 1075 | 1.04x 107
20| 8.31x107% | 3.31x107% | 4.10x10~7 20 | 6.47%x1075 | 6.45%x107° | 1.04x 107
30| 3.95%x1075 | 3.95x107% | 2.98x 108 30| 3.99x107% | 3.99%x107% | 5.96x10~8
40 | 5.34%x1075 | 5.34x107% | 3.72x 108 40 | 1.07x1075% | 1.07x1075 | 8.94x10~8

CALCULATIONS IN DOUBLE PRECISION

TABLE 4.7. ¢=25, TABLE 4.8. ¢=25,

Nystrém Approximation Projection Approximation
n |5\_)‘q,n,1| |5‘_)‘q,n,2| |5‘—5‘q,n| n |5‘_)‘q,n,1| l;\“’\q,n,Zl I;\“S\q,n|
10 | 1.72x1077 | 1.71x10~7 | 1.72x10~7 10 | 2.57x107° | 2.57x 1079 | 1.99x 10~ 11
20 | 4.22x1079 | 1.03x1079 | 2.62x10~9 20| 1.30x1079 | 1.30x 109 | 1.93x 1014
30| 2.11x1079 | 2.11x1072 | 2.30x 1010 30| 1.63x1079 | 1.63x 1079 | 2.22x 1016
40 | 3.01x1079 | 3.01x1079 | 4.11x 1011 401 2.24x1079 | 2.24x1079 | 5.97x 1016

TABLE 4.9. ¢=6, TABLE 4.10. ¢ =6,

Nystrom Approximation Projection Approximation
n |5‘_)‘q,n,1| IS‘_’\q,n,2| |5‘_:\q,n| n |’~\-_)‘q,n,1| |5‘_’\q,n,2| |’~\“5‘q,n|
10| 7.39x1078 | 7.39x10°8 | 7.37x10~8 10|7.80x10710(7.81x10710}2.61x 1013
20[4.64x10710| 2.67x1079 | 1.10x10~° 20] 1.29x1079 | 1.29%x10~° |5.69x 1016
30| 2.25x1079 | 2.25x1079 |9.66x 1011 30| 1.69x1079 | 1.69x10~9 |5.27x 1016
4018.74%x10710)8.74x 10710 | 1.73x 10~ 11 40| 1.75x1072 | 1.75x 1079 |5.83x 10716
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