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ABSTRACT. Consider the Vandermonde-like matrix P := (Pk(cos X 
)) k=N 

where the polynomials Pk satisfy a three-term recurrence relation. If Pk are the 
Chebyshev polynomials Tk, then P coincides with CN+1 := (cos 7 k=0. 

This paper presents a new fast algorithm for the computation of the matrix- 
vector product Pa in O(Nlog2N) arithmetical operations. The algorithm 
divides into a fast transform which replaces Pa with CN+1d and a subsequent 
fast cosine transform. The first and central part of the algorithm is realized by 
a straightforward cascade summation based on properties of associated poly- 
nomials and by fast polynomial multiplications. Numerical tests demonstrate 
that our fast polynomial transform realizes Pa with almost the same precision 
as the Clenshaw algorithm, but is much faster for N > 128. 

1. INTRODUCTION 

Let w be a non-negative, integrable weight function with 

J w(x)dx > 0, 

and let L 2 [-1, 1] denote the real Hilbert space with inner product 

(f,g) := f w(x) f(x) g(x) dx (f,g L2[-1, 1]) 

and norm fl As an example we consider the weight functions 

(1.1) w(x) := (1 - x2)A-1/2 (A > -1/2; x G (-1, 1)). 

Let {Pn}mno be a sequence of orthogonal polynomials Pn G -n with respect to 
(., .). Here Hn denotes the set of polynomials of degree < n. Then every P G UN 

can be represented as 

(1.2) P = E ( 
I2 

Ip 
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where (P, Pk) can be computed by a convenient quadrature rule; for example by 
2N 

( 1.3) (P, Pk) = E wNp(C2N )Pk (Cj 
j=0 

with the weights 

W2N j = X W(x) Ll (C2N Q) (X C?N ) dx, L- 
3 3 ~~~~~j=0 

and with the Chebyshev nodes 

CN =co'" j7 
(j = ol ... ., N) . 

For w := 1, i.e. for Legendre polynomials Pk, the quadrature rule (1.3) coincides 
with the Clenshaw-Curtis quadrature with positive weights 

N _2 
w2N = 1 E2N EN - j =2 O, ,2N)2 

N N~-'412 1U~-,. 2) 
1=0 

Here EN = EN : and EN := 1 (j = 1, ... .,N -1). Similar, but more compli- 
cated expressions of w2N can be given for the weight functions (1.1). Notice that 
such weights can be computed via fast cosine transforms. 

Let M, N c N with M > NY be given powers of 2. We are interested in an 
efficient solution of the following two problems. 

1. Given ak c R (k = O, ... ,N) compute the discrete polynomial transform 
DPT(N + 1, M + 1): RN+1 --j RM+1 defined by 

N 

(1.4) aj ak Pk(c) (j=O,.*. ,M). 

k=O 

The transform matrix P (Pk(crM))j'f=0 is called a Vandermonde-like matrix. 

2. Given bj c R (j = o,... , M) compute the transposed discrete polynomial 
transform TDPT(M + 1, N + 1): RM+1 R RN+1 defined by 

M 

(1.5) bk := E bjPk(cf7) (k=O,... ,N). 
j=0 

The first problem addresses the evaluation of polynomials P E rN given in the 
form (1.2) at Chebyshev nodes cj,M. The second problem is concerned with the 
approximation of the Fourier coefficients of P c UN by a quadrature rule. Clearly, 
by (1.2) and (1.3), the problems (1.4) and (1.5) with M = 2N, ak = IPkj2 (P, Pk) 
and bj = WjNP(CcN ) are "inverse" in the sense that the corresponding transform 
matrices P and pT satisfy 

P diag (IjPkjj 2)NoPT diag (w 2N)j_ = I2N+1 1 

PT diag (wN)ff P diag (IIPk11K2)N? = IN+1 

with the (N + 1, N + 1)-identity matrix IN+1- 
In general the realization of (1.4) or (1.5) requires O(NM) arithmetical oper- 

ations, too much for practical purposes with large N. Hence we look for a fast 
algorithm to solve our problems with only O(N log2N) + O(M log M) arithmetical 
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operations. A fast algorithm for (1.4) implies the factorization of the transform 
matrix P into a product of sparse matrices. Consequently, once a fast algorithm 
for (1.4) is known, a fast algorithm for the "transposed" problem (1.5) with the 
transform matrix pT is also available by transposing the sparse matrix product. 
Therefore, we restrict our attention to the fast computation of (1.4). 

There are several papers addressing the problems above (see [7], [6], [9], [11], 
[12], [15], [16]). If the orthogonal polynomials are the Chebyshev polynomials of 
first kind 

T (x) cos(nrarccosx) (x E [-1,1]), 

which are orthogonal with respect to w(x) := (1 - X2)-1/2 (x E (-1, 1)), prob- 
lem (1.4) can be computed via fast cosine transforms (see [17], [18], [19], [2]) in 
O(MlogM) arithmetical operations. Hence, a straightforward idea for the fast 
solution of (1.4) with arbitrary orthogonal polynomials Pn is to realize a basis 
exchange from {Pn}fl0 to {Tn}IN0 followed by a fast cosine transform. 

In the case of Legendre polynomials Pn, Alpert and Rokhlin [1] have proposed an 
O(N log 1/E) basis exchange algorithm based on the approximation of the elements 
in the basis transform matrix. Here E denotes the desired precision. 

Our direct approach computes the basis exchange with O(N log2 N) arithmetical 
operations by a divide-and-conquer technique combined with fast polynomial multi- 
plications. The algorithm can be designed for arbitrary polynomials Pn satisfying a 
three-term recurrence relation. It requires multiplications with precomputed values 
of associated polynomials of Pn occupying O(N log N) elements of storage. Numer- 
ical tests for various orthogonal polynomials, espeeially ultraspherical polynomials, 
result in small relative errors between the "exact" solution calculated in high pre- 
cision arithmetic and the solution obtained by our algorithm in double precision 
arithmetic. 

It is interesting that the "transposed" version of our (slightly modified) algorithm 
for the solution of the "transposed" problem (1.5) can be considered a modified 
Driscoll-Healy algorithm ([6], [7], [10]) in which the original fast Fourier transforms 
are replaced by fast cosine transforms. It is our feeling that the following approach 
to fast polynomial transforms is simpler and more straightforward than the original 
Driscoll-Healy algorithm for the problem (1.4) and (1.5). 

This paper is organized as follows. Taking into account that our whole polyno- 
mial transform algorithm is based on fast realizations of different discrete cosine 
transforms, Section 2 deals with discrete cosine transforms. Section 3 describes our 
fast polynomial transform. A modified Driscoll-Healy algorithm and the relation 
with our algorithm is sketched in Section 4. Numerical results are presented in 
Section 5. Finally, Section 6 contains some concluding remarks. 

2. DISCRETE COSINE TRANSFORMS 

The heart of our fast polynomial transform cQnsists in the fast polynomial mul- 
tiplication via fast cosine transforms. Let 

CN+1 := 4Ck, DN+1 diag (EfN);'4 

CN (C (2k+?l) ,k=Ov DN diag (. )j-o 
Then the following transforms are referred to as discrete cosine transforms (DCT) 
of type I-III, respectively: 
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DCT-I (N + 1): RN+1 ,- RN+1 with 

a := CN+1 DN+1a, 

a := (ak)fN=o, a := (&j)N)j0 c RN+1, i.e. 

N N 

aj := E fkakcjk 
S 

&kak Tk(cJ ) 

k=O k=O 

DCT-II (N): R N - RN with 

b := CNb, 

b := (bk k= Ol b :=(j)=o C R2 i.e. 

N-1 N-1 

bj bk - E bk jT(C21) 

k=O k=O 

DCT-III (N): R N ,- RN with 

b : CNDN b, 

i.e. 
N-1 N-1 

bj Ek bk k(2j+) = Ek bkTk(c2j+f). 
k=O k=O 

In the following, let N = 2' (t c N). There exist various fast algorithms per- 
forming the above discrete cosine transforms with O(NlogN) instead of O(N2) 
arithmetical operations. For DCT-III and DCT-II we prefer the fast algorithms in 
[18] because of their low arithmetical complexity and since the corresponding data 
permutations allow a simple, efficient implementation (see [13]). Fast algorithms 
for DCT-I based on [18] can be found in [2] (see also [19]). Concerning the inverse 
DCT's, it is easy to check (see [2]): 

Lemma 2.1. It holds that 

CN+1 DN+1 CN+1 DN+1 IN+1 2 
T T N 

aNd IN ND 

CN N C~N = CN CN N = 2 I 

Hence (CN+1DN+1) 1 = N CN+1DN+l and (CN) 1 2 CT NN such that 
the inverse DCT's can be computed by the same fast cosine transforms. 

Let P c Hn (n c N) be given with respect to the basis of Chebyshev polynomials, 
i.e. 

n 

p = Eak Tk 

k=O 

with known real coefficients ak. Further, let Q c Ur (m c N) be a fixed polynomial 
with known values Q(c2fM 1) for j =O,... ,M - 1, where M = 2S (s c N) with 
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M/2 < m+n < M is chosen. Then the Chebyshev coefficients bk (k = O,. . ., m+n) 
in 

n+m 

R := PQ = E bkTk 
k=O 

can be computed in a fast way by the following procedure: 

Algorithm 2.2 (Fast polynomial multiplication). 
Input: M = 28 (s c N) with M/2 < m + n < M 

Q(C2JM 1) C TR (j = O, ... ., M -1) with QH,um 
ak C R (k = O, ... ., n). 

1. Compute 

(p(C2Mj)M31 := CM (ak)Mi1 

by fast DCT-JJJ (M) of (ak)Mk=-jI with ak :=0 (k = n + 1,... , M - 1). 
2. Evaluate the M products 

R(C2MX 1 :=p(C2M+)(c 1 ) 
2M 0 , ............. ,M). 

3. Compute 

(bk)M71 - DM CM (R(C2j+1))j=2 

by fast DCT-JJ (M) of (R(c2 M 1))Mi . 
Output: bk (k = O,... , m + n). 

The fast DCT-JJJ (28) computed by [18] requires 2-1 s multiplications and 
2S-1 (3s - 2) + 1 additions. Hence, Algorithm 2.2 realizes the polynomial multipli- 
cation of P c HI and Q e um with respect to the basis of Chebyshev polynomials 
in 2s (s + 2) + 2 multiplications and 2s (3s - 2) + 2 additions. 

Remark 2.3. A similar algorithm for the fast polynomial multiplication can be 
derived involving DCT-J instead of DCT-JJ and DCT-JJJ, if the values Q(cm) 
(j = o,... , M) are known (see [2]). 

3. FAST POLYNOMIAL TRANSFORM 

Let {Pn}cnN be a sequence of polynomials defined by the three-term recurrence 
relation 

P-1(x) 0, PO(x) 1, 

(3.1) Pn(x) = (anx + /3n) Pn-1 (X) + ? nyPn-2(X) (n = 1, 2,.) 

with an, On, yn E IR and an > ? -Oyn 7L 0 (n E N). By Favard's theorem, {Pn}ln=O 
is an orthogonal polynomial sequence with respect to some quasi-definite moment 
functional (see [4], Theorem 4.4). In particular, we consider the Chebyshev poly- 
nomials Tn with 

To(x) 1, Ti(x) x, 

Tn(x) = 2xTn-1(x) - Tn-2(x) (n = 2,3,...). 

Shifting the index n in (3.1) by c E No, we obtain the associated polynomials 
Pn( * , c) of Pn defined by 

P_i(x,c) 0 , Po(x,c) := 1, 

Pn(x, c) = (an+x +O3n+,) Pn-1 (x, c) + -Yn+cPn-2(X, c) (n = 1, 2,...). 
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Now induction yields (see [3]) 

Lemma 3.1. For c, n E N0, it holds 

Pc+n (X) = Pn (x,c) Pc (X) + ?c+ 1 PnI-1 (x, c + 1) Pc- 1 (X) 

Lemma 3.1 implies 

(3.2) ( p ) = Un( ,c) ( PcA ) 
with 

Un (X C) ( Yc+iPn-1(X,c+ 1) -Yc+lPn(X,c+ 1) 
Pn (X c) Pn+1 (X,c) 

Let N = 2t and M = 2s (s, t c N; s > t) be given. Consider 

N 

p =E ak Pk C IN 
k=O 

with known real coefficients ak. Our concern is the fast evaluation of P(cM') 

= O,... , M) with O(N log2N) + O(MlogM) instead of O(MN) arithmeti- 
cal operations. The main part of our algorithm realizes the basis exchange from 
{Pk}kIN to {Tk}k=O in HN and produces the Chebyshev coefficients ak in 

N 

(3.3) p =ZakTk - 

k=O 

Knowing these Chebyshev coefficients &k, the values P(c') (j = O,.. , M) can be 
computed via fast DCT-J (M + 1) in O(M log M) arithmetical operations in a final 
step (see [19], [2]) 

(3 4) (P(CXM))X=0 = CM (dk)k=O, 

wherewehavetoset ak :=0 for k=N+1,... ,M. 
Let us turn to the basis exchange. In the initial step we use (3.1) and the fact 

that Ti(x) x to obtain 

N-1 N/4-1 3 

p = aS ) Pk a= 5 P4k+l) 
k=O k=O 1=0 

with 

ak ()(x) :=ak (k = O,.. * ,-N-3), 

(3.5) a)2(X) aN-2 + -YN-1aN, 

aN() 1() aN-1 + 1N-laN + aN 1aNT1(x). 

Now we proceed by cascade summation as shown in Figure 1. By (3.2) with n 1 
and c=4k+1 (k =O,... ,N/4-1) it follows that 

(0) (o0) ) P4k+2 _ 
(a (?) a(? ) U ( 4k 1 T t P4k + 

(a4k+2, a 3 P4) 
( 

3 ) 4 ((0) (0+U3 1*4k 
+ 

P4k 
) 
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Thus 
N/4-1 

p= (a() P4k + akl) P4k+1) 
k=O 

with 

/ (1 / 4k (0)2 

(3.6) ( t ) (a ) 
+ U(.,4k1) ) ) 

The degree of the polynomial products in (3.6) is at most 3 such that their 
computation with respect to the Chebyshev polynomials can be realized via Algo- 
rithm 2.2 with M = 4. Consequently, the evaluation of the Chebyshev coefficients 
of the polynomials ak, a(jk+1 e I3 (k = 0,... , N/4 -1) in step 1 requires 11N 
multiplications and 12N additions. 

We continue in the obvious manner. In step r (1 <r < t) we compute by (3.2) 
with n = 2- 1 the Chebyshev coefficients of the polynomials a2T? k') a(T)lk+l 

H2'+?1 (k = 0, ... , N/2+1 -1) defined by 

(3.7) 

(a2-r?1k (a2-r?lk aTO +1,I\ 2-?1lk+2-r 

( a( ; ) =( a( 1) )+ U2'-l ( , 12 Tk + 1)(a(1 )' aCr) J a~(r -1) Ja1,r ) ('r- 1) 
22T+lk+l 22T+lk+l 2-+lk+2-+l 

where we apply Algorithm 2.2 (with M = 2'+1) for the polynomial products. 
Assume that the 4N values U2T_1(c21[+, 2T+lk + 1) for k = 0,... , N/2T+? and 1 
0, ... ., 2+ -1 were precomputed by the Clenshaw algorithm (see [5] or [20], pp. 165 
- 172). Then step r requires (2?+8+21-T)N multiplications and (6T+5+21lT)N 
additions, and results in 

N/2T?l1- 

Y (a(TlPr?1 
p2+ kP2+1) k + a2r+lk+l P2T+lk+l) 

k=O 

After the step t - 1, our cascade summation arrives at 

P = a(t1) P ? a(t1) P 

Now Po (x) = 1, Pi (x) c qx + v31 and 

1 
x TO(X) Tl T(X), X Tn(X) = 2 (Tn+,(x) +Tn_l(x)) (n =1,2,.* ) - 2 

Hence, if 
N-1 

a(t-1) - E a(t-1) T 
n=O 

then 
N 

a(t) a(t-1) Pi (t) 
Tn 

n=O 

with 

(3.8) (a ,)n= T 1 ?+ 1 IN+1)(a(t 1) N 
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ao a1 a2 a3 a4 a5 a6 a7 a8 a9 alo all a12 a13 a14 a15 al6 

(0) a(0) (a0) a(0) a (0) a (0) a(0) a(0) a (0) a(0) a(0) a(0) a (0) a (0) a(0) a(0) a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 

| aol) a(l) | a(1) a(l) | a(l) a (1) | a(1) a(l3) a0 a1 a4 a5 a8 a9 a12 a13 

U3( ,1) U3( ,9) 

|2 aO(2) |2 (2) 
l~~~a ala8 

U7( 1) 

(3) (3) a 0 a 1 

FIGURE 1. Cascade summation for the computation of the basis 
exchange in the case N = 16 

wher wesetat1 N 0 and where TN+1 is the tridiagonal (N + 1, N + 1)-matrix 

1/2 0 1/2 

(3.9) TN+1 . ~' / 

1 0 

This leads to 

P = ao + al 

and the final addition of the Chebyshev coefficients of a (t 1) and alt) yields the 
desired Chebyshev coefficients of P, i.e. 

(3.10) (&n )N% (a (- ) )N 0+ (a (t)) N 
n=O O,n n= 1,nn=0' 

We summarize: 
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Algorithm 3.2 (Fast polynomial transform). 
Input: N = 2t, M 25 (s, t E N; s > t), 

ak ER (k =0,... ,N), 
U2r (C2-[ + 2T+lk + 1) (=1,... ,t -1; kO= 0, 2tT1I 

|=0,. .., 12 T+1 _ 
1). 

Step 0. Compute a(')(x) (k = 0, ,2t-1) by (3.5). 
For'r= 1,...,t-l do 
Step or. For every k = 0,... , 2t-T-1 _ 1 form (3.7) by Algorithm 2.2 
for the fast polynomial multiplications. 
Step t. Compute an, (n = 0, ... , N) by (3.8) and (3.10). 
Compute (3.4) by fast DCT-J (M + 1). 

Output: P(c '`) (j=O,... ,M). 

In summary, we have to store the 4N(log N - 1) precomputed elements of the 
matrices U. Counting the arithmetical operations in each step, we verify that the 
whole basis exchange algorithm requires N log2N+7N log N+O(N) multiplications 
and 3N log2N+2N log N+O(N) additions. Finally, the computation of (3.4) by the 
fast DCT-J (M+ 1) takes 2 M log M+O(M) multiplications and 3 M log M+O(M) 
additions. The whole fast polynomial transform becomes more efficient than the 
Clenshaw algorithm for N > 128. 

A fast algorithm for (1.5), i.e., for the multiplication with pT, can be obtained 
immediately by "reversing" Algorithm 3.2. In other words, we simply have to 
reverse the direction of the arrows in the flowgraph of Algorithm 3.2. 

There already exists an O(N log2N) algorithm for the problem (1.4) as well as 
(1.5), which was originally formulated by Driscoll and Healy [6] with respect to 
Legendre polynomials and was generalized to arbitrary polynomials satisfying a 
three-term recurrence relation in [7], [10]. The following section briefly describes 
the relation between our algorithm and the Driscoll-Healy algorithm. 

4. MODIFIED DRISCOLL-HEALY ALGORITHM 

In the following, we modify the Driscoll-Healy algorithm by replacing the original 
fast Fourier transforms by fast cosine transforms which seem to be more natural in 
the context of the algorithm. As a consequence, the modified algorithm is simpler, 
requires fewer arithmetical operations, and avoids the arithmetic with complex 
numbers. 

Remark 4.1. The original Driscoll-Healy algorithm uses properties of circulant ma- 
trices. Our modified algorithm utilizes the fact that "circulant matrices related to 
the DCT-J" possess similar properties (see [2]). The matrix TN+1 defined by (3.9) 
is called the basic circulant matrix related to DCT-J (N + 1) since 

N 
cII 2 C+1 TN+1 CN+ 1 = rN+1 

with CIN+1 := CN+1 DN+1 and rN+l := diag( N)^N . Let TN+1,0 := N+1, wit +: CN?j1DN?l andr"N?1 _~ 

TN+1,1 := TN+1 and 

TN+1,n = 2 TN+1TN+1,n-1 - TN+1,n-2 (n = 2,3, ... , N). 
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Then TN+1,N = (6j,N-k)N=o and 

n 

1/2 1/2 

n - 1/2 

TN+1,n = Tn(TN+1) = 

1/2 <-N-n 

1/2 1/2 

L ~~~~~~1 

1' 
N-n 

for n = 1, ... , N - 1. The matrices diagonalizable by CN+1 can be written as 

N 

p = Z76 ajTN+1,j (aj E R) 
j=0 

and form a commutative algebra P over R with respect to the ordinary matrix 
operations. It holds 

(4.1) 2 CN+1 P CN+1 = P(FN+1), 

where 
N 

P := Z N aj Tj 
j=0 

denotes the polynomial associated with P. Based on the fact that the Chebyshev 
knots cN (k = O,... , N) are the zeros of (1 - X2)UN_1(X), the relation between 
circulant matrices related to DCT-J and polynomials is determined by the isomor- 
phism of the algebras 

P - R[x]/ ((1-X2)UN-1(X))- 

Here UN-i is the (N - 1)-th Chebyshev polynomial of second kind. 

Let the polynomials P, satisfy the three-term recurrence relation (3.1). Consider 
(1.5) with M = N = 2t (t E N), i.e. 

N 

b EN Ndj p cN) 1=0 N 
j=0 

with given dj := (Ej>)-lbj E R. Following the lines of [6], we define 

N 

z (k, 1) d (CjN) (k, I = O,.. ,IN) 
j=o 
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and zi := (z(k, 1))k=0. We are interested in the efficient computation of z(0, 1) = b1 
(1 = 0, ... , N). By Lemma 2.1 we observe that 

Z0 = CN +1 (dj)N= 

(4.2) zi = C+1 ( (PI(c )=0 (d)0) 

(4- 3) - N+1 Pl(rN+1) CN+1 ZO, 

where o denotes the componentwise multiplication. Especially, we obtain with 
PI(x) = a 1 x + 31 by (4.1) and (4.3) that 

Z = N CN+1 (a,i rN+1 + i1 IN+1) CN+1 Z0 

- (a1 TN+1 + /1 IN+1) ZO 

(compare with (3.8)). Using (4.2) and (3.2), we compute ZN/2 and ZN/2+1 by 

ZN/2+1 ) (N+1 X3 CIN+)UN/2-1(rN+1, 1)N(CN+1 CN+1) (Z 

and form the truncated vectors 

z() : -(z(k, k= (1 = 0,1, N/2, N/2 + 1) 

This is the result of step 1 of our modified Driscoll-Healy algorithm. Compare 
with step t - 1 of Algorithm 3.2. Note that UNJ2-1(rN+1, 1) is a block-diagonal 
(2N + 2,2N + 2)-matrix. 

Now we continue in a similar manner as in [6], [7] but with respect to circu- 
lant matrices related to the DCT-J. Take into consideration that the description of 
the following steps involves some more ideas than step 1. The resulting modified 
Driscoll-Healy algorithm does not agree with the "transposed" version of Algo- 
rithm 3.2, but it can be considered as a "transposed" version of a modified Algo- 
rithm 3.2 in which the fast polynomial multiplications are realized by DCT-J instead 
of DCT-JJ and DCT-JJJ, as mentioned in Remark 2.3. However, in our opinion the 
derivation of the (modified) Driscoll-Healy algorithm is less straightforward than 
the development of Algorithm 3.2. 

5. NUMERICAL TESTS 

Algorithm 3.2 was implemented in C and tested on a Sun SPARCstation 20 for 
various ultraspherical polynomials. The corresponding fast cosine transforms were 
described in detail in [18], [2]. 

Example 5.1. We consider the ultraspherical polynomials PnA (A > -1/2) given 
by 

pAl(X) = O PA'(X) := 1 ) 

P'(X) : 2(n + A-1) pA (X) - 2A- 
- 

_2(x) (n ,2,...). 

These polynomials are orthogonal with respect to the weight function (1.1). For 
A = n12, the ultraspherical polynomials are the zonal spherical polynomials of 
Sn-I with respect to SO(n)/SO(n - 1). For the 2-sphere S2, i.e. for A = 1/2, 
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TABLE 1 

N |A } ak ] E(CA) ] e(FPT) 

256 0.5 1/(k + 1) 3.88E-16 3.77E-13 
512 0.5 1/(k + 1) 1.59E - 14 5.73E - 12 
1024 0.5 1/(k +. 1) 4.21E - 13 8.98E - 12 
2048 0.5 1/(k + 1) 2.11E-12 3.19E-11 
256 1.5 1/(k + 1) 1.88E - 13 8.36E - 13 
512 1.5 1/(k + 1) 6.12E - 13 1.29E - 11 
1024 1.5 1/(k + 1) 1.26E-12 8.00E-11 
256 5 1/(k + 1) 1.15E - 13 2.72E - 13 
512 5 1/(k + 1) 5.15E - 13 4.37E - 12 
1024 5 1/(k + 1) 1.04E-12 5.18E-12 
256 2 1 2.44E - 13 7.52E - 13 
512 2 1 8.61E - 13 6.61E - 12 
1024 2 1 1.71E - 12 4.82E - 12 

the ultraspherical polynomials are the Legendre polynomials. For given ak E R 

(k = 0, ... , N) we compute 
N 

(5.1) &J=z, ak P, (CjN) (j = 0, ... , N) 
k=O 

by the Clenshaw algorithm (CA) in double precision arithmetic, the Clenshaw al- 
gorithm realized in Maple with high precision arithmetic of 64 digits (CA64), and 
by our fast polynomial transform (FPT) in double precision arithmetic. Table 1 
compares the results for different transform lengths N ranging between 256 and 
2048 and various parameters A. The third column of the table contains the given 
coefficients ak, while the fourth and last columns contain the relative error E(CA) 
of the Clenshaw algorithm defined by 

E(CA) := max lej (CA)-ej (CA64) I/ max |aj (CA64) 
O<j<N O<j<N 

and the relative error of Algorithm 3.2 given by 

E(FPT) := max &jj(FPT)-&j (CA64)j/ max |aj(CA64)1. O<j?<N O<j<N 

Here ej (CA), ej(CA64) and ej (FPT) denote the corresponding results of (5.1) using 
CA, CA64 and FPT, respectively. 

Note that both the Clenshaw algorithm and fast polynomial transform realize 
the problem (5.1) with almost the same precision, but our method is much faster 
than the Clenshaw algorithm as shown in Example 5.2. 

Example 5.2. As in Example 5.1 we use ultraspherical polynomials. It is well- 
known that the Clenshaw algorithm requires N2 multiplications and 3N2 additions. 
Algorithm 3.2 is significantly faster for large N > 128. The third and fourth 
columns of Table 2 list the CPU-times t(CA) and t(FPT) (in seconds) for the 
Clenshaw algorithm and for Algorithm 3.2. The last column contains the relative 
error 

5(FPT) max I &j (FPT) -j (CA) / max I (CA) 
O<j<N _<< 
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TABLE 2 

N A I t(CA) [ t(FPT) l 5(FPT) 
128 0.5 0.05 0.04 3.59E - 14 
256 0.5 0.21 0.07 4.35E - 12 
512 0.5 0.82 0.19 4.93E - 12 
1024 0.5 3.27 0.39 5.78E - 11 
2048 0.5 13.70 0.85 2.09E - 10 
4096 0.5 55.41 1.92 1.04EE-09 
8192 0.5 220.05 4.26 5.04E - 08 
4096 2.5 55.43 1.91 1.72E-09 
4096 4.0 55.42 1.91 6.41E - 10 
4096 5.0 55.42 1.92 3.35E - 10 

Here the original coefficients ak (k = 0, ... , N) are randomly distributed in the 
interval [-0.5,0.5]. 

6. CONCLUSIONS 

A motivation to consider the discrete polynomial transforms (1.4) and (1.5) 
with respect to the 2N + 1 Chebyshev nodes C2N (j = 0, ... , 2N) arises from the 
Clenshaw-Curtis quadrature which seems to be very useful for the computation of 
the Fourier coefficients in (1.2) in the case of Legendre polynomials Pn, i.e. w = 1. 
However, other quadrature rules may be of interest. Gaussian quadrature reduces 
the number of required nodes in (1.3) from 2N + 1 to N + 1. Hence a natural 
question is how to compute 

N 

Eak Pk(xm) (j = O, ... ,M;M > N) 
k=O 

for arbitrary xf E [-1,1] and ak E R in an efficient way. The heart of our method, 
the basis exchange in Algorithm 3.2 is independent of the choice of knots xy. So 
it remains to perform the final step of our algorithm, the computation of 

N 

(6.1) E a,Tk(XM) (jO .. ., M),i 
k=O 

in a fast way. One possibility for realizing (6.1) in O(M log2M) arithmetical op- 
erations based on a (heuristic) stabilization of the Borodin-Munro algorithm was 
suggested in [14]. We prefer the application of the fast adaptive multipole method 
(see [8]), which computes (6.1) in O(Mlogl/E) arithmetical operations, where c 
denotes the desired precision. This approach seems to be interesting in connection 
with fast Fourier transforms on spheres and on distance transitive graphs, too (see 
[7]). The results will be presented in a forthcoming paper. 
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