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ABSTRACT. To solve one-dimensional linear weakly singular integral equations 
on bounded intervals, with input functions which may be smooth or not, we 
propose to introduce first a simple smoothing change of variable, and then to 
apply classical numerical methods such as product-integration and collocation 
based on global polynomial approximations. The advantage of this approach 
is that the order of the methods can be arbitrarily high and that the associated 
linear systems one has to solve are very well-conditioned. 

1. INTRODUCTION 

In this paper we consider classical Fredholm integral equations of the second 
kind 

(1.1* l) tu(y) k(x, y)u(x) dx= f (y), -1 < y <1 

with weakly singular kernels k(x, y); the right-hand side f can be smooth or have 
irregularities. In particular we examine the case of displacement kernels of the form 
k(lx - yl), with 

(1.2) k(t)- k (t) := t", a > -1 or k(t) _ k*(t) log(t)) 

and, more in general, kernels which may be decomposed as 

(1.3) k(x, y) = hi(x-y) log {x-yl + h2(x-y)jx-Yl' + h3((x-y), 
with hi smooth and a > -1. 

For this type of equations the behaviour of their solutions in [-1, 1] is known; 
see, for instance, [6], [17], [19], [20], [25]. When the input function f is smooth, let 
us say f E Cr+1[-1, 1], the solution u(x) has only endpoint mild singularities, that 
is, u E Cr(-1, 1). For example, in the case of (1.1) with k(x, y) = log x - y the 
solution u(x) admits an expansion containing a finite number of terms of the form 
(see [19]) 

(1.4) (1 ? x)i log3(1 ?x), i, j = 1, 2,...,r, i> j, 
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TABLE 1. Estimated condition numbers. 

d = 2 d = 3 d = 4 d = 5 d = 6 
N q = 2.6 q = 3.1 q = 3.6 q=4.1 q = 4.6 
4 3.6E+00 4.4E+00 4.9E+00 5.3E+00 4.6E+12 
8 4.OE+00 5.OE+00 5.7E+00 6.4E+00 5.2E+31 
16 4.6E+00 5.3E+00 5.9E+00 7.OE+04 2.4E+65 
32 4.8E+00 5.3E+00 2.7E+04 3.lE+12 
64 5.OE+00 5.4E+00 l.5E+09 2.6E+19 

plus a function of class Cr [-1,1]. If f or one of its first derivatives has, for example, 
simple jumps at a finite number of points in (-1,1) and is smooth elsewhere, by 
applying Richter's theory (see [19]), one derives that u(x) may be expressed as a 
linear combination of f and a finite number of terms which are mildly singular, as 
those in (1.4), either at ?1 or at the jump points of f, plus an unknown smooth 
function. 

The knowledge of the behaviour of the solution of (1.1) is crucial if one wants to 
tune the chosen numerical approach in order to obtain an optimal rate of conver- 
gence. Indeed, classical numerical methods such as product-integration, collocation 
and Galerkin are all constructed on properly graded meshes with piecewise poly- 
nomial approximation of the solution. The needed grading parameter for the mesh 
is related to the behaviour of the solution (see [5], [21], [26]). For example, in the 
case of (1.1) with k(x, y) = log Ix - yI and f smooth, by using a product-integration 
method based on piecewise polynomials of degree d, with break-points 

21 q N 
Xl =-1 + () 0<1 < 2 

Xl=-XN-I, N<1<N, 
2- 

where q > 1 characterizes the degree of non-uniformity of the mesh, we can reach an 
optimal order of convergence O(hd+l), where h = max, Jx+1 - x1. Also collocation 
and Galerkin methods require the same mesh grading to reach the optimal rate 
of convergence. It is common belief that these methods are the most efficient 
numerical approaches for the solution of (1.1); by taking the local polynomial degree 
d arbitrarily large, we can obtain an order of convergence as high as we like. In 
practice, using computer arithmetic, this last statement does not appear to be true. 
Indeed, as the local degree d increases, the concentration of knots near the singular 
points of u is so high that the final linear system one has to solve becomes rapidly 
ill-conditioned. Moreover, also their implementation becomes more expensive. In 
Table 1 we report some values of the (linear system) condition number estimated 
by a routine from the ABACI Library [27], when the product-integration method 
described above, with local nodes chosen coinciding with the zeros of the (d + 1)- 
degree Legendre polynomial (see [21]), was applied to (1.1) with kernel k*(t) and 
f (y) = y. 

Notice that the total number of interpolation points in (-1,1) at which it is 
required that the approximants satisfy equation (1.1) (that is, the order of the linear 
system we have to solve) is n = N(d + 1). These condition numbers, particularly 
the large ones, appear a little pessimistic; however their growing behaviour has 
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been confirmed by the numerical results we have obtained; see, for instance, Table 
6. 

In the case of the corresponding collocation and Galerkin methods, the condition 
numbers of the final linear systems appear to have a similar behaviour. Those of 
the Galerkin method are actually a little larger (see Table 7). 

For these reasons, in spite of the theoretical results, one should not choose d 
greater than, let us say for example, 4. Graded meshes theoretically allow an 
arbitrarily high order of convergence, but in practice also generate increasingly 
ill-conditioned linear systems. Thus in practice the superiority of methods using 
graded mesh over others, such as those we shall mention next, is severely limited 
from the point of view of the order of convergence. 

Although in some cases numerical methods based on global polynomial approxi- 
mations have been proposed (see [13], [14]), in general they have not been considered 
competitive for the solution of (1.1) because of their fixed (and generally low) rate 
of convergence. For example, in the case of (1.1) with smooth right-hand side, 
the product-integration method with n-point product quadrature rule based on the 
zeros of Legendre polynomials gives the following bounds: 

{O(n-4 log2n) ifk k0 
Uu-Un Iloo = ( rr-4-2c log n) if k = k, and -3 < a < 0, 

4 

where un denotes the interpolant defined by the method. However, the linear 
systems generated by these methods have shown to be very well-conditioned. This 
is due to the fact that the zeros of Legendre, and more generally those of Jacobi, 
polynomials have a mildly non-uniform distribution' in (-1, 1): the distance between 
two consecutive ones is of order O(n-2) near the endpoints ?1, and O(n-1) in the 
middle of the interval of integration. 

In the next sections we will show that if in (1.1) we preliminarly introduce a 
very simple nonlinear (smoothing) transformation, we can obtain a new equation 
whose solution can be as smooth as we like. The subsequent application of a 
method based on global polynomial approximation will then give an arbitrarily high 
order of convergence. The nonlinear trasformation of the independent variable will 
simultaneously absorb all irregularities of u(x) and all those of f(y). It will however 
introduce a perturbation in the kernel of (1.1), but the new equation will not raise 
any difficulties for the implementation of the associated numerical method. 

In Section 2, we define the above transformation, examine the new form that 
it will give to (1.1), and derive an expansion for the solution of the transformed 
equation. In Sections 3 and 4, we consider a product-integration and a collocation 
method, respectively, prove their stability and derive convergence estimates. Fi- 
nally, in Section 5, we present several numerical results, showing the efficiency of 
the new approach. 

2. THE SMOOTHING TRANSFORMATION 

For simplicity we first consider a particular case of kernel (1.3), containing only 
the logarithmic singularity, namely an equation of the form 

(2.1) 

u(y) -j hi(x, y) log Ix - yltu(x) dx - h3(x,y)u(x) dx = f(y), -1< y <1, 
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with displacement kernels hi (x, y) = hi (x - y) smooth (for simplicity, in the fol- 
lowing we will always assume hi(t) E C([-2,2])), and an inhomogeneous term f 
which may have finite jumps or singularities, eventually in one of its derivatives, at 
a finite number of points of (-1,1). We shall denote these by -1 < Y < Y2 < < 

Ym < 1, and assume that f is smooth (for simplicity C') everywhere in [-1, 1], 
except at the Yk's (k = 1, ..., M) where its singularities satisfy the conditions 

(2.2) I (Y -Yk)i'lf (i) (Y) I< C) i = 0, 1,.... 

in a neighbourhood of Yk* It is well-known that integral equations of type (2.1) 
in general have solutions u(x) which show (endpoint) singular behaviour in their 
derivatives even when f(y) is smooth. When f is not smooth, u(x) contains in 
addition new singularities, which are generated by those of f and satisfy (2.2). 
Indeed, by applying for example Richter's theory (but see also [6]) to the simpler 
case h, (x, y) _ 1, M = 1, Y1 = 0, and assuming f a piecewise C' function with a 
simple jump at Yi = 0, we obtain the following expansion for u(x): 

r i 

u(x) = f(x) + Z Z[aij(I + x)ilog3(I + x) + bijx2 log3 lxl 
i=1 j=1 

(2.3) + cij(1 - x)i logj (1 - x)] + uo(x), 

where aij, bij and cij are constants, and u0 E Cr [-1, 1] with r arbitrarily large. 
If f has more than one interior jump, then in the expansion of u(x) we have the 
corresponding (x -yk)i log1 x-Ykl singular terms. Analogous results have also been 
obtained for the well-known Ei(lx - yl) kernel of the linear transport equation, 
which admits the following decomposition of type (1.3): 

E1(t) = ki(t) + t k2 (t) + log t, 

where k1 and k2 are entire functions (see [14]). 
From Richter's theory we can also claim that if the singularities of f satisfy 

condition (2.2), so do those of u. This result suggested to us that, by introducing a 
simple nonlinear change of variable, we can always regularize both u(x) and f(y), 
hence transform (2.1) into a corresponding weakly singular integral equation with 
smooth right-hand side and solution. Once we have carried out the smoothing 
step, we can apply classical methods based on global approximation and obtain 
high order rates of convergence. 

The idea of smoothing the solution by introducing a suitable nonlinear mapping 
is not new. It has been proposed for example in [3], [4], [8] and [18], and more 
recently in [15]. However, in these papers the transformation has been considered 
to solve particular problems where previous methods were not so successful. Here 
we propose a general technique which may have a wider applicability. Our work 
has been strongly inspired by the excellent results obtained in [15]. 

Taking into account expansion (2.3), we choose a nonlinear transformation x = 

-y(t), where -y(t) is a sufficiently smooth monotone function mapping [-1, 1] onto 
[-1,1], having yo =-1, YI I , I YA/I I Ym+1 = 1, as fixed points, i.e. Yk = -Y(Yk), 
and whose leading derivatives vanish at {Yk}. The simplest, and most efficient from 
the computational point of view, among those satisfying the above properties is the 
piecewise Hermite interpolation polynomial HM(t) associated with the partition 
-1 = YO < Yl < Y2 < .. < YM < YM+l - 1 of [-1,1] and defined in each 



WEAKLY SINGULAR INTEGRAL EQUATIONS 1497 

subinterval [yk, yk?+ ], k = 0, ..., M, by the conditions 

2.4) JHm (YJ)=YJ, j=k,k+1, 
( ) lHH ) ()= j = 1c, 1c + 1, i = l, ..., eaj- 1, ajy> 2. 

The integers ak, k = 0, ..., M + 1, are chosen accordingly to the smoothing effect 
that -y(t) ought to produce at the points Yk, k = 0, ..., M + 1. Notice that the 
smoothness of -y(t) itself does not depend on the choice of ao and aM+,- 

The construction and evaluation of HM (t) and HM (t) is not as trivial as it might 
appear at first, particularly if we want to have an automatic program where the 
{ ak } may be arbitrarily chosen. A numerically stable and efficient procedure is the 
following one. 

Since we know a priori that in [Yk, Yk+1] 

(2.5) HM (t) = Ck (t - Yk )ekl1 (Yk+1 - t)1k+?1-1 

where Ck is a suitable constant, we can use this expression to derive the following 
representation for HM(t): 

rt 
(2.6) HM(t) = Ck J (X - Yk) Cgk (Yk+1 - X)lk+1 dx + Yk, t e [Yk, Yk?11 

Yk 

By imposing the conditions HM (Yk+l) = Yk+l, k = 0,..., M, we determine the 
coefficients Ck as 

Ck = (Yk+l - Yk) 2ek (Ck+l (ak + a/k+1 - 1)! 
(ak - 1)! (ak?1 - 1)!' kI 

Using (2.6), HM(t) can be evaluated exactly (up to machine accuracy), without 
any loss of precision, by using an N-point Gauss-Legendre quadrature rule, with 
N= Ck+C?k?+l1 

We have also used a piecewise rational transformation based on a rational func- 
tion used in [3]; however, it has the drawback of introducing complex conjugate 
poles near the interval of integration, which make more difficult the calculation of 
the integrals required by the numerical method, chosen to solve the assigned inte- 
gral equation. In any case this transformation did not give results as accurate as 
those, we have obtained by using our -y(t) = HM(t). 

Thus, introducing in (2.1) the change of variables x = -y(t) and y = -y(s), we 
have 

1 

uQy(s)) - j hQ(y(t),'y(s)) log Iy(t) - -y(s) u(-y(t))y'(t) dt 
-1 

- h3(7(t), 'y(s))uQy(t))'(t) dt = f(y(s)), -1 < s < 1. 

On multiplying through by -y'(s), and introducing the new unknown function 

(2.7) p(t) = uby(t))-y'(t), -1 < t < 1, 

1 Lxi the greatest integer less than or equal to x. 
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we finally obtain the equation 
1 

(p(s) - h1 (t, s)y'(s) log Iy(t) - 'y(s) ( p(t) dt 
(2.8) J1 

- j h3(t, s) y'(s)(p(t) dt = g(s), -1 s s < 1 

where we have set h-(t, s) = hi(-y(t), y(s)) and g(s) = f (-y(s))-y'(s). In the following, 
equation (2.8) will also be considered in the operator form 

(2.8') (I - K-) 9o = g. 

From the computational point of view, it is more convenient to set 

6~(t,s) - log [Y (tj(--(s)] if t 

{log [y' (s)] f t-s - Yk, k = 0,..., M + 1, 

and hence rewrite (2.8) as follows: 
1 

(p(s) - log It - s h(t, s)y'(s)(p(t) dt 
(2.9) s-1 

- 11 [A1(t, s)6*(t, s) + h3(t, s)] < (s)p(t) dt = g(s), -1 < s < 1 

or, equivalently, as 

(2.9') (I-K -K2;) p = g, 

since otherwise we would not be able to handle numerically our operator with the 
log Ixy(t) - -y(s) I kernel. 

In the following, by Cl1,' we will denote the space of functions whose 1-derivatives 
satisfy a Holder condition with exponent ,u, 0 < , < 1, in their domain of definition 
(see [9]). We will also consider the space Cl' := C?)1. 

Notice that essentially the nonlinear change of variables has generated in (2.9) 
a perturbation kernel of the form 

(2.10) h1 (t, s) 6 (t, s) -y'(s), 

where the factor 86*(t, s) has only fixed-point singularities at t= s = Yk; therefore 
(2.10) can be made arbitrarily smooth because it contains the factor i'(s). Its 
degree of smoothness depends upon the choice of the parameters ak, k = 0, ..., M + 
1, in (2.4). For example, the conditions ak = 1+2, k = 0, ...,M+1, guarantee that 
(2.10) belongs to Cl1-E([_1, 1]2), E being a positive arbitrarily small number, and 
that h3(t, s)y'(s), g(s) and p(s) belong to C1,1. 

The price we have to pay for introducing a transformation -y(t) with the above 
properties is that once we have computed ~o(t), we cannot recover directly from 
(2.7) the original solution u(x) at the points {yk}, but eventually we need to use 
some interpolation process; but we think that this drawback is very minor. 

The behaviour of the new unknown function p(t) can be derived from the corre- 
sponding behaviour of u(x) that we have described in the first part of this section. 
For example, in the case of (2.3), recalling (2.5) and (2.7), we obtain for p(t) an 
expansion containing the inhomogeneous term g, singular terms of the form 

(2.11) (t - Yk)('+l)ak-1 logj It -Ykl k=0, ..., M + 1, i > j >1, 

plus a smooth function. 
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Next, we consider an equation of type (2.1) with an algebraic kernel, that is, 

(2.12) 

u(y) - J h2(X, Y)X-Yau(x) dx - h3(x,y)u(x) dx = f (y), -< y <, 

with a > -1 not an integer, and where hi(x, y) and f (y) satisfy the same assump- 
tions as those in (2.1). 

Also in this case we can apply Richter's theory. In particular, in the simpler case 
h2(x, y) _ 1, with f or one of its derivatives having a simple jump at Yk, for the 
solution u(x) we obtain an expansion of type (2.3) containing singular terms of the 
form (see [19]) 

(2.13) IX - Yki(l+)+j i> 1, j > 0, i > j. 

For rational a, the exponents i(1 + a) will become integers at regular intervals; in 
such a case the corresponding terms must be replaced by 

-X - Ykt 109+ logPX - YkKl 

where p denotes the p-th time an integer exponent occurs. 
The introduction of our smoothing transformation leads to the following new 

form of (2.12): 

(1p(s) - h2 (t, s)'y'(s) IK(t) -7 (s) I p(t) dt 

(2 14) - 

-t J h3 (t, s)y'(s).p(t) dt = gts), -1 < s < 1 

or, equivalently, 

(2.141) (I - K-) 9 = g. 

In this case we prefer to set 

(t s at)-(s)a if t s, 

[tY (s)] Pif t =s (Y yk, k=, ... ,M + 1, if < 0), 

and rewrite (2.14) as follows: 

5 p(s) - t - s|h2(t, s)86(t, s) y'(s)(p(t) dt 
(2.15) - 

-t Jh3(t, s)7y'(s).p(t) dt = g(s), -1 < s < 1 

or, equivalently, as 

(2.15/) (I - K-Y - K-Y) fo = g. 

Notice that because of the -y'(s) factor we can make 

(2.16) h2(t, s) 6a (t, s) 7'(s) 

as smooth as we like. For example, the conditions ak =1+ [ ,2k =0, ..., M+1, 

guarantee that (2.16) belongs to C1It([_1, 1]2) with ,u = [l4C] (1 + a) -1. 

2 xl = the smallest integer greater than or equal to x. 
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In the case of (2.12), taking into account the expansion of the corresponding solu- 
tion u (see (2.13)), for the solution p(t) of (2.15) we obtain an expansion containing 
g, singular terms of the form 

It - Yk [i(1?o?)+j+110k-1 i > 1, j? >O, i > j, 

plus a smooth function. As for (2.13), if [i(1 + a) + i + 1]oak becomes an integer we 
must add a corresponding logP It - Yk factor. 

Before being allowed to take (2.9) or (2.15) as reference equation to which to 
apply a numerical method, we have to check that the nonlinear transformation has 
not spoiled it of the uniqueness property that the solution of the corrispondent 
original equation has. The proof of the following lemma is very similar to that of 
an analogous result proved in [15]. 

Lemma 1. If the equation (2.1) ((2.12)) with f- 0 has no nontrivial solutions 
u E LP(-1, 1) for any p > 1,3 then equation (2.8) ((2.14)) has a unique solution 

e E L2(-1, 1). 

Proof. For brevity, we shall prove the lemma only referring to the equation (2.1), 
since the same proof holds also for equation (2.12). 

We notice first that the operator Ka in (2.8') is compact in L2( 1, 1); hence 
by the Fredholm alternative theorem equation (2.8) has a unique L2-solution p 
for each g E L2(-1, 1) if and only if the associated homogeneous equation has no 
nontrivial solutions in L2(-1, 1) 

If for a contradiction we assume that the homogeneous version of (2.8) has a 
nontrivial solution fo E L2(-1, 1), then from (2.7) it follows that 

(2.17) u(x)= S?(, (X)) 

satisfies (2.1) with f 0 O and is not identically zero. Moreover, we have 

f1I~ ~~~1 (PQ1(X)) 
P 

1 (p(t)lp 
j lu(x)IPdx = y'y9(t )) dx = IY'(t))l 

dt; 

hence by applying the Holder inequality with indices 2 and 2 1 <p < 2, p 2-p' 

lu(x) IP dx < (j p(t) 2dt) (f' 1'(t)l-2(-pl) dt) < - o 

for all p > 1 sufficiently close to 1. But this contradicts our assumption that the 
original homogeneous equation has no nontrivial solutions u E LP(-1, 1), for any 
p> 1. D 

3. THE PRODUCT-INTEGRATION METHOD 

In the case of equation (2.9), to define our product-integration method or 
Nystrom type method, we replace the operators K' and K2 in (2.9') by 

n 
(3.1) K- o(s) = 7 /(s) w ni(s) h1(tni s) (p(tni) 

i l 1 

3For the existence and uniqueness of solutions in the LP-spaces, p > 1, see for instance [7], [12]. 



WEAKLY SINGULAR INTEGRAL EQUATIONS 1501 

and 
n 

(3.2) K 2,n(p(S) = -y'(s) Ani [h'I(tis) 6o tni,s) + h3(tni, s)] ni(t), 
i=l1 

respectively. 
Rule (3.1) is an n-point product rule of interpolatory type, obtained by replacing 

h1 (t, s)>(t) by its Lagrange interpolation polynomial (in the t-variable) associated 
with the Gauss Legendre nodes {tni}. Its coefficients {w*i(s)} are given by the 
expression (see, for instance, [13]) 

n-I 1j2 
(3.3) w*i(s) = AniZE hjp*(s)pj(tni), hj = (t)dt = 

j=0 IJ1 

where {Ani} are the n-point Gauss-Legendre weights, pj (t) is the j-th degree orthog- 
onal Legendre polynomial (normalized by the hj given above), and the quantities 
{,j*(s) } are given by the recurrence relationship (see [13]) 

{po4(s) = (1 + s) log(1 + s) + (1 -s) log(1 -s) -2, 

p4(s) = (1 - s2) /2 log [(1 - s)/(1 + s)] - s, 
(k + 2) p*4+ (S) = (2k + 1)s pb (s) - (k - 1) '4 (s), k > 1. 

Rule (3.2) is simply the n-point Gauss-Legendre formula applied to the integral 
K2 o(S) 

In the case of equation (2.15), we replace Kf and Kj in it by 
n 

(3.4) ~1, n 0(S) = 7'(s) n()s h2(tni, S) 6$e,(tni, S) WO(tni) 
i=1 

and 
n 

(3.5) K2,n(P(s) n iy(s) j An h3(tni, s) sO(tni), 
i=1 

respectively, where 
n-I 

(3.6) w( )(s) A nj hI1Ii>)(s)Pj(tni) 
j=o 

with (see [13]) 

{to (s) = [(1-s)l?+ + (1 + s)l+a] 7(1 + a), 

,u() (s) = S[(1-)2+?a- (1 + s)2+a] /(2 + a) + s p(c) (s), 

(k + 2 + a) ph (s) = (2k + 1)s 4 c)(s) - (k-- ce) 4i (j), k > 1. 

Replacing the operator K- = K1 + K2 in (2.9) or (2.15) by the above quadra- 
ture scheme, the product-integration method is characterized by collocating the 
approximate equation 

athpisn 1,2,n) (Pn(S) = g(s) th r l syte 

at the points s = tnj, 1, ..., n, and solving the resulting linear system 
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for the unknowns {p (P(tQj)}. The product-integration approximant o,o(S) is then 
defined for all values of s E [-1, 1] by the expression 

(3.7) Ono(s) = g(s) + Kn SOn(S), 

where K?4 := K_, + K_, 
To derive a convergence estimate for the approximant (3.7) we need to examine 

the uniform behaviour of the Gauss-Legendre remainder term 
1 ~~~n 

(3.8) RG(v; s) j v(t, s) dt-E An v(tni, s) 
i=1 

and of the error 
1 ~~~~~n 

(3.9) RI (v;s) ] k(It- s8)v(t, s) dt - E wni (s) v(tni, s) 
-1 ~~~~~~~i=l1 

with k defined as in (12)m generated by the product quadrature rules (3.1) and 
(3.4). For brevity, we have denoted by {wni(s)} the weights of the latter rules. 
In particular, recalling the expressions of K1 o and K'ao, we need to know these 
behaviours when v(t, s) E Cl/ ([-1, 1]2) or v(t, s) = h(t, s)z(t), where h(t,s) E 

Cl"" ([-1, 1]2),for some 0 < i < 1, and z(t) is of the type (1 ? t)i log(1 i? t) with 
the integers i > j > 1 (see (1.4)), or of the type (1 ? t)6, with 6 > 0 real, not an 
integer (see (2.13)). 

To this aim, we recall the following well-known result (see, for instance, [9]): 

(3.10) 1 h - Pn,nllrio= 0(n-('+/-)), 

which holds for every h(t, s) E 0l, ([-1, 1]2), Pn,n(t, s) being a best uniform alge- 
braic approximating polynomial of degree n separately in t and in s. 

Moreover, we reassemble in the next lemma some of the results obtained in [2] 
and [13], which are necessary to prove our main subsequent results. 

Lemma 2. Let ko and ka, be defined as in (1.2). For all integers n there exist 
algebraic polynomials q (t) and q2 (t) of degree n, with q llo < Cj4 such that the 
estimates 

I (I ?t t)i logi(I ?t t) - ql(t)jjk(jt- 81) dt 

n- 2i-2+e if k=ko ork =ko and a>O, 
- n-2i-2-2?e if k = k and a < 0, 

with the integers i > j > 1, and 

n- 26-2+6 if k = ko 
/|(lt)6-q2(t) Ilk(It- 1)l Idt < c n-26-2 if k = ka, and a > 0, 

n-26-2-2a if k = ka and a < 0, 

with 6 > 0 real not integer, hold for 1s8 < 1, where c is a constant independent of s 
and n, and e denotes a positive real number as small as we like. 

In the next lemma, we will describe the behaviours of the remainders (3.8) and 
(3.9), also generalizing some corresponding results in [13]. 

4The uniform boundedness of the polynomials q' follows from Theorems 1 and 3 in [2]. 
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Lemma 3. Assume in (3.9) either k = ko or k = ka with a> -- (see (1.2)). For 
the error terms Rx(v; s), X = G, 1, we have that: 

if v E C"" ([-1, 1]2), then 

(3.11) |IRX(V; S) ||0 (n-('+/)); 
if v(t, s) h(t, s)(1 ? t)i log-(I ? t) with i > j > 1, h C 02i+1,1 ([-1, 1]2), then 

(3.12) |IR'(V S)lI f_ JO (n- when k = ko or k = ka, a > 0, 
*VnS) 0 (n-2i-2-2a+?e) when k = ka, - < a < 0; 

if v(t, s) = h(t, s)(1 I t)6, with h C C2F6[+61,1 ([-1, 1]2) and 6 a positive real, not 
integer, then 

(3.13) IIRI(v;S)IIOO =Jo ( -26-2?)+ when k ko or k ka, a > 0, 
n 0~~ (n -26-2-2a?e) when k k, 3~ <a < 0. 

In the estimates above e > 0 can be chosen arbitrarily small. 

Proof. When X = G, the first assertion of the lemma is a straightforward conse- 
quence of (3.10); when X = I, (3.11) follows from (3.10) and the fact that, under 
the assumptions on k, the weights {wni(s)} satisfy the relation (see [23], [24]) 

n rl 

(3.14) lim ElWni (8)1 l k(It- 81) dt < oo, 
n i+oo 

uniformly with respect to s. 
The function v in (3.12) and (3.13) is expressed by a product of a smooth function 

h(t, s), depending on two variables, and a function z(t) which is at least continuous 
and depends only on one variable. Thus, we can write 

jh(t, s)z(t) - Pr,r(t, s)qr(t)l < jh(t, s) (z(t)- qr(t))l + lqr(t) (h(t, s) -Pr,r(t, s)) I 

where q, is the polynomial defined by Lemma 2 and Pr,r is that of (3.10), both of 
degree r = 2n1 - 1. 

Prom llhllj < c and llq,ll o < c (see Lemma 2), we have 

(3.15) jh(t, s)z(t) - Pr,r(t, s)qr(t)I < c [lz(t) - qr(t)I + jh(t, s) - Pr,r(t, s) 1 

Since RX(v; s) 0 whenever v is a polynomial of degree n - 1, we can write 

Rx[(hz; s)| < ? k(It- s)J |h(t, s)z(t) -Pr,r(t, s)qr(t)I dt 

(3.16) + j jk(jt- -s )j IPn (h(., s)z - Pr,r(., s)qr; t)I dt = J1 + J2, 

where Pn(f; t) denotes the Lagrange polynomial interpolating f at the zeros of the 

n-th degree Legendre polynomial. By virtue of (3.15), we have 

(3.17) 

Js < C adkl ( 3. 1- 0 ) we cZ(t)a-nq(t) I dt + ikl(lte-l J)I. jh(t, s)-P,r (t, s)l dt 

< c l kl(lt - 81)I lz(t) -qr(t)l dt + ||h-pr,,rllco 

Using Lemma 2 and (3.10), we can bound the integral JI. 
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Next for J2 we have 
I 

J2 < l kl(lt- 81)11 lPn (h(., 8) (z-qr); t)l dt 
(3.18) 1 

+ /lk7c(lt- 81)11 IPn (q, (h( s) - P,,, 8)); t) I dt =: j2(1) + J2(2). 
I-1 

The integral J(1) can be estimated by proceeding as in the proof of the main 
theorems in [2], since h __ < c. In particular, one derives for J(l) bounds like those 
of Lemma 2. Moreover, by applying a Holder inequality and taking into account 
the boundedness of the operator Pn C [- 1, 1] -> LP (-1, 1), with 1 < p < 4 (see 
[16]), we have 

(3.19) J(2) < (J kl(lt-s ) Iqdt) (J Pn (qr(h( 5)p- Pr(., s));t)IP dt) 

<C lh- pr,r |Ooov 

since we have assumed that k = ko or k = ko with a > 3 
0 ~~~~~~~4. 

Combining the inequalities (3.16)-(3.19) with the assumptions of the lemma, we 
get the assertions (3.12) and (3.13) immediately. F 

Remark 1. Incidentally, we notice that the introduction of a smoothing change of 
variable like our y(t), defined in (2.4), can be a useful tool also when one has to 
compute a single integral 

f (x) dx, 

with f(x) smooth everywhere in [-1,1], except at a finite number of abscissas 
-1 = YO < Yi < Y2 < ..- < YII < YAJ+1 1 whose collocation is known a 
priori. In particular, when the behaviour of such irregularities is of the type (i) 
(x-y-)ilogi Ix-yk with i > j > 1, or (ii) IX-Yk16, with 6 > 0 real, not an 
integer,5 by writing 

1 ~ ~M Yk+l 

/ f (x) dx = E f f (y(t))y'(t) dt 
J1 k=0 k 

and applying, for example, an n-point Gauss-Legendre rule to each integral over 
(Yk, Yk+1), we can obtain a rate of convergence Q(n-(i+1)ak?-+) for each term of 
the type (i) and 0(n-(6+1)a0kl?+) for each of the type (ii). 

In the next theorem, we prove the stability for our integration-product method 
and give an error estimate. 

Theorem 1. Assume that the hypothesis of Lemma 1 and the assumptions on the 
functions hi(x,y), i = 1,2,3, and f(y) (established at the beginning of Section 2) 
are fulfilled. Moreover, in (2.12) assume a > - . Let the equation (I - K7)p = g 

be defined as in (2.8') or (2.14'). Then, for all sufficiently large integers n the 
operator I - Kn is invertible in C [-1, 1] and 

(3.20) 11(I - KIoo c. 

51n principle, it would be sufficient to assume 6 > -1 (see [2]), but in practice, to see some 
real advantage we should assume 6 not too close to -1; for example, 6 > -1/2. 
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Moreover, given any integer 1, if the parameters ak, k = O,..., M + 1, in (2.4) 
satisfy the conditions ak > 1 + 2 in the case of (2.8') or ak > 1 + in the 
case of (2.14 /),6 for the approximate solution Pn defined by (8.7) the following 
estimate holds: 

(3.21) 11lf - Wn llo < n l+/-) 

where bt= 1-= (c > 0 arbitrarily small) for (2.8') andt= [4 (] (1+ a)-l for 

(2.14'). 

Proof. The properties of our equations (2.8') and (2.14') allow us to apply the 
theory developed in [22], hence claim that for all integers n sufficiently large, the 
operator I - Kn is invertible in C[-1, 1] and (3.20) holds uniformly respect to n. 
Standard arguments (see, for instance, [1]) then give the error bound 

O-nll_oo?C < Ko -K7o1l, 

i.e. 

(3.22) hP - fnlloo <_ c [IIK7l f- KL,n11OO+IK7-2,f1 

Taking into account the expressions of K7 and K7 defined in (2.9') and (2.15') and 
the expansion of so, if the parameters ak, k = 0, ..., M + 1 satisfy the conditions 
of the theorem, we can bound both terms on the right-hand side of (3.22) by 
0(n-('+/-) ) - 

Remark 2. The restriction a >-3 is due to the fact that we have applied the results 
obtained by Sloan in [22]; there, the above condition on the kernel k", together with 
another one, is sufficient to prove the stability of a product-integration method 
with polynomials and zeros of Jacobi polynomials. However, we have tested the 
method also for some values of a less than or equal to -3 and have not found any 4 
phenomenon of numerical instability. Also in Lemma 3, we have assumed the same 
restriction on a, because it is sufficient to guarantee the relation (3.14). In both 
cases, the assumption on a represents a sufficient, but not necessary, condition. 
Therefore, supported by our numerical results, we think that Theorem 1 holds for 
every a > -1. Moreover, the conditions ak > 1 + 2 and ak > 1 + k 
0, ..., 1M + 1, guarantee that the functions 60&(t, s) -Y'(s) and &a (t, s) -Y'(s) (see (2.9), 
(2.15)) respectively, belong to the space C1"', ([-1, 1]2) for some 0 < t < 1, hence 
that IIK1 fo - KK o and IIK2;9o - Kj2o in (3.22) behave like O(n-r-7'') as 
n -> oo. In particular, the above conditions for k = 0, M+ 1 are necessary to assure 
the desired smoothness at the points s= t = ?1. Nevertheless, in practice, as we 
shall see in the numerical examples of Section 5, a0o and aA,jI can be chosen smaller. 
More precisely, recalling the endpoint superconvergence phenomenon proved in [2], 
we conjecture that for the above quadrature errors an estimate similar to (3.12) 
holds even when a0o = a1 = -1+1 if M = 0 or a0o = aI+1 = [7flk if M > 0, 

where ak -1 + 2 or ak = 1 + Fl4al, k = 1, ...,M, respectively. 

Remark 8. We have not explicitly considered equation (1.1) with the more general 
kernel (1.3) merely to simplify the description. Indeed, Lemma 1 and the proof of 
stability in Theorem 1 remain true also in the case of a more general kernel of form 

6In effect, one chooses ak = I + 2 in the first case and a/k = 1 + F 1 l in the second case, for 

every k C 0, ...,MI + 1}; see, however, Remark 2. 
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(1.3). However, to select the correct values of the parameters {O k} and hence derive 
optimal error estimates, one needs to know the proper expansion of the solution 
u(x) of (1.1); in the general case this expansion is cumbersome to obtain. 

4. THE COLLOCATION METHOD 

In the sequel, by Pn we will denote the Lagrange interpolation projector associ- 
ated with the zeros of the n-th degree Legendre polynomial pn (x). The collocation 
method we consider is given by the equation 

(4.1) (I - PnK-%0n = Png, (On E I -i, 

where n is the set of all polynomials of degree less than or equal to n - 1. 
We shall examine our method in the space L2(-1, 1); in particular, there we will 

prove its stability and derive a convergence estimate. Some preliminary results are 
needed, however. 

Lemma 4. Let v E L2(-1, 1) and define 

g(y) j h(x, y)k(x - yl )v(x) dx, 

where h(x,y) E Cj([-1, 1]2), 0 < i < 1i7 and k = ko or k = ka with a > - (see 
(1.2)). Then g(y) E Ce[61, 1] for some e > 0, and 

(4.2) 1191ICe < C ||V||L2. 

Proof. ForY1,Y2 E [-1,1], Yi 7Y2,_we have 
I 

9(YI) - g(Y2) J [h (x, Yi) -h (x, Y2)] k(lx - yi )v(x) dx 

+ h (x, Y2) [k (lx- y, I) -k (|x- Y2 |)]v(x) dx =: 1 + 12, 

By the assumptions on h and a, and Schwarz's inequality, we immediately obtain 
the bound 

(4.3) 1 1 <?c IY -Y21J lk( x-y I) I lv(x) I dx < c |YI-Y21'l1v I L2. 

To bound 12 we need to consider the three cases k = k*, k =k, with-2 < a < 0, 
and k = k, with a > 0, separately. 

In the first case (k = k*), we set 

+O(x) := h (x, Y2) v (x) E L2(_1, 1) 

and 

G(y) j log jx - ylj(x) dx. 

We have 

G' (y) 
- j (X) dx E L2 (-1, 1), 

7In the integral equations we are considering, our kernel h is actually C". 
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where the integral is defined in the Cauchy principal value sense; hence 
sYi 

12 = G (Yi) - G (Y2) = G'(x) dx. 
Y2 

By applying Schwarz's inequality, we obtain 

(4.4) 1121 < G (x dxj dx < IYI-Y21 11G L2 
Y2 G2 

Since the operator G' is bounded on L2(-1, 1) (see, for instance, [12]), i.e., CIG'I L2 < 

c 1101IL2, and 41|1IL2 < c vIMIL2' from (4.3) and (4.4) it follows that g E CA, with 
A = min {ut, 2 }, and that (4.2) holds. 

2~~~~~~~~~~~~~~~ 
Now, we turn to the case k = k, with-2 < a < 0. Using the well-known 

inequality 

la&-ba I < la-bly, 

which holds for any positive numbers a and b, and 0 < - < 1, we have 

1121 < f c / lv(x) dx 
-1 IX - YlI IX - Y21Y 

<ClYl-82lE J II Il- YI21 1'-E: VX) ? c 
IxIy- Y21jalv(x) Idx 

1 v(x)l dxI1 V (x) _I xl [J I I x Y1 I |X Y2 I I- Ix - Y1I |IX -Y21I g 
the last estimate being a consequence of the uniform boundedness of the function 

IYi - Y21. 

x - ylaE + x - y2 

By taking 0 < e < 2 + a and applying Schwarz's inequality to the last bound for 
112 1, we obtain 

(4.5) 112 1 < c IY1 - Y2 1y VIIL2 . 

From (4.3) and (4.5) the assertion of the lemma follows in the case k- k with 
-2 <a <-O. 

Finally, in the case that k = ka and a > 0, it is sufficient to set for a > 0 

iO(x, y) h(x, y)k(lx - yI) E Cv[_1, 1] 

with v = min{ut, al} (for a = 0 this setting is superfluous, since k = 1), and notice 
that 

lg(Y1)-g(Y2)1 <?] 19 (x, YI)-b (X, Y2) I lv(x) I dx < cly -Y2V lv(x) I dx 

with g E CM if a =0, g E Cv if a > 0. 
This complete our proof. 

Remark 4. The restriction a > is due to the fact that we are examining our 2 
equation in the space L2(-1, 1). Of course we would be interested in considering 
the whole range a > -1, but this would necessarily mean that we should work in 
a different space, which till now we have not been able to find. 
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Lemma 5 (see Theorem 3.1 in [11]). Let v E ClII[- 1,1], 1 > 0, 0 < i < 1. Then 

IIV-PnVIIL2 < 
C 

with a constant c independent of n. 

With the above two lemmas we are able to prove the stability of our collocation 
method, hence derive an L2-convergence estimate. 

Theorem 2. Assume that the hypothesis of Lemma 1 and the assumptions on the 
functions hi(x, y), i = 1, 2, 3, and f(y) (established at the beginning of Section 2) 
are fulfilled. Moreover, in (2.12) assume a > -2 Let the equation (I-K K p- = g 2 
be defined as in (2.8') or (2.14'). Then, for all sufficiently large integers n the 
operator (I - PnK7) is invertible in L2(-1, 1) and 

(4.6) 11(I - PnK) IL2 < c. 

Moreover, given any integer 1, if the parameters ak, k = 0, ...,M + 1, in (214) 
satisfy the conditions ak > 1 + 2 in the case of (2.8') or ak > 1 + 1 in the case 
of (2.14'), for the approximate solution SPn defined by (4.1) the following estimate 
holds: 

(4-7) 11I 
- 
P-nI|L2 _<n I+AJ, 

w ihere ti = 1-e (e > O arbitrarily small) for (2.8') and /t = (1 + a) - 1 for 

(2. 14'). 

Proof. Lemma 4 ensures that the operator K7: L2 -, CE is bounded for some e > 0. 
Moreover, it is well-known that the space C' is compactly embedded in C", for 
any 0 < e' < e. Thus K7: L2 , C' is certainly compact. FRom Lemma 5, we also 
have that I (I- Pn)v L2 converges to zero as n -> oo whenever v E C"E. Therefore 
standard theory (see, for example, [1]) allows us to claim that |(I - Pn)KY L2 -> 0 
as n -> oo, hence that (4.6) holds for all sufficiently large n, provided that the 
operator I - K-' is invertible in L2(-1, 1). 

Once we know that (4.6) holds, then the derivation of the following error estimate 
is fairly straightforward (see [1]): 

S1O-TnIIL2 < c so -PnS4L2. 

If the parameters ak, k = 0, ..., M + 1, satisfy the conditions of the theorem, we 
have that so E ClI'[-1, 1], with ,u depending on the degree of singularity of the 
kernel function considered. Therefore, the bound (4.7) follows from Lemma 5. F 

Remark 5. Following the same machinery used in [10], we can obtain from (4.7) a 
uniform error estimate. Indeed, given any polynomial qn(X) of degree n - 1, if we 
expand it in series of Legendre orthonormal polynomials {Pn(x)} we obtain 

n-I I 

qn (x) S o = qn(x)Pk(x) dx. 
k=0 

Then, proceeding exactly as in [10], we obtain first the inequalities 

llqnllo < c nllqnl|L2) 

max lqn(X)l < c V n qj jnL2' 
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A being any closed subset of (-1,1), and then, for our solution n., the error 
estimates 

C 3 
11 - fn 1 ?+-3/2-E + ii > 2 

max Ip(x)- n(X) ?< _ - +,u> 1, 

where e > 0 can be chosen arbitrarily small. 
Finally, we point out that a comment like Remark 3 holds also for the collocation 

method. 

5. NUMERICAL EXAMPLES 

To test the efficiency of our numerical approaches, we have applied the methods 
defined in Sections 3 and 4, to equations of the type (2.1) and (2.12) with input 
functions f(y) = y, Iy , sgn(y). For simplicity, in (2.1) we have taken hi (x, y) equal 
to a constant (for example, h1 (x, y) _) and h3 (x, y) 0. Analogously, in (2.12) 
we have set h2 (x, y) and h3 (x, y) 0. 

In Tables 2, 3 and 4, we give a few of the absolute errors we have obtained when 
our equations of the type (2.9) were solved by the product-integration method 
described in Section 3. In Table 5, we report the relative errors of the solution u 

of the original equation (2.1), obtained using the same values of ak used in Table 
4. To compute all these errors, we have taken as reference value the approximation 
we obtained with n = 256 points. In the following, the symbol CN will denote the 
estimated condition number. 

By examining the values of Tables 2 and 3, we immediately notice a drawback of 
our smoothing technique. Although in theory by taking the ak's sufficiently large 
we can obtain an arbitrarily high rate of convergence, in practice larger values of 
the ak's also mean increasing flatness of -y(t) around the Yk's. This implies, partic- 
ularly for low values of n, that higher values of the ak's do not necessarily mean 
higher accuracy. Nevertheless the final linear systems one has to solve are perfectly 

TABLE 2. Values of L0256(s) - On(S)I obtained by the product- 
integration method applied to (2.9) when f(y) = y. 

s |ao i n=4 ] n=8 [ n=16 ] n=32 [ n=64 n=128 
0.1 J 2 J 2 | 1.2E-02 4.3E-05 |9.3E-10| 1.3E-11 1.6E-13 I 4.OE-15 

| 3 3 6.4E-02 1.2E-03 | 4.1E-07 3.1E-13 |7.2E-15 9.6E-15 
4 4 1.5E-01 6.6E-03 9.6E-06 4.6E-12 l.OE-14 1.3E-14 
5 5 2.3E-01 2.1E-02 6.9E-05 2.7E-10 8.4E-15 1.2E-14 

0.5 2 2 8.3E-02 5.6E-05 1.6E-08 9.5E-11 3.5E-13 8.9E-16 
3 3 3.1E-01 1.4E-03 9.3E-07 I.l E-13 1.3E-15 2.7E- 15 
4 4 5.3E-01 6.9E-03 1.4E-05 1.9E-12 8.9E-16 3.1E-15 
5 5 6.5E-01 1.7E-02 6.6E-05 7.9E-11I 4.4E -16 3.3E-15 

0.9 2 2 6.2E-03 8.3E-05 5.4E-08 8.5E-11 4.9E-14 1.9E-15 
=__ 3 3 8.OE-03 2.6E-04 6.6E-08 1.1E-13 O.OE+00 8.3E-17 

4 4 4.7E-03 2.OE-04 2.3E-07 3.1E-14 3.1E-17 3.5E-18 
5 5 1.7E-03 9.8E-05 2.4E-07 2.6E-13 1.7E-17 l.1E-17 
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TABLE 3. ValUes of 10256(s) - >0?,(s)j obtainied by the product- 
integration method applied to (2.9) when f(y) yI. 

ce a -6 n =4 [ 8 = 16 [n::,:32 ] m64 [=18 
0.1 2 2 7.8E-04 8.4E-04 3-OE-07 [1.6E-09 7.3E-11 2.7E-13 

3 7 3 ~_O9.0E-05 3.2E-06 I.5E-08 7.4E-11 1.3E-12 2.4E-15 
4 9 4 7.1E--06 7.9E-07 7.9E-09 4 1.1E-1i 3.4E-14 6 &E - i7 

ZI5 11 5_ 5.0E-071.-07 -1.6E-09 I 2.8E-12 3.4E-16 3.6W18 
0.5 2 5 2 1.3E-01 7.7E-03 9.8E-05 1 .1E-07 1.9E-09 T 3.1E- 11 

3 7 3 2.6E-01 3.6E-02 5.7E-04 4.2E-09 7.4E-11 3. 7E-13 
4 9 4 3.3E-01 8.3E-02 A.4E-03 T1.5E-07 3.6E-12 41.8E-15 
5 11 5 3.6E-01 1.3E-01 2.5E-03 2.9E-07 9.3E-12 2.2E-15 

0.9 2 5 2 2.1E-01 4.1E-03 l.3E-04 -1.OE-11 O5.E- 10 4 7.8E-12 
3 7 3 2.2E-01 5.4E-02 3.7E-04 1.3E-09 2.3E-12 1 5.8E-14 
4 9 4 .E-01 7}.E-02 i.3E-03 2.6E-07 117E-12 | 4.4E-15 
5 11 5 7.5E-02 6.7E-02 1.9E-03 1.E-06 7 2.6E-12 T 2.4E-1S5 

TABLE 4. Values of y0256(s) -0 p(s)I obtained by the product- 
integration method (ao0 a?2 3, a, 7) applied to (2.9) when 
f(y) sgn(y). 

s [ p256(S) n-4 4 n4 _8 1 n=16 1 n=32 n=64 | n-1285j 
0.1 1.491312275276053E-03 5.8E-04 2.3E-06 1.5E-07 1.5E-09 1.9E-11 3.7E-14 
0.2 7.541252814922007E-02 2.9E-02 L.DE-03 2.3E-05 7.6E-08 LIE-10 1.6E-13 
0.3 6.576626868598414E-01 2.6E-01 2.OE-02 L.OE-04 2.3E-07 3.2E-10 9.1E-13 
0.4 2.714004335731008E+00 1.1E+00 9.7E-02 6.0E-04 1.9E-07 8OE-b 2.6E-12 
0.5 7.163017124263911E+00 3.0E#00 9.3E-02 2.5E-03 4.0E-07 1.2E-09 5.7E-12 
0.6 1.337727347069014E+01 5.5E+00 3.6E1-01 1.8E-03 7.6E-07 1.6E-09 8.7E - 12 
0.7 1.743322199231756E?01 6.4E?00 7.813-01 L.0E-02 9.GE-08 2.6E-09 8.OE- 12 
0.8 1.414225464371011E+-0b 3.2E+00 7.1W--02 8.7E-03 |1 E- 07-7| 4.4EA- 10 4.JE--12 
0.9 5.386587260789846E+00 2.613+00 2.6E -01 3.2E-03 i.2E-08 1.8E-11 7.4E - 13 
CN i _1 2.3ER+0 l 3.9E+00 3.9E+00 4.6E?00 4.7E+00 4.7WF00 

TABLE 5. Values of JU256(Y) - un(y)j/Iu256(y)l obtained by the 
product-integration method (ao a2 = 3, a1 = 7) applied to 
(2.9) when f (y) = sgn(y). 

. 256(Y) n-=-4 n= 8 n =16 n =32 - n-=-64 n= n128 
0.1 1.346827752778405E+00 4.9E-02 1.IE-02 4.7E-04 1.6E-09 LOE-09 3.9E-12 
0.2 1.591034197365066E+00 9.3E-02 2.3E-02 2.9E-04 3.3E-08 5 .2E-10 7.3E-13 
0.3 1. 784057498883805E+00 1.1E-01 2.9E-02 3.2E-04 6.4E-08 5.7E-10 2.4E- 12 
0.4 1.934456855253425E+00 ilE-01 2.9E-02 6.8E-04 1.6E-08 3.7E- 10 9.3E--13 
0.5 2.044820766513727E+00 9.8E-02 2.2E-02 5.6E-04 2.6E-08 2.4E-10 2.6E-14 
0.6 2.115382890662598E+00 6.8E-02 9.0E-03 4.7E-05 9.OE-09 I1.2E-10 7.9E-13 
0.7 2.144773613992187E+00 2.OE-02 9.7E-03 5.7E-04 7.5E-09 5.8E-I 1 I.4E-12 
0.8 2.129502912442114E-00 5.3E-02 3.3E-02 7.6E-04 1.2E-'09 3.1E-i0 M.3E-13 
0.9 2.060852904622524E+00 1.7E-01 5.7E-02 7.5E-05 5.5E-09 1.6E-10 9.7E- 13 
CN | _| 2.3E+00 3.9E+00 3.9E+00 I 4.6E+00 4.7E+00 4.7E+00 

conditioned, and the accuracy given by our product-integration method is much 
higher than that of corresponding product-integration and Galerkin methods, con- 
structed on graded meshes (see Tables 6, 7 and 8). These latter two methods have 
been applied by subdividing the interval of integration into N parts, with grading 
exponent q (see [21], [26]), and using d + 1 interpolation points in each subinterval. 
These nodes are the Gauss-Legendre ones. Notice that the order of the final linear 
system is N(d + 1). As regards their implementation, we have to remark that for 
little values of d (for example, d = 1, 2, 3) the integrals, which are the coefficients 
of the final linear system, can be evaluated analytically; for greater values of d, 
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TABLE 6. Minimum and maximum value of u128 (y) - UN (Y) with 
y ? {0.1, 0.2,..., 0.9} obtained by the product-integration method 
on graded meshes applied to (2.1) with f(y) = y. 

d-1 d = 2 d-3 d-4 d-5 
q=2.1 q=2.6 q=3.1 q=3.6 q=4.1 

N = 4 1.9E-04 2.OE-04 5.1E-06 3.OE-06 5.2E-06 
6.OE-03 l.OE-03 8.8E-05 4.7E-05 2.4E-05 

CN 3. IE+00 3.6E+00 4.4E+00 4.9E+00 5.3E+00 
N = 8 1.9E-04 4.3E-06 2.4E-07 6.OE-08 l.OE-08 

6.4E-04 1.4E-04 3.OE-06 1.2E-06 4.3E-07 
CN 3.4E+00 4.0E+00 5.OE+00 5.7E+00 6.4E+00 

N 16 4.0E-06 7.3E-07 9.2E-09 8.8E-09 2.4E-08 
5.6E-05 1.4E-05 8.5E-08 1.2E-08 1.3E-06 

CN 3.7E+00 4.6E+00 5.3E+00 5.9E+00 7.OE+04 
N = 32 3.6E-07 2.9E-08 1.3E-09 9.1E-09 2.9E-08 

1.2E-05 9.5E-07 4.OE-09 6.3E-07 1.5E-06 
CN 3.9E+00 4.8E+00 5.3E+00 2.7E+04 3.1E+12 

N = 64 1.3E-08 5.6E-10 1.6E-11 2.9E-10 2.6E-02 
2.OE-06 6.6E-08 1.2E-09 2.OE-07 1.5E+00 

CN 4.OE+00 5.OE+00 5.4E+00 1.5E+09 2.6E+19 

this type of approach is quite cumbersome. Moreover, a numerical approach based 
on quadrature rules, of Gaussian type when the s-variable is sufficiently far from 
[-1,1] and of product type otherwise, is equally onerous. 

In Tables 6 and 7, we report the minimum and the maximum absolute errors 
generated by the approximant UN (y), taking as reference value the corresponding 
approximant u128(y), obtained with N = 128 and d= 3. 

By examining the rates of convergence shown in Tables 2, 3 and 4 we notice that 
they appear superior to those proved in Theorem 1. A possible explanation could 
be the following one. 

Since for each chosen value of n we collocate the integral equation at the n 

distinct points {tnj}, the zeros of the Legendre polynomial of degree n, and the 
fixed-point singularities of 68 (t, s) in our cases never coincide with one of the above 
zeros, the function 8*(t, tnj) is actually analytic with respect to the t-variable. 
For completeness, we have tested also the particular case for which the singularity 
t = s = 0 of 8*(t, s) when f(y) = IY coincides with one of the zeros of the Le- 
gendre polynomials. For this, we have chosen odd values of n. This has not made 
the numerical results worse. Therefore, it seems that the presence of the 8* (t, s) 
does not have any effect on the quadrature error, and that this latter could be 
estimated on the ground of the asymptotic expansion of po, using the bounds of 
Lemma 3. If this is true, we have that the expected accuracy improvement should 
be of order O(n-4ao+E) when f (y) =y O(n-4aco+? + n -2al+l+E) when f (y) = IYI 
and O(n-4ao+E + n-all++E) when f (y) = sgn(y). Taking into account these orders 
of convergence, it appears that the parameters {ak} can be chosen smaller than 
those suggested in Theorem 1 or Remark 2. We can obtain 0(n-l-+E), by choos- 
ing ao = a,1 F Y1+4i when f(y) = y, ao = a2 K= -11] with c1 = F+21 when 
f (y) = IyI, or a1 = 1+ 2 when f (y) = sgn(y). To check, for example, the validity of 
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TABLE 7. Minimum and maximum value of u128 (y) - UN (Y) with 
y E {0.1, 0.2, ..., 0.9} obtained by the Galerkin method on graded 
meshes applied to (2.1) with f (y) = y. 

d =l d = 2 d = 3 d = 4 d = 5 
q=2.1 q-2.6 q= 3.1 q=3.6 q= 4.1 

N = 4 7.8E-03 l.1E-03 1.6E-04 7.OE-05 4.6E-05 
4.1E-02 1.2E-02 l.1E-03 9.9E-04 4.6E-04 

CN 7.4E+00 l.OE+01 1.4E+01 2.ElE+01 3. EE+01 
N = 8 4.2E-03 9.4E-05 4.1E-06 2.4E-06 3.3E-06 

l.1E-01 2.2E-03 1.3E-04 2.OE-05 6.7E-06 
CN 1.9E+01 4.OE+01 8.8E+01 2.OE+02 4.2E+02 

N= 16 1.3E-04 9.4E-06 8.OE-07 8.3E-08 3.1E-09 
2.6E-03 3.5E-04 8.4E-06 1.3E-06 9.4E-07 

CN 5.6E+01 1.9E+02 6.3E+02 3.OE+03 1.3E+07 
N - 32 3.5E-05 5.9E-06 6.4E-08 4.1E-08 1.4E-09 

1.2E-03 4.5E-05 4.9E-07 1.2E-06 1.9E-07 
CN 1.8E+02 9.9E+02 4.7E+03 2.8E+07 2.1E+ 15 

N = 64 1.5E-05 2.7E-07 1.3E-10 5.7E-10 1.OE-09 
2.6E-04 6.4E-06 4.1E-08 3.7E-08 1.5E-07 

CN 6.5E+02 5.5E+03 1.2E+05 3.7E+ 12 2.5E+22 

TABLE 8. Minimum and maximum value of Ju128(y) - un(y)I with 
y E {0.1, 0.2, ..., 0.9} obtained by the product-integration method 
(ozo =ao = 2) applied to (2.9) when f(y) = y. 

n= 4 n-=8 nr-16 n=i:32 n-= 64 
min 5.3E-03 1.5E-05 1.2E-09 6.OE-12 5.5E-14 
max 8.5E-02 2.3E-04 4.6E-08 1.5E-10 4.5E-13 
CN 2.2E+00 2.2E+00 2.5E+00 I 2.8E+00 3.OE+00 

the latter bound, we have once more applied our product-integration to equation 
(2.9), but this time choosing ao = a2 = 3 and a1 = 13. In Table 9, we give some of 
the corresponding absolute errors we have obtained, while in Table 10, we report 
the relative errors corresponding to the original solution u. 

By comparing Table 9 with Table 4, we notice indeed an improvement of the 
accuracy which was not predicted by Theorem 1. 

We have extensively tested also the collocation method described in Section 4. 
Product-integration appears superior from all points of view. In Table 11 we give 

a sample of the results we have obtained (compare them with the corresponding 
values in Table 2). 

Results very similar to those reported in the tables and concerning equation (2.1) 
were obtained also for equations of the type (2.12), with h2 and h3 assuming the 
same values defined at the beginning of Section 5. In Tables 12 and 13, we give the 
results of two of our experiments. 

All computations have been performed on a PC computer using 16-digit double 
precision arithmetic. 
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TABLE 9. Values of So256(s) - SOn(S)l obtained by the product- 
integration method (ao = a2 = 3, a, - 13) applied to (2.9) when 
f(y) = sgn(y). 

s 0256(s) n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 

0.1 1.105650000174631E -09 6.1E-12 3.OE-12 1.5E-13 6.1E-16 1.5E-23 2.3E-23 
0.2 3.578268188275185E-06 1.5E-07 6.4E-08 1.3E-09 1.4E- 12 6.OE-16 4.1E-19 
0.3 3.554836861728969E- 04 4.8E-05 1.4E-05 9.1E-08 2.3E-10 1.5E-13 2.OE- 18 
0.4 8.261042908237580E-03 2.4E-03 3.6E-04 4.9E-06 1.4E-09 l.lE-12 l.OE-16 
0.5 8.504343096280330E-02 4.1E-02 5.9E-04 3.6E-05 3.9E-08 1.lE-12 1.2E-15 
0.6 5.313939231004428E-01 3.4E-01 4.7E-02 1.7E-04 3.5E-08 3.5E- 12 7.4E - 15 
0.7 2.411843395766954E+00 1.6E+00 2.1E-01 1.6E-03 1.3E-06 2.2E-11 3.3E-14 
0.8 7.24855777353845 IE+00 4.9E+00 1.5E-01 1.8E-02 5.7E-06 6.3E- 11 6.2E-14 
0.9 8.182595978508354E+00 8.5E+00 6.3E-01 3.1E-02 6.8E-06 liE-10 9.8E-14 
CN 5.7E+00 6.3E+00 5.1E+00 5.9E+00 5.9E+00 6.OE+00 

TABLE 10. Values of Iu256(y) - Un(Y) U/u256(Y) obtained by the 
product-integration method (ao = a2 = 3, a1 13) applied to 

(2.9) when f (y) = sgn(y). 

Y l U256(y) n=4 n =8 n=16 n=32 n-=64 n=128 
0.1 1.346827834095726E+00 6.6E-01 9.7E-02 7.3E-03 4.6E-07 1.6E-12 1.2E-14 
0.2 1.591034079407878E+00 6.5E-01 5.4E-02 1.4E-04 4.7E-07 8.7E- 12 1.8E-14 
0.3 1.784057700440473E+00 6.6E-01 1.2E-02 1.6E-03 l.lE-06 8.7E- 12 1.5E-14 
0.4 1.934456814569050E+00 6.8E-01 2.1E-02 2.5E-03 8.3E-07 8.6E- 12 8.7E- 15 
0.5 2.044820625860425E+00 7.2E-01 4.6E-02 2.3E-03 1.9E-06 9.8E- 12 1.8E-14 
0.6 2.11538294782001 IE+00 7.8E-01 6.3E-02 9.3E-04 2.OE-07 8.4E - 12 1.8E-14 
0.7 2.144773614089209E+00 8.8E-01 7.3E-02 1.3E-03 2.5E-06 8.7E- 12 2.8E-14 
0.8 2.129502891667054E+OO 1.OE+00 7.6E-02 3.5E -03 1.7E-08 l.OE-11 l.OE-14 
0.9 2.060852898381479E+00 1.2E+00 7.5E-02 3.4E-03 2.4E-06 1.3E-11 1.4E- 14 
CN 5.7E+00 6.3E+00 5.lE+00 5.9E+00 5.9E+00 6.OE+00 

TABLE 11. Values of 1S0128(S) - no(S))I obtained by the collocation 
method (ao =o a, = 3) applied to (2.9) when f(y) = y. 

S c128 (s) n = 4 n = 8 n = 16 n = 32 n = 64 
0.1 7.990433124158405E-01 8.OE-02 3.7E-03 7.7E-07 6.6E- 12 2.4E - 15 
0.2 1.432816553358987E+00 5.2E-02 5.8E-03 9.3E-06 1.3E-11 2.9E- 15 
0.3 1.788544031476075E+00 1.4E-01 2.5E-02 4.6E-06 2.OE-11 8.OE-15 
0.4 1.834976166101300E+00 4.7E-01 3.2E-02 1.6E-05 2.2E- 11 4.4E-15 
0.5 1.618600621724187E+00 8.4E-01 1.OE-02 1.6E-05 1.2E-11 3.6E- 15 
0.6 1.235223000322232E+00 1. IE+00 3.1E-02 9.3E-06 3.1E-11 9.6E- 15 
0.7 7.946035861030149E-01 1. IE+00 4.7E-02 2.9E-05 9.5E-11 1.8E-14 
0.8 3.940370457228314E-01 5.8E-01 2.7E-03 3.1E-05 4.5E- 11 3.2E- 14 
0.9 1.088041738424818E-01 4.6E-01 6.6E-02 3.8E-05 8.3E- 11 7.4E- 14 
CN 9.3E+00 2.OE+01 2.2E+01 4.4E+01 7.9E+01 
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TABLE 12. Values of 1So256(s) - SOn(S)) obtained by the product- 
integration method (a0oa2=4, a1=9) applied to (2.14) when 
a -0.25 and f (y) = Iyl 

s | 9256(S) n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 

0.1 -2.624209448527758E-06 7.3E-08 1.4E-07 6.7E-09 1.2E-12 1.9E-13 4.5E- 15 
0.2 -4.716640031503962E-04 6.2E-06 7.2E-06 1.5E-06 2.3E-09 5.3E- 11 1.3E-13 
0.3 -8.025815474622011E-03 6.7E-04 6.3E-04 8.6E-06 5.2E-08 2.8E-10 9.OE-16 
0.4 -4.674063163625496E-02 8.9E-03 4.4E-03 1.2E-04 1.2E-07 1.6E-11 2.2E- 15 
0.5 -1.078622543304390E-01 4.3E-02 4.4E-03 3.2E-04 8.4E-08 6.8E-11 1.4E-15 
0.6 6.075508133810709E-02 9.6E-02 1.9E-02 4.1E-04 1.8E-07 9.8E-12 3.6E-14 
0.7 8.277693624489910E-01 9.6E-02 3.3E-02 1.2E-03 1.4E-08 8.8E- 12 6.6E- 15 
0.8 1.457126961511843E+00 7.6E-02 2.8E-02 6.3E-04 1.4E-08 2.OE- 12 6.7E- 16 
0.9 6.289732059402273E-01 6.3E-02 1.5E-02 1.3E-04 3.3E-08 7.1E-13 1.4E-15 
CN 1.5E+00 1.9E+00 2.OE+00 2. IE+00 2. IE+00 2.1E+00 

TABLE 13. Values of 5S0256(s) - 5O,(S)) obtained by the product- 

integration method (ao a2 - 4, a1 = 9) applied to (2.14) when 
a = -0.5 and f (y) = IyI 

8125s6(s) | n = 4 n = 8 n = 16 n = 32 n=64 n=128 

0.1 -2.03075320455921E-06 1.7E-06 5.OE-07 2.3E-10 2.8E-10 5.8E-11 2.5E-12 
0.2 -3.649633695579144E-04 2.3E-04 1.6E-05 3.OE-06 1.8E-07 6.6E-09 1.8E-11 
0.3 -6.195981003468890E-03 J.5E-03 2.OE-03 8.7E-06 2.OE-06 1.5E-08 3.OE-13 
0.4 -3.552048755285684E-02 8.OE-03 1.5E-02 6.2E-05 4.2E-06 2.3E- 11 8.4E - 14 
0.5 -7.661082843144207E-02 6.4E-02 1.7E-02 2.6E-04 8.6E-07 2.3E-09 4.7E - 14 
0.6 7.159355852844762E-02 1.3E-01 4.2E-02 7.3E-04 3.6E-06 3.9E-10 5.2E- 14 
0.7 6.800014252004067E-01 4.5E-02 6.4E-02 3.3E-03 1.1E-06 l.1E-10 5.OE-14 
0.8 1.184139315302078E+00 1.2E-02 2.5E-02 2.8E-03 2.6E-07 2.OE-11 3.8E- 15 
0.9 5.380551334237226E-01 1iE-01 1.7E-02 8.1E-04 7.5E-07 5.6E-12 2.7E -14 
CN 1.8E+00 2.1E+00 2.OE+00 2.3E+00 2.4E+00 2.4E+00 
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