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ASYMPTOTIC UPPER BOUNDS FOR THE COEFFICIENTS 
IN THE CHEBYSHEV SERIES EXPANSION 

FOR A GENERAL ORDER INTEGRAL OF A FUNCTION 

NATASHA FLYER 

ABSTRACT. The usual way to determine the asymptotic behavior of the Cheby- 
shev coefficients for a function is to apply the method of steepest descent to the 
integral representation of the coefficients. However, the procedure is usually 
laborious. We prove an asymptotic upper bound on the Chebyshev coefficients 
for the kth integral of a function. The tightness of this upper bound is then 
analyzed for the case k = 1, the first integral of a function. It is shown that for 
geometrically converging Chebyshev series the theorem gives the tightest up- 
per bound possible as n -* oo. For functions that are singular at the endpoints 
of the Chebyshev interval, x = ?1, the theorem is weakened. Two examples 
are given. In the first example, we apply the method of steepest descent to 
directly determine (laboriously!) the asymptotic Chebyshev coefficients for a 
function whose asymptotics have not been given previously in the literature: 
a Gaussian with a maximum at an endpoint of the expansion interval. We 
then easily obtain the asymptotic behavior of its first integral, the error func- 
tion, through the application of the theorem. The second example shows the 
theorem is weakened for functions that are regular except at x = +1. We 
conjecture that it is only for this class of functions that the theorem gives a 
poor upper bound. 

1. INTRODUCTION 

Determining the rate of convergence for the Chebyshev expansion of a function 
00 

(1.1) f(x) = ZanTn(x) 
n=O 

as n -* oc requires an asymptotic approximation for the coefficients, an, when an 
exact analytical form is not known. These approximations are usually obtained 
by applying the method of steepest descent to the integral representation of the 
coefficients. This procedure, though, can be lengthy and involved. However, if the 
function we are expanding is an integral of a function whose Chebyshev coefficients 
are already known, either exactly or asymptotically, then there should be a relation 
between the known coefficients and those for the integral. For instance, it is known 
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that if a function is expanded in a Fourier series, then the coefficients of the kth 
integral of the function are just the original coefficients multiplied by (i1)k. 

It is the aim of this paper to show that a similar relation exists for the Chebyshev 
case. Even though an exact formula for the Chebyshev coefficients of the kth integral 
of a function are derived, due to its complicated nature we retreat to an upper 
bound on the coefficients in order-to get a simple interpretation of the formula. 
We begin by proving a theorem that calculates recursively the coefficients for the 
kth integral of the Chebyshev polynomial Tn(x). This result is then used to derive 
a second theorem for calculating these coefficients directly. From Theorem 2.1, a 
corollary is proved that shows the asymptotic behavior for large n of the coefficients 
for the kth integral of a Chebyshev polynomial. Then these allow us to define the 
main theorem (Theorem 4.1) of this paper which gives an upper bound to the 
Chebyshev coefficients of the kth integral of a function. The next order of business 
is to determine when does the theorem not give the tightest upper bound possible. 
In order to answer this question, for the rest of the paper we consider the case 
k = 1, the first integral of a function. We then define a criterion that needs to be 
met in order for Theorem 4.1 to give a poor upper bound. The criterion essentially 
states that if two Chebyshev coefficients whose indices differ by two (e.g. an-1 

and an+?) cancel when subtracted, in the limit as n -* oc, Theorem 4.1 gives a 
poor upper bound. It is shown for a function whose Chebyshev series is converging 
at a geometric rate, the usual rate of convergence for Chebyshev series, that the 
coefficients do not meet the criberion and the theorem gives the tightest upper 
bound possible for the coefficients of the first integral of the function. 

Two examples illustrate the concepts. The first example illustrates that the 
theorem is much easier than the method of steepest descent. The method of steepest 
descent is applied, laboriously, to directly determine the asymptotic Chebyshev 
coefficients of a Gaussian with a maximum at an endpoint of the Chebyshev interval. 
This function was chosen since the asymptotics of its Chebyshev coefficients has 
not been given previously in the literature. In contrast, obtaining the coefficients 
of the error function, which is the first integral of the the Gaussian, is almost trivial 
through Theorem 4.1. The second example illustrates a class of functions where 
the theorem gives a poor upper bound: functions that are regular everywhere on 
the Chebyshev expansion interval xE[-1, 1] except at the endpoints. 

2. AN UPPER BOUND FOR THE COEFFICIENTS OF THE kth INTEGRAL OF A 

CHEBYSHEV POLYNOMIAL 

The recurrence relation for calculating the Chebyshev coefficients for the first 
integral of a function is well established and given in texts such as [9]. The following 
theorem generalizes on that relation, providing the coefficients for a general order 
integral. 

Theorem 2.1. The kth integral of the Chebyshev polynomial, Tn(x), is given by 

f(k)T(\kX (I)Z( i(nhTx 
(2.1) Tn (x) d = )k 1)a ) T -2i (X), n > k, 

(in) ~ ~ ~ ~ ~ ~ = 

where ak(n can be calculated recursively by 

(n) 1 () ) (2.2) ak = ?k2(a~ +1i a 2,), 0 < i < k, 
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with 

(n) n! (n) _ (n-k-i)! 
akO- (n + k)!' ak,k (n - 1)! 

Proof. We prove the result by induction. We first show the theorem holds for k=1. 
Using the Chebyshev to Fourier cosine transformation, x = cos(t), and then a 
trigonometric identity, we have 

(2.3) S cos(nt) sin(t)dt = I (cos(n + I)t _ cos(n - 1)t) (2.3) Jcos(nt)sin(t)dt =2 n?+I n I 

It can be seen that Equation 2.3 is the same as Equation 2.1 for k = 1. 
Now, assume Theorem 2.1 is true for arbitrary k. Then, 

(2)k Z(-l)ai 
) J 

cos((n + k - 2i)t)sin(t)dt 
i=0 

(2.4) 

_ 1 )k+ -li()C?((n + k + I - 2i)t) cos((n + k - I - 2i)t)] 
2 k n + k + I - 2i n + k - I - 2i 

(2.5) 

(1)k+1[ (n) [cos((n + k + ?)t) cos((n + k - 1)t)] 
2 n + k + I n + k - I 

a (n) cos((n + k - I)t) cost(n + k - 3)t) 
kJ -n?k-i cI[ n + k - 3)] 

+ a (n)cos((n + k - 3)t) _cos((n + k - 5)t)1 
ka2[COS((+ k33)t) n?+k- 5 

+ a(n)[cos((n 
- k + l)t) cos((n - k - I)t) 

(2.6) 

1 a(n) 

ak+1 k,O cos((n + k + I)t) 

? 
+ (akn) + a(n))cos((n + k - I)t) 

+ n?k 3(akn) + akn2)cos((n + k - 3)t) - ?-- 

a(n) 

+ n ,k1_ cos((n k I)t)] n - k - i 

However using (2.2), (2.7) is just 

(2.7) (2)k+l [akn+) cos((n + k + I)t) - a?n1)1 cos((n + k - I)t) 

+ a?n1)2 cos((n + k - 3)t) - *+ a? 1k cos((n - k - I)t)] 
k+1 

- (_)k+l Z 
(-i)ia2)ii cos((n + k + 1 - 2i)t). 

i=o 

E 
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The following corollary gives the asymptotic behavior of the coefficients a? as 
n -* oo for fixed k. 

Corollary 2.2. A direct result of Theorem 2.1 is that the absolute value of the 
coefficients, a(n) i = O) ..., k, of the kIh integral of the Chebyshev polynomial Tn (x), 
are bounded from above by 

(2w8) la(nI < 0 ) (1 +n) as n oo for fixed k 

where En = ?(n) > O- 

Proof. We will first show that the relation 

(2.9) akn 
( i ) 

_( 

holds by induction and use of Theorem 2.1. For k 1, (2.2) gives 

_n I__ (in) 1 
(2.10) a(n) n 1 and a() n- 

10( and a(n) 1 1 

Since i < k, (2.9) gives 

(2.11) a(n) + 0( 

which agrees exactly with (2.10). Now assume (2.9) holds for arbitrary k, then by 
the recurrence relation given in (2.2) we have 

(2.12) ak?l = n ? (k ? 1)-2i (ak i 1 + ak,i) 

k+l,i _n___k____ - ____ (': _ 

(2.13) n?(k+1)-2i 
K 

k 
? 

nk 

n + (k + 1)-2i n n nk 
' (2.14) - nk 

t~~~~~~~ k+ ;8k+ 

(2.1 5) a ?in) k? ) 1( (2. k+li = 
nk+1 ?(nk+2) 

The inequality in (2.8) is achieved by applying the triangle inequality to (2.15) O 

3. THE OPTIMAL ENVELOPE FUNCTION 

Before we can state the main theorem of the paper we need to define an opti- 
mal envelope function. The usefulness of such a definition is that for Chebyshev 
coefficients which oscillate (e.g. cos(f (n))), only the rate of decay is numerically 
important in terms of determining how Chebyshev polynomials are needed to reach 
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a given accuracy. Therefore, it is advantageous to introduce a definition, the opti- 
mal envelope function, which filters out the oscillation and captures the asymptotic 
behavior of the coefficients that is numerically significant. 

Definition 3.1 (Envelope function). A function E(n; {bn}) is an envelope function 
for the spectral coefficients bn if E(n; {bn}) is a positive monotonically decreasing 
function providing an upper bound to {bn} such that 

1. E(n; {bn}) > O{n: neN} 
2. E(n; {bn}) > E(n + 1; {bn}), 
3. E(n; {bn}) > IbnI for all n, 

where N is the set of natural numbers. 

Definition 3.2 (Optimal envelope function). A function E,pt(n; {bn}) is an opti- 
mal envelope function for the spectral coefficients bn if (i) E0pt(n; {bn}) is an enve- 
lope function and (ii) given any 6 > 0, there exists an unbounded set of values for 
n such that 

(3.1) Eopt(n) -bnI < 8. 

From now on, we will denote Eopt(n) simply by E(n). It is important to note that 
an optimal envelope function always exists, for any convergent Chebyshev series, 
as is shown by the explicit construction 

(3.2) E(n) _ max Ibj I. 
j>n 

However, the optimal envelope function as given by the definition is not unique. 
Steepest decent analysis, as presented later, often provides a smoother optimal 
envelope function than (3.2), which descends as a series of step functions like a 
flight of stairs. The shape of E(n) does not matter, though, as long as it captures 
the general trend of the decrease in the coefficients, showing the asymptotic rate of 
convergence for the Chebyshev series. 

4. AN UPPER BOUND FOR THE CHEBYSHEV COEFFICIENTS 
FOR A GENERAL ORDER INTEGRAL OF A FUNCTION 

The following is the main theorem of the paper, giving an upper bound on the 
Chebyshev coefficients of the kth integral of a function for large n. 

Theorem 4.1. If E(n; {bn}) is the optimal envelope function for the Chebyshev 
coefficients of a function f(x), then the Chebyshev coefficients of the kth integral of 
f (x), 

(1) (k) 00 

(4.1) ] ...] f(x)dkx = C cTn(X) 
n =- 

are bounded from above as n -* oc for fixed k by 

(4.2) c 
I 

< ( ) (k + 1) ( k k- ) E(n - k), 

where En = 0(1) > 0 and k holds for k even and k-1 holds for k odd in the combintoria2 so en d 
comnbinatorial term. 
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Proof. 

(1) (k) 
kX =?? 

0 (1) (k) 
kX 

(4.3) ] ] f(x)d1x = cn T (x) = bn b] ] Tn(x)dkx 
n=O n=O 

Using (2.1), (4.3) becomes 

(414) ( f (x)dkx = bo J Todkx + + bk J Tkd x 

00 ~k~ 

+ E bn {(2)k Z(-1)ak i?Tn+k2i(X) 
n=k+l i=O 

r(k) r(k) 
(4.5) =bo Todx?+ +?bk J Tkdkx 

? E { (1)k Z( 1)ibn?k ln+k-2i) } TT(x) 

+ { 2k Z(-1)ibn+k-2iak,k-i } Tn(X) 
n=1 i=O 

I: 
2kkki 

+=3 E { (-= EZ-1)Ybn?k-2iaknk i 

n=lk-1 i=0 

+ : Ir 2 (- 1) bn+k-2i a (nk-2i) }Tn (X) 
n=2k+1 i=O 

For n > 2k + 1, cn is 

(4.6) cn = 2k ,(-1 ) bn+k-2iakn,k-2i (4-6) Cn 2k 
Z( -1)ibn?k-2i akk7i) 
i=O 

1k k, - 

i=0 

Given that Ibn+k-2i1 < E(n + k - 2i), then 

1k 
(4. 8)c |C ? Z k1EE(n? k k-2i)la(k?k-i . 

i=O 

We proved earlier in Corollary 2.2 that laki) | 1 +En) as n oc for fixed 
k. Thus, 

(I+?&n) (Ikk'k 49Cn I 
< 

(2n)k k k-i) E(n + k - 2i) 

(4.10) ICni < ( (k+ 1) ( k k- E(n-k), 
(2n)k k or 2 

where k holds for k even and k-1 holds for k odd in the combinatorial term. fi 
2 2 
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Although Theorem 4.1 gives an upper bound for the Chebyshev coefficients of the 
kth integral of a function, we can then ask the question how tight is this upper 
bound? If the types of functions can be identified for which Theorem 4.1 gives 
the optimal envelope function as n -* oc, then the theorem gives an asymptotic 
expression for the tightest upper bound possible. In the remaining part of this 
section, it is proved for the case k = 1, the first integral of a function, that if the 
Chebyshev coefficients for a function converge geometrically (refer to [6], Chapter 2) 
then Theorem 4.1 gives the optimal envelope function for the Chebyshev coefficients 
of the first integral of the function as n -* oc. However, before this statement can 
be proved the following terms need to be defined. 

Definition 4.2 (Scaled Chebyshev coefficients and their limit superior). If bn are 
the Chebyshev coefficients of a function, then bn are the Chebyshev coefficients 
scaled by the optimal envelope function for bn. In other words, 

(4.11) bn =En 

Thus, the following properties hold: 
1. (upper bound) IbnI < 1 for all n. 
2. (infinite number of terms in sequence that are arbitrarily close to one) For 

any 6 > 0, there exists a subset of ibnI, called gn, with an infinite number of 
terms such that gn > 1 - 6. 

3. limsupnoo IbnI = 1. 

Definition 4.3 (Scaled differences). If bn are the Chebyshev coefficients of a func- 
tion, then the Chebyshev coefficients of the first integral of the function are given 
by 

(4.12) Cn= (bn-1-bn+1) 2n 
The scaled differences, an, are then defined as 

(4.13) E( bn-1-bn+1 

(4.14) _ n1 - E(n - ) bn+ 1} 

The following definition is used as a criterion for determining the strength of the 
upper bound given in Theorem 4.1. 

Definition 4.4 (Strongly self-cancelling coefficients). The Chebyshev series coef- 
ficients are "strongly self-cancelling" if 

(4.15) lim sup JnI = 0. 
n--oo 

Conjecture 4.5. Only if the Chebyshev coefficients are "strongly self-cancelling", 
as defined above, is the inequality of Theorem 4.1 weakened. 

The reason for this conjecture will become evident in the second example given 
in Section 5. However, it can be seen from (4.12) that if bn is converging slowly, 
in other words algebraically (refer to Chapter 2 of [6]), then in a Taylor series 
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expansion of the coefficients bn-1 would cancel bn+1 to lowest order, contributing 
an extra factor of 0( -). In such a case, the theorem overestimates the coefficients 
of the integral by O(n). 

To prove that Definition 4.4 does not hold in the case when the Chebyshev coef- 
ficients of a function are converging geometrically, we need the following definition 
and two lemmas. 

Definition 4.6. A Chebyshev series with coefficients bn is said to have a "geomet- 
ric" rate of convergence if 

(4.16) limsup E(n l) = p2 < 

where p is a constant that is greater than 1 and E(n; {bn}) is an optimal envelope 
function {bn}. Note that if, for example, E(n)-1 n , then 

(4.17) E(n+ 1) ?{+ + 1} 

This definition is consistent with the alternative definition given in [6]. "Super- 
geometric" convergence (e.g. E(n) = ' nk) is the limit as p oo . 

The next two lemmas were proved in [2]. 

Lemma 4.7. Given two real-valued sequences {an} and {bn} bounded below, then 

(4.18) lim sup(an bn) > lim sup an- lim sup bn. 
nf--oo nf--oo nf--oo 

Lemma 4.8. If an > 0 and bn > 0 for all n, and if the limsupno an and 
lim supn,o bn are finite or botlf are infinite, then 

(4.19) limsup(anbn) < (limsupan)(limsupbn). 
n---oo n---oo n---oo 

Theorem 4.9. If the Chebyshev coefficients of a function are converging geomet- 
rically then 

(4.20) (1- p)< limsupI )n I= limsup 12n (n 1) +<(1? -i)' 
p 2 

l- n--00o ---40 *o ( )< P2 

where an and p are defined above and cn are the coefficients of the first integral of 
the function as given in Definition 4.3. 

Proof. The left hand side of (4.20) is proved as follows: 

(4.21) Yn = n-1- ( bn+l 

En no E(n-1 ) 

(4.24) > limnsupb1 -lim su E(? 1 
E(n + 1)1) 

n -- oon-- oo Eno n- ) 

(4.25) > lim sup Ibn_1 - lim sup E( I J 1 I? 
n-- oo n-- oo E(n- 1)no 

(4.26) > 1- - 
p2 
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The right hand side of (4.20) is proved in exactly the same manner except the 

inequality is reversed since '?nl < {|n- I| + |I I lbn+1i}. I 

5. EXAMPLES 

In this section, two examples are given. The first serves two purposes: 1) to 
show that indeed Theorem 4.1 gives the optimal envelope function as n -* oo for 
the first integral of a function whose Chebyshev series is converging geometrically, 
and 2) to demonstrate the usefulness of such a theorem in cases where applying 
the method of steepest descent for determining the asymptotic behavior of the 
coefficients is laborious. The second example gives a case where the upper bound 
given by Theorem 4.1 is weakened. An analysis is done to show what class of 
functions causes the weakening of the theorem and why. 

5.1. Case: A function with a super-geometrically converging Cheby- 
shev series. As an example, the asymptotic behavior of the coefficients of both 
a Gaussian centered at an endpoint of the Chebyshev expansion interval and its 
first integral, the error function, will be considered for large n. This example was 
chosen for two reasons: 1) the application of the method of steepest descent is both 
tedious and laborious, and 2) it has not been previously given in the literature. The 
method itself can be found in standard advanced texts in applied mathematics [3]. 
It finds the asymptotic behavior of an integral of the form 

(5.1) I(n)= Jg(t)e0(t,n)dt 

as n r-> oc, where C is a contour in the complex plane. The first step is to deform 
the path of integration such that the main contribution to the integral as n -> 00 
comes from the neighborhood of the points where the argument of the exponential, 
b, has a saddle point. These points are called stationary points, t,(n), and are 

found by solving 

(5.2) dq(t , n) = 
dt -0 

Then 

(5 3) I(n) E<0(tS,n)Os5), 

where the summation is over all stationary points that lie on the path of integration. 
The series expansion for a Gaussian centered at the endpoint x = -1 of the 

Chebyshev interval [-1,1] is given by 
00 

e A(x+1)2 
E an Tn(X) 
n=0 

(5.4) an = { e-A(cos(t)+l)?intdt + j -A(cos(t)1)2-intdt} n > 0, 

where A is a parameter determining the width of the Gaussian and the trans- 
formation x = cos(t) has been used. The method of steepest descent gives the 
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approximation 

(5.5) an = Re { it(t) e-A(cos(t)+)2+int 

We find t, by solving 

(5.6) do = sin(2t) + 2 sin(t) + i- = 0' 
dt A 

which gives 

(5.7) tS = 2arctan(z), 

where z is a root of the quartic equation 

(5.8) Z4 + Z2 + 1-A8iz = O. 
n 

In this case, only a single stationary point lies on the deformed path of integration 
and contributes to the approximation of the integral. This corresponds to the root 
of equation 5.8 for which both the real and imaginary parts are positive. In order to 
get an analytical expression for equation 5.5 in terms of n, a perturbation analysis 
to the first order is done on equation 5.8 with A treated as a small parameter for n 
n -> oc and A fixed. It is important to remember that the rate of convergence 
associated with the approximation is controlled by the real part of q(t,(n),n). 
Theorem 1 of [4] states that the change in the real part of 4(t,(n), n) with n is 
given by the negative of the imaginary part of the stationary point, t,; in other 
words, 

(5.9) ( (ts (n), n) 
=)). 

In the example of the Gaussian, the real part of the contributing stationary 
point approaches zero and the imaginary part approaches oc as n -> oc. This 
is the distinguishing characteristic of "super-geometric convergence" [6], that the 
imaginary part of the stationary point increases with n. Thus, the combined use 
of the theorem with trigonometric identities yields the expected super-geometric 
convergence for the Chebyshev coefficients of a Gaussian, 

(5.10) an-acos ((n+ )arctan( )_ A i) 
n2 n A 2 2 A nn 

exp _n ln(l + A )-A ln(l + A ) + 
A 

+ 2n) f or large - 

where a denotes a term which varies only algebraically (not exponentially) with n. 

This term is the contribution from O8 (t.) and is given by 

(5.11) a 8 (4cos2(arctan( co))csh (-ln(l+ A)) 

- 4 sin (arctan ( ) sinh2( ln(1 + 

+ 4 cos(arctan ( ) cosh(2 ln(1 + A ))-2)-2. 
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(a) 1 Exact vs. Asymptotic Chebyshev coefficients for exp(-3(cos(t)+l)A2) 

160 

10 

108 

10108 

lo-12 _s 

1o-18 - 
10 

0 5 10 15 20 25 30 35 
n 

(b) 102 Exact vs. Asymptotic Chebyshev coefficients for exp(-10(cos(t)+l)A2) 

102 

io-2 - 

10 4" 

104 8\\ 

104 1'-0 

lo-12 I I I 
0 5 10 15 20 25 30 35 

n 

(c) a Exact vs. Asymptotic Chebyshev coefficients for exp(-20(cos(t)+1l)2) 

J 104 , , , 

10? 

l1o 

10 8 

o121 

0 5 10 15 20 25 30 35 40 
n 

FIGURE 1. Solid: Exact Chebyshev coefficients for 
exp(-A(x + 1)2). Dashed: The full asymptotic approxima- 
tion given by (5.10) (a) A=3 (b) A=10 (c) A=20. 
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The full asymptotic approximation to the Chebyshev coefficients versus the exact 
coefficients for the Gaussian centered at the endpoint of the expansion interval can 
be seen in Figure 1 for A = 3, A = 10, and A = 20. The asymptotic relation 
captures the general exponential trend of decay of the coefficients. However, as 
A increases, the error between the asymptotic and exact coefficients increases by 
a multiplicative factor. There are, two sources of error in the approximation of 
the coefficients: 1) the method of steepest descent is only being carried out to 
the lowest order, and 2) the solution to equation 5.8 is being determined only to 
the first order. Since the stationary point is approximated by perturbation theory 
with A/n treated as a small parameter, the asymptotic relation given by (5.10) 
breaks down for large A and fixed n. Thus, as A becomes larger, the relative 
error increases. Although not shown here, the error would be orders of magnitude 
smaller if equation 5.8 were solved numerically rather than through perturbation 
theory. However, this would defeat the purpose of deriving an asymptotic relation 
as opposed to numerically calculating the exact coefficients. Furthermore, there are 
two counteracting forces at play. As A increases, A/n becomes larger, eventually 
rendering the perturbative solution to equation 5.8 useless. On the other hand, 
the rate at which the error decreases with n slows as A becomes larger. This is 
due to the fact that a narrower Gaussian introduces steepest gradients requiring 
more Chebyshev polynomials to evaluate it to a given accuracy. The restriction to 
A/n small might be circumvented by deriving a uniform asymptotic expansion in 
the spirit of [5], but is not done here. It should also be noted that for a Gaussian 
centered in the middle of the expansion interval the Chebyshev coefficients are 
proportional to In(A4) [7]. For small values of A, that is for very wide Gaussians, 
the asymptotic rate of convergence of the coefficients is essentially the same as for 
the Gaussian centered at the endpoint. However, as A increases the coefficients 
for the endpoint centered Gaussian converge much faster because the Chebyshev 
polynomials oscillate more rapidly near the endpoints leading to a higher effective 
resolution (refer to [6], Chapter 2). 

If we are interested in finding the asymptotic behavior as n -- oo for the Cheby- 
shev coefficients of an error function, the usual way to proceed is to apply the 
method of steepest descent to the integral representation of the coefficients. As 
seen above, this can be an involved and laborious procedure. Having done the 
asymptotic analysis for the Gaussian, we can manipulate Theorem 2.1 to find the 
exact Chebyshev coefficients of its first integral, the error function. These coeffi- 
cients are given by 

(5.12) 1 (an-l-an+1)) 

where an is defined in (5.10). However, due to the complicated nature of (5.10), 
evaluating (5.12) is not easy. A simpler, more immediate interpretation for the 
asymptotic behavior of the Chebyshev coefficients for the error function is provided 
by Theorem 4.1. The optimal envelope function for the Chebyshev coefficients of 

7F 
2 erf (A(x + 1))) 

the first integral of exp(-A(x + 1)2) as n -> oo for fixed A, is simply the optimal 
envelope function for the Chebyshev coefficients of the Gaussian with argument 
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FIGURE 2. Dashed: Exact Chebyshev coefficients for 

2iAerf(vA(x + 1)) with A = 3. Solid: Optimal envelope 
function given by (5.13). 

(n - 1) divided by n. In other words, 

E(erf) 13 exp (-(n -1) ln(1 + 2(n -1) 

(5.13) A 2(n - 1) A +(n -1) 
T-ln(l? A 

~ ) 

where /3 is defined in (5.11) with the n being replaced by (n - 1). Figure 2 
shows the envelope function given by (5.13) versus the exact coefficients for 

2iA7erf (A(x + 1)) calculated numerically. 

5.2. Case 2: A function with an algebraically converging Chebyshev se- 
ries. As an example of where the coefficients are, "strongly self-cancelling", given in 
Definition 4.4, we will consider the function whose Chebyshev coefficients decrease 
as 

1 

where j is a constant greater than 1. If we define the optimal envelope function for 
bn by (5.14) then according to Theorem 4.1, the Chebyshev coefficients cn for the 
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FIGURE 3. Dashed: E7xact Chebyshev coefficients given by 
21 (b, - b,?1) where bn 1 

. Solid: The upper bound given by 
Theorem 4.1. 

first integral of the function are bounded from above to lowest order by 

(5.15) C n - < + -( 

Figure 3 shows the case for j = 2. It can indeed be seen that (5.15) gives a loose 
upper bound on the exact coefficients for cn, which worsens as n grows larger. 
A little analysis will show why this is the case as well as enforce the conjecture 
made in Section 2 as to the weakening of Theorem 4.1 with regard to "strongly 
self-cancelling" Chebyshev coefficients. 

We know that the exact coefficients for the integral of the function are given by 

1 r 1 1 A 
(5.16) Cn = 2{(1)J (n+1)i} 

If the series were converging rapidly, say geometrically, the first term in (5.16) would 
dominate and we would essentially have the upper bound given by (5.15). However, 
the coefficients of bn are "strongly self-cancelling" in the sense of Definition 4.4. This 



UPPER BOUND FOR CHEBYSHEV COEFFICIENTS 1615 

can be seen directly by expanding (5.16) in terms of a Taylor series, 

(5.17) 2n {(n -1)2 (n)+ )i} 

(5.18) - 1 {(1 - (1 } 

(5.19) - 2n+i {1n +n+O(n2)} 
2i1 1 n 

(5.20) - + (5.20) = ~~n(j+l)+l + 
?(n(j+2)+l 

) 

We see to lowest order bn-1 cancels bn+l, leading to an order of convergence that 
is greater by a factor of 1 than that given by (5.15). (5.20) is an analysis of Yn. 
Since bn1 = bn+l= 1 and E(n+l) = 1 + O(Q), we have 

(5.21) Itnl = If1 - (1 + O( 1))}L. n 
Thus, 

(5.22) lim sup n = 0. 
n- oo 

It is for the reasons above that the conjecture in Section 2 was made. Further- 
more, we make the conjecture that only functions which are regular everywhere on 
xE[-1, 1], except at the endpoints of the Chebyshev interval x = 1 and x =-1, will 
have this "strongly self-cancelling" effect of the coefficients resulting in an order of 
convergence that is faster by a factor of 1 than Theorem 4.1 would imply. This 
conjecture is backed up by the work of Elliott [8] who shows that functions which 
are regular except at x = ?1I (e.g. f(x) = (1 ? c) Og(x), where 0 is not an integer 
and g(x) is regular everywhere on xc[-1, 1] including the endpoints) have Cheby- 
shev coefficients Cn- 0( 21+1 ). Therefore the difference between the function and 
its integral is O( 12 ) as can be seen from the simple example g(x) = 1 and q$ 
However, Theorem 4.1 implies that the difference should be O(Q), thus predicting 
decay which is too slow by O( 1). This is the behavior the theorem exhibits when 
the coefficients are "strongly self-cancelling". Thus, it is conjectured that Theo- 
rem 4.1 gives the tightest upper bound possible as n -> oc for the absolute value 
of the Chiebyshev coefficients of the first integral of a function not only for series 
whose coefficients are geometrically converging but for all functions except those 
that have singularities on xE[-1, 1] exclusively at x = ?1. This conjecture is made 
since the increase in convergence by the extra factor of n as seen by the functions 
in Elliot's paper is believed to be solely an endpoint effect. 

6. SUMMARY 

The importance of this paper is that we were able to derive the asymptotic 
relationship between the optimal envelope function that bounds the Chebyshev 
coefficients from above and the optimal envelope function for the coefficients of the 
integral of the function. First, a theorem was developed that provides an upper 
bound to the Chebyshev coefficients of the kth integral of a function. The question 
then asked was: How tight is this upper bound? In order to determine a criterion 
under which the theorem did not give an optimal upper bound as n -> oo, we 
specialized to the case k = 1. It was conjectured then that only if the Chebyshev 



1616 NATASHA FLYER 

coefficients of a function were "strongly self-cancelling", as defined above, does the 
theorem not provide the tightest upper bound possible, i.e. the optimal envelope 
function. This conjecture was based on the fact that coefficients which obeyed the 
criterion cancelled each other to the lowest order, resulting in a contribution of 
an extra factor of 1 . Functions that are regular on the interval [-1,1] except at 
the endpoints have these types of coefficients. Furthermore, it was shown that in 
geometrically converging Chebyshev series, which is the usual rate of convergence, 
the coefficients are not "strongly self-cancelling" and the theorem provided the 
optimal envelope function for the coefficients as n -> oo. In such cases, the theorem 
provides a good alternative to the often laborious method of steepest descent. In 
the last section, two examples were given to illustrate these concepts. The first 
example considers a function whose Chebyshev series converges super-geometrically, 
a Gaussian and its first integral the error function. The second example considers 
a function and its first integral whose Chebyshev series converges algebraically, a 
function that is regular except at the endpoints x = ?1 of the Chebyshev interval 
xE[-1, 1]. 

However, more work needs to be done. It would be beneficial to prove that if the 
Chebyshev coefficients of a function are converging as 1 or rJ?+ (-l)n, where 
j is a constant greater than zero, then the function is singular exclusively at the 
endpoints x = ?1 of the Chebyshev interval. Secondly, it is believed that the same 
results should hold for higher integrals, that is for k = 2,3, ... and so forth. The 
reason is that the coefficients for the higher integrals of a function are just weighted 
combinations of the coefficients of the original function in the form of an alternating 
series. 
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