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A SWEEP-PLANE ALGORITHM FOR GENERATING 
RANDOM TUPLES IN SIMPLE POLYTOPES 

JOSEF LEYDOLD AND WOLFGANG HORMANN 

ABSTRACT. A sweep-plane algorithm of Lawrence for convex polytope com- 
putation is adapted to generate random tuples on simple polytopes. In our 
method an affine hyperplane is swept through the given polytope until a ran- 
dom fraction (sampled from a proper univariate distribution) of the volume of 
the polytope is covered. Then the intersection of the plane with the polytope 
is a simple polytope with smaller dimension. 

In the second part we apply this method to construct a black-box algo- 
rithm for log-concave and T-concave multivariate distributions by means of 
transformed density rejection. 

1. INTRODUCTION 

Several methods have been suggested for the generation of uniformly distributed 
random points on an n-polytope P. 

(1) If P is a simplex, then by [8, chapter XI.2..5, theorem 2.1] we get such a point 
by 

n n 
(1) x = Uj vj where EUj = l, 

j=0 j=0 

where vo,... , vn are the vertices of the simplex P and the Uj are generated by a 
uniform sample on [0, 1]. 

(2) Consequently a method for arbitrary polytopes is to triangulate P [8, chap- 
ter XI.2.5], i.e. we split the polytopes into n-simplices. Triangulation works well 
for polygons (dim(P) = 2) but is rather difficult for dimension greater than 2. The 
complexity of the decomposition step depends on the number of faces, which is 
O(,mLn/2J), where m is the number of vertices ([23], cf. [8, chapter XI.2.5]). 

(3) Another approach is grid methods (see [8, chapter VIII.3.2]). The polytope 
is enclosed in a hyper-rectangle, which is decomposed into a set of grid rectangles. 
In a setup step the grid rectangles are classified into inside, outside or on the border 
of the polytope. Those inside and on the border are stored and randomly chosen 
by the sampling algorithm. Then a point inside the small rectangle is generated. It 
is accepted if it is inside the polytope. It is clear that the number of necessary grid 
rectangles explodes for higher dimensions. Thus for higher dimensions the method 
has advantages and disadvantages comparable 'with the next method (4). 
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(4) A possible variant of (2) and (3) is to enclose P into a simplex (L. Devroye, 
private correspondence). Here the rejection constant for an arbitrary polytope is 
of order O(dim(P)!) = O(n!) but strongly depends on the shape of the polytope. 
Furthermore it is not a simple task to find the enclosing simplex (e.g. if P has 
parallel constraints.). 

A new approach to the problem, is the use of a sweep-plane technique. This 
technique goes back to Hadwiger [16], [17], who used it in the context of Euler 
characteristic on the convex ring. It was applied to volume computation by Bieri 
and Nef [5] and (with a different name) by Lawrence [22] (see also [14]). In [4] a 
recursive algorithm is used to count the cells of a finite division in R . 

The general idea of sweep-plane algorithms is to "sweep" a hyperplane through 
a polytope P, keeping track of the changes that occur when the hyperplane sweeps 
through a vertex. 

For our purpose the plane is swept through the given simple polytope until a 
random fraction of the volume of the polytope is covered. This fraction is given 
by a uniform sample on [0, 1]. The intersection of the plane with the polytope is a 
simple polytope with smaller dimension. By recursion we arrive at a polytope of 
dimension 0, that is, a single point. The complexity for the first recursion step is 
O(m2 + mn3). 

Although only derived for the convex case, the sweep plane algorithm also works 
for non-convex polytopes, but in contrast to the methods (2), (3) and (4) only 
for simple polytopes. Compared with methods (2) and (3), the setup of the new 
algorithm is much faster but the generation time is slower. Compared to (3) and 
(4), the new algorithm has the advantage that there is no rejection necessary. The 
main advantage of our new generation procedure is that the complexity does not 
grow as fast with the dimension as the methods suggested in literature. There 
are problems with rounding errors in higher dimensions, but they can be overcome 
using exact rational arithmetic. 

In the second part we apply this method to construct a black-box algorithm 
for log-concave and T-concave multivariate distributions by following the idea of 
transformed density rejection, introduced in [12] and [18] for the univariate case. 
The sweep-plane technique is used to generate random variates with respect to the 
hat function. 

2. SWEEP-PLANE ALGORITHM FOR SIMPLE POLYTOPES 

2.1. Simple convex polytopes. Let us first summarize the concept of polytopes 
(see [30]; an introduction to convex polytopes can further be found in [15], [3], or 
from a different point of view in [10], [25]). 

An h-polyhedron is an intersection of finitely many closed half-spaces in RT. In 
linear programming the inequalities (c, x) < co that define the half-spaces are called 
constraints. A V-polyhedron is the convex hull of some points in Rn. A polyhedron 
is a point set P c Rn which can be presented either as a V-polyhedron or as an 
KH-polyhedron. Both representations are equivalent and can be converted to each 
other (for example, by the reverse search algorithm [2] or the double description 
method [24], [11]). 

A (convex) polytope is a bounded polyhedron. A polyhedron (polytope) of di- 
mension n is called an n-polyhedron (n-polytope). A face of a polyhedron is a 
polyhedron F C P which is the intersection of P with some supporting hyperplane 
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{x cE RnR: (C,x) = co}, where (c,x) < c0 is satisfied for all points x c P. A face 
of dimension i is called an i-face. The 0-faces, 1-faces and (n - 1)-faces of an n- 
polytope are respectively its vertices, edges and facets. An n-polyhedron is called 
simple if every vertex is contained in the minimal number of only n facets; that is, 
only n constraints are binding in each vertex. (In linear programming this is called 
the non-degenerate case.) 

Notice that if we consider any set of constraints that are generic (i.e. they define 
hyperplanes in general position) then this defines a simple polyhedron. In the 
generic case an 7--polytope is always simple. On the other hand, if we choose 
points in IRn in general position (i.e. no n of these are affine dependent) then its 
convex hull is simplicial (all proper faces are simplices) but may not be simple. 

2.2. Sweeping planes. 
Sweep-plane. Let P be a simple convex n-polytope and f (x) the density function of 
the uniform distribution on P. For simplicity we set f (x) 1. Choose a nonzero 
vector g. In what follows we assume 

(2) lIgIl = 1 and (g, x) is non-constant on every edge in P 

(., ) denotes the scalar product. For a given x let x = (g, x). We denote the 
hyperplane perpendicular to g through x by 

(3) F(x) = F(x) = {y c IRTn: (g,y) = x} 

and its intersection with the polytope P by Q(x) = Q(x) = P n F(x). (F(x) and 
Q(x) depend on x only; thus we write F(x) and Q(x), respectively, if there is no 
risk of confusion.) Q(x) again is a convex polytope (see [15]). Now we can move 
this sweep-plane F(x) through the domain P by varying x. Figure 1 illustrates the 
situation. The marginal density function hg(x) along g of a uniform distribution 
with support P is simply given by the volume A(x) of Q(x). We can sample a 
variate x from the marginal distribution and get the polytope Q(x) (see ?2.3 and 
?2.4). 

F F(x) 

FIGURE 1. Sweep-plane F(x) 
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FIGURE 2. Projection Q c R d __ Q' c R d-1 

Recursive sweep-plane algorithm. If dim(Q(x)) = 1, Q(x) is a line segment and we 
get the random point by 

(4) x = Uvo + (1-U) vI, 

where vo, v1 are the vertices of Q(-x) and U is a uniform sample on [0, 1]. 
If dim(Q(x)) > 2 let Qn-I = Q(x). Then Qn-I is a simple (n - 1)-polytope 

(immediately from [30, proposition 2.16]). We embed Qn-I into the IR1 by elim- 
inating the component in x, where g takes its maximum. 

X = (Xi,... ,XM-... ,Xn) I3 X/ = (XI,... ,XM-li,XM+?i-- Xn) 

(5) where gm = max 9g 
j=I,... ,n 

If the maximum of gj is not unique, we set M equal to the first index that maxi- 
mizes gj. 

We get a polytope Q 1 C IR n-I (see Figure 2). We choose a proper gn-I C ]Rn-I 

which satisfies (2), that is, llgn_-I = 1 and x' X-4 (gn-l,x') is non-constant on every 
edge of Q$-1. Again we use a sweep plane F-I (x) and a univariate random number 
generator to get an (n - 2)-polytope Qn2. 

Now we apply the same method to Qn-2 and get a polytope Qn-3 and so on, 
until we finish with a polytope Qi of dimension 1, for which we use (4). 

We get the random point x c Q(x) = Qn-I from x' E Qn-2 by the fact that 
(g, x) = x (see figure 2). Thus we find 

X = (X)i... Xn) = (yi.... YM-1i,XM,YM+1,... ,Yn) 

(6) with XM = 
9Mgm 

where Y =(YI, ,Yn)= (xl, ,...XMI, 0,x,. .. ,xn_1). 

2.3. Sample from marginal distribution. 
Computing the volume A(x). Let F-(x) = {y c IRn: (g, y) < x}. By assumption 
P n F- (x) is bounded. Thus we find that 

(7) A(x) = Vn-l (P n F(x)) = dV(P F(x)) 
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forward cone at V3 

V3 

FIGURE 3. Forward cone and Gram's relation 

where Vk denotes the k-dimensional volume. To compute A(x) we modify the 
method in [5], [22], [14]. Denote the vertices of P by vj E in, j = 1,... ,m, and 
Vj = (g,vj), so that 

(8) -00 < Vl < V2<... <Vm < 00. 

Additionally we set vo = -oc and vm+l o0. 
The polytope P can be built up by simple cones at the vertices vj. Let v be 

a vertex of P and t',... Itv be nonzero vectors in the directions of the edges of 
P (originated from v), i.e. for each j and every x E P, (ty, x) > 0. We define 
yj = sgn((tv,g)) and 8(v) = Hl>n1 ?yj* Notice that by assumption (2), (tv, g) =$ 0. 
Then the vectors ?yj tv span the forward cone 0(v) at v, i.e. 

n 

(9) C(v) = {v + E cy7jtv: C3 > 0}. 
j=1 

As can easily be seen, (x, g) > (v, g) for all x E C(v) (see Figure 3). Since P is 
simple, C(v) n F-(x) is an n-simplex for x > v = (v,g), and hence 

Vn(C(v) n F-(x)) = det (x-v) - v , (X-V) _ V n 
n!de( (-Y1tl, g)' (-YNtvn,g) 

n n 
(10) = xvn ! Idtt,- ,n) tv tI(tg)- 

for x > v, and 0 otherwise. 
Let XM denote the characteristic function of the set M C RnI i.e. XM (x) = 1 if 

x E M, and 0 otherwise. By a version of Gram's relation (see [27]) it follows ([22]) 
that 

m 

(11) XP= S 6(vj) XC(v) 
j=1 

and thus 
m 

(12) Vn (P n F-(x)) = 56(vj) Vn(C(vj) n F-(x)) 
j=1 
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Define 

(13) a ( 1)! Jdet (tt,gv. 
i= 1 

Combining (7), (12), (10), (13) and the fact that 6(Vj)2 = 1, we arrive at 

(14) A(x) = 3 .aj (x - Vj) 
1<j<m 

Vj <X 

Using the binomial theorem, we get 

n-1 

(15) A(x) - E b(x) xk, 
k=O 

where the coefficients 

(16) b (x) ( _) (vj)nlk 

Vj <X 

depend on the intervals [vji, vj) only. (Notice that A(x) _ 0 for x > vm.) 

Marginal density function. The coefficients b(x) in (15) are constants on the intervals 

[vj_1,vj), i.e. b(x) b(vj-1) for al1 x E [vj_1,vj). On each of these intervals the 
marginal density function hg(x) = A(x) is a polynomial of degree n - 1 with both 
positive and negative coefficients. 

We do not know particular generators for such marginal distributions (except 
for the special case x E [Vl, V2), where A(x) is a power function), but we can 
utilize the fact ([26, theorem 8]) that every marginal density of a log-concave dis- 
tribution again is log-concave (The density of the uniform distribution is constant 
and thus log-concave.) Since the mode of the distribution is not known and the 
b(x) change in every recursion step of the algorithm, it seems most convenient to k 
use the algorithm of [12] on the interval [vi_,vj). Other possible choices are the 
inversion-rejection method (see [8, chapter V11.4]) or (especially in low dimensions) 
the inversion method. 
Marginal distribution function. To find the interval [vjp, vj) we need the marginal 
distribution function H(x); that is, 

x x n-1 

(17) H(x) j hg(t) dt = j E bkttk dt. 
kO _oo -?? k=0 

Generate a uniform sample U on [0, 1] and let Hp = H(oo) be the volume of P. 
Then vj is the least vertex such that 

(18) H(vj-i) < U . Hp < H(vj). 

H(x) can be calculated by recursion. Let v = max vj. Then we have 
vj < x 

n-1 x 
(19) H(x) = H(v) + E b( j tk dt. 

k=O 
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Let 
n-1iv 

(20) H1 = 0 and Hj Zb(vi-1) / tk dt, 
k=O jv_1 

the volume of P n {x E R: vj < x <v;}. Then we find that 

(21) H(vo) = 0 and H(vj) = H(vji) +?Hj forj=1,... ,m. 

2.4. Compute Q(x). 
Cut polytopes. We get the vertices of the cut polytope Q(x) by the intersection of 
the sweep-plane F(x) with all edges (vo, v1) of P. Obviously only those edges are 
of interest where v0 < x < v1. (Again vi = (g, vi).) Then we find for the vertex v' 
of Q(x) 

(22) v = 1 _ I v1. 
V1-vo Vl-vo 

Hence we get the V-representation of Q(x). 
The face lattice. By assumption, a d-face of P becomes a (d - 1)-face of Q(x) when 
we intersect P with the sweep-plane F(x) (except when d = 0, i.e. the face is a 
vertex). To get the cut vertices by (22) we need the incident edges to all vertices 
of the cut polytopes in all steps of the recursive algorithm. Thus we need the face 
lattice (also called incident graph in [10]), i.e. the set of faces partially ordered by 
inclusion (see [30, chapter 2.2]). For determination, notice that every point x E P 
is an element of one or more facets. Thus we introduce an index p(x) (see [2], [5]). 
Let f, ... , fN be the facets of P (in arbitrary but fixed order). Then we set 

(23) P(X) (P1(X),.. ,PN(X)) with pi(x) i fxt' 
O otherwise. 

Let 

(24) p(x)?p(y) < p(x)?pj(y) Vi = 1,... ,N 

and 
N 

(25) lp(x) I Zpi (x). 
i=l1 

Notice that p(x) = p(y) if and only if x and y are in the relative interior of the same 
face f. Thus we get an index for each face by 

(26) p(f) = p(x) for an x E relative interior of f. 
By means of this index we can find the face lattice. Since P is simple by assumption, 
we have for faces f, 1f and f2 

(27) fl D f2 X P(fi) ? P(f2), 

(28) dim(f) = n- p(f)l. 

Two d-faces fi and f2 are joined by a (d + 1)-face if and only if 

(29) p(fi) > p(f) and P(f2) > p(f). 

Using (28), this is equivalent to 

(30) Jp(fl) A P(f2) = p(fl) - 1, 
where A denotes the bitwise AND-operator. 
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Recursion step. The d-faces of P become the (d - 1)-faces of Q(x). We use the 
same indices for the faces of the cut polytopes Q. Problems arise if (g, vo) = x 
in (22), i.e. the sweep-plane F(x) contains a vertex vo of P. Then there might be 
two or more edges with the same vertex vo. We get vo as a vertex of Q(x) at least 
twice, but with different indices since the indices of the edges differ. In this case 
we append vo to the vertex list of Q.(x) (without changing its index) and ignore the 
incident edges. 

Let Qk be the cut polytope after n - k steps. Thus it has dimension k. Because 
of assumption (2), (28) holds analogously, except when f is a vertex: 

(31) dim(f) = k - p(f) if f is not a vertex of Qk. 

Moreover, (29) holds. But (30) is valid only if the faces fi are not vertices of the 
cut polytope. 

2.5. The algorithm. We are given the 7H- or V-representation of a simple convex 
n-polytope. (Notice that the convex hull of n + 2 or more points in general position 
in IR7n is not a simple polytope. An 7--polyhedron might not be bounded, and thus 
the uniform distribution over the polyhedron does not exist. In both cases the 
algorithm does not work.) The algorithm SWEEPQ requires a list of the vertices 

vj of P (the V-representation) and all the indices p(vj) of these vertices. E.g. [1], 
[6] or [11] do the job. Some of these programs offer options to check the required 
conditions. Then algorithm SWEEP() runs as follows: 

algorithm SWEEP() 

Generates uniformly distributed random tuples over a simple polytope P. 
Input: V-representation of simple polytope P, indices p(vj), dim(P). 

1: if dim(P) = 1 then 
2: Use (4) to get random point x and return x. 
3: Find a proper g that satisfies (2). 
4: Compute coefficients b(vi) (16) and marginal distribution H(vj) (21) for all 

vertices vj. Compute Hp. 
5: Generate a uniform [0, Hp] random number U and get the interval [vj -,vj) 

such that vj-I < U < vj. 
6: Generate random variate X from marginal distribution (use [12]). 
7: Find all edges that intersect sweep-plane F(x) (use (29) or (30)). 
8: Compute Q(x) (22) and projection Q' (5). 
9: x' +- call SWEEP() with Q', indices p(vj), dim(P) - 1. 

1o: Compute x (6). 
11: return x. 

2.6. Remarks. 
The choice of g. The algorithm is sensible about the choice of g. The method 
requires summing a lot of numbers for computing the coefficients b(vj) in (16). 
Some of these numbers are positive, some negative. If (g,x) is "nearly" constant 
on an edge of P, then these numbers can be quite large in magnitude, so that there 
can be considerable loss of significance due to round-off errors. As a consequence 
A(vm) 4 0 at the last vertex of the polytope. This is likely to happen for an 
arbitrary g if dimension is high and P has many faces (and vertices). 
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In the literature this problem is not really solved. [22] gives a solution only for 
the case when rational arithmetic is used for computation. [5] suggests the use of 
randomly chosen vectors. 

A possible solution to this problem is: (1) Choose a g. (2) Calculate all coeffi- 
cients aj. (3) If one of these is too big (e.g. larger than 105) reject g and try another 
one. A good choice for g are the unit vectors (0, ... , 1, . . . , 0) (which are easy to 
use). If these do not work, possible choices are random vectors (as suggested in [5]) 
or the vectors vj - v, where v =v m i=l Vi denotes the barycenter of P. Another 
possibility is to apply small random rotations of the axis and try the unit vectors 
again. 
Non-convex polytopes. This sweep-plane algorithm can be modified for non-convex 
simple polytopes. The polytope P can be presented in Boolean form, the face 
lattice (again) by the indices p(f) (see [5] for details). 
Complexity. We assume that the V-representation P is given. For computing the 
marginal density hg(x) = A(x) we need determinants at all vertices of P, a task 
taking 0(mnr3) steps. To get all vertices of the cut polytope Q(x) in ?2.4 we have 
to find all edges of P that intersect the sweep plane, which is of order 0(m2). Thus 
for the first recursion step the amount of work is 0(m2 + mn3). 
Comparison. It is difficult to compare the sweep-plane algorithm with the rejection 
methods (3) and (4) of the introduction. There the rejection constants for an arbi- 
trary polytope grow with 0(n!). On the other hand, there are of course the special 
cases of the hyperrectangle and the simplex, respectively, where these methods are 
optimal. In contrast to method (3), no algorithm to construct an enclosing simplex 
is available in the literature for method (4). 

Compared with the triangluation method (2), the main advantage of the new 
algorithm is the fact that practically no setup is necossary. On the other hand, sam- 
pling is slower. For method (2) the complexity of the decomposition step depends 
on the number of faces, which is 0(mLn/2J), where m is the number of vertices ([23]). 
Thus for polytopes with a large number of vertices in high dimensions triangulation 
is very slow. Hence our new method is preferable if 

* the dimension is high (> 3), and 
* the polytope contains a large number of vertices, or 
* we only need a few random points for the given polytope. 

Volume computation. The generation of random tuples in a polytope is closely re- 
lated to the determination of volumes. Volume computation is reported to be 
P-hard (cf. [9], [14]). 

3. A REJECTION TECHNIQUE FOR MULTIVARIATE LOG-CONCAVE DENSITIES 

For the generation of variates from bivariate and multivariate distributions pa- 
pers are rare. Only the generation of the multinormal and of the Wishart distribu- 
tion are well known and discussed (see e.g. [8] and [7]). One approach especially 
considered by researchers interested in simulation - aims to develop new, easy to 
generate classes of multivariate distributions; it is only necessary (and possible) to 
specify the marginal distribution and the degree of dependence measured by some 
correlation coefficient (see the monograph [21]). This idea seems to be attractive 
for most simulation practitioners interested in multivariate distributions, but it is 
no help if we want to generate variates from a distribution with given density. 
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The conditional distribution method requires the knowledge of and the ability to 
sample from the marginal and the conditional distributions (see [8, chapter XI.1 .2]). 

The multivariate extension of the ratio of uniforms method as described in [28] 
and [29] can be reformulated as rejection from a small family of table-mountain 
shaped multivariate distributions. This point of view explains the poor acceptance 
probability for high correlation. The practical problem of how to obtain the en- 
closing multivariate rectangle for the ratio of uniforms method is not discussed in 
these papers and seems to be difficult for most distributions. 

To our knowledge, no universal algorithms are known for multivariate distribu- 
tions with given density function. In [8, chapter XI.1.3] it is even stressed that no 
general inequalities for multivariate densities are available, a fact which makes it 
impossible to design black-box algorithms similar to those in [8] for the univariate 
case. In [19] a universal algorithm for log-concave distributions is developed for the 
bivariate case. It uses the idea of transformed density rejection, which is presented 
in a first form in [8, chapter VII.2.4] and with a different set-up in [12]; 

In this section we generalize this idea to the multivariate case. The sweep-plane 
technique is used to sample from the hat function. 

3.1. Transformed density rejection. 
Density. We are given a multivariate distribution with differentiable density func- 
tion 

(32) f: D - [O,oo) D C R n with mode m. 

For simplicity we assume D = Rn. 

Transformation. To design a black-box algorithm utilizing the rejection method 
it is necessary to find an automatic way to construct a hat function for a given 
density. Transformed density rejection, introduced under a different name in [12] 
and generalized in [18], is based on the idea that the density f is transformed by a 
monotone T (e.g. T(x) = log(x)) in such a way that (see [18]): 

(Ti) f (x) = T(f (x)) is concave. We then say "f is T-concave". 
(T2) lim,,o T(x) =-oo0; 
(T3) T(x) is differentiable and T'(x) > 0, which implies T-1 exists; and 
(T4) the volume under the hat is finite. 

Hat. It is then easy to construct a hat h(x) for f (x) as the minimum of N tangents. 
Since f (x) is concave, we clearly have f (x) < h(x) for all x E R . Transforming 
h(x) back into the original scale, we get h(x) = T-1 (h(x)) as majorizing function or 
hat for f, i.e. with f (x) < h(x). Figure 4 illustrates the situation for the univariate 
case by means of the normal distribution and the transformation T(x) = log(x). 
The left hand side shows the transformed density with three tangents. The right 
hand side shows the density function with the resulting hat. 
Rejection. The basic form of the multivariate rejection method is given by 

algorithm REJECTION() 

1: Set-up: Construct a hat function h(x). 
2: Generate a random tuple X = (X1,... , Xn) with density proportional to h(X) 

and a uniform random number U. 
3: If Uh(X) < f (X) return X else go to 2. 

The main idea of this section is to extend transformed density rejection to the 
multivariate case. 
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0.2- 
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-2 -11 2 -3 -2 -1 1 2 3 

FIGURE 4. Hat function for univariate normal density 

3.2. Construct a hat function. 
Tangents. To construct the hat function we choose N points pi E D c R]n and take 
tangents ?i(x) of the transformed density f at these points: 

(33) ?i(x) = f(pi) + (Vf(pi), (x - Pi)) 

The hat is then the pointwise minimum of these tangents: 

(34) h(x) = min ti(x) and h(x) = exp(h(x)). 
i=1,.., 

Although the main idea of multivariate transformed density rejection is simple, 
it is still hard work to collect all the necessary details. One problem is the suitable 
choice of the points Pi. In the univariate case we are able to optimize the choice of 
the points (see [18] and [20]). It is even possible to show that the execution time 
of the algorithm is uniformly bounded for a family of T-concave distributions. In 
the multivariate case this task seems to be impracticable. So we use the important 
idea of adaptive rejection sampling introduced in [12]. 
Adaptive rejection sampling. Adapted to our situation, it works in the following 
way: For the start take at least n + 1 points of contact, which only must have the 
property that the volume below the hat h(x) is bounded. Then start the generation 
of random variates with this hat until a point x is rejected. Now use x to construct 
an additional tangent and thus a new hat, and restart generation of random points. 
Every rejected point is taken for an additional tangent until the maximum number 
N of tangents is reached. The points of contact are thus chosen by a stochastic 
algorithm, and it is clear that the multivariate density of the distribution of the 
next point for a new tangent is proportional to h(x) -f (x). Hence with N tending 
towards infinity the acceptance probability for a hat constructed in such a way 
converges to 1 with probability 1. 

It is not difficult to show that the expected rejection constant is of order 1 + 
O(N-2/n): Since h is constructed by tangents over each polytope, we find that 
h(x) -f (x) = O(1X- p,112) for the polytope Pi, and thus the volume between h and 
f in a ball is of order O(Jx - p,112+n). Without loss, D is bounded. The volume of 
each polytope is 0(d n), where d is the diameter of Pi. Assuming that all polytopes 
have the same volume, we find d = O(N-1/n). Thus the total volume between h 
and f is given by N O((N-I/n)2+n) = O(N-2/n). Since the polytopes do not have 
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the same size but are constructed in order to minimize this volume, the statement 
follows. 

3.3. Generate random tuples. We use a modified version of the sweep-plane 
algorithm in ?2 to generate random tuples with respect to the hat function. 
Polyhedra. The domain in which a particular tangent Li determines the hat function 
h is a convex n-polyhedron which may be bounded or not. We find, for a touching 
point pi and its tangent ?i(x), 

(35) Pi = {x E Rn: h(x) = T-1(fi(x))l n {x (E R n f,(X) < fj(X)1. 
j=l,...,N 

To avoid lots of indices we write p, ?(x) and P without the index i if there is no 
risk of confusion. 

We make the following assumptions about the polyhedron P: 

(P1) P is a simple polyhedron. 
(P2) There exists a maximum of f in P. 
(P3) f is non-constant on every edge of P. 

We always can find touching points such that these restrictions hold. 
Sweep-plane algorithm. In each of these polyhedra, ?(x) is constant on every inter- 
section of P with an affine hyperspace (called a flat) perpendicular to the gradient 
of ?(x). Since by condition (P3)V1 = Vf(p) 7& 0, let 

(36) g = Vf(p)P) 

Let again x = (g, x). F(x) denotes the sweep-plane and Q(x) its intersection with 
P (see ?2.2). Notice that under conditions (P1)-(P3) all the sweep-plane technique 
derived in ?2 still works for an unbounded polyhedron P. By conditions (P2) and 
(P3) the cut polytope Q(x) is bounded. By setting 

(37) f=J(p)-(Vf(p),p) and 3= jjVf(p) 

and by inserting into (33) we find for the hat function in P 

(38) hlp(x) = T1 (f(x)) = T1 ( - 3x). 

The marginal density function hg of the hat h p along g is then 

(39) hg(x) J h(y)dF(x) = A(x) T- (a-/3x), 
Q(x) 

where the volume A(x) of Q(x) is given by (15). 
Log-concave densities. The transformation T(x) = log(x) satisfies (T1)-(T4). If 
T(f (x)) = log(f(x)) is concave, we say f is log-concave. 

We have T-1(x) = exp(x), and thus by (39) and (15) 

n-I 

(40) hg(x) = exp(o-13x) Z b x) xk. 

k=O 

hg is again log-concave by [26, theorem 8], since it is the marginal density of the 
log-concave function exp(f(x))jP. Again it is best to use the algorithm of [12] on 
the intervals [vj-1,vj) (see ?2.3). 
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The marginal distribution function H(x) = f".hg(t)dt is calculated analo- 
gously to (19) and (21) by recursion. For volume Hj below the hat in the interval 
[vj, vj) we now have 

n-I v 
Hj=eo I: b(vj - 1) X(3t) k e,8t dt. 

k=0 j_1 

By substituting z 13 t and using formula (2.323) in [13] we arrive at 

n-I 

Hj =eot E b(vi-1 ) 13-k- 1k 
k=0 

(41) . (e ivjii E ( l)' - e d vj E (/3vj)1) 
1=0 *1=0 

and for the unbounded interval [vm, oo) (if P is not bounded) 

n-I k (13 Vm)1 

(42) Hm+1 = eo E b(vm) k! 3-k- 1 epvm E 1! 
k=0 1=0 

Sample from marginal distribution. For the algorithm of [12] we first have to take 
one of the N polyhedra Pi and one of the intervals [vji, vj) on this polyhedron. 
The latter is done by (18). 

Let Htot = Ep> Hp, denote the total volume below the hat and U a random 
point from a uniform sample on [0,1]. Then we select the polytope Pi such that 

j-1 j 

(43) Hp, < U Htot < Hp. 

i=l1 i=l 

3.4. Construct polyhedra. There are two differences from ?2. (1) Some of the 
polyhedra are not bounded. (2) We cannot use e.g. [11] to compute all the vertices 
of the polyhedra whenever we add a new construction point. 
Vertices and extreme rays. For an unbounded polyhedron we have vertices and 
extreme rays. The latter may be interpreted as "vertices at infinity". The set of 
all vertices of the polyhedron (in R' or at infinity) can be written as Rn U Sn-1, 
where Sn-1 denotes the unit sphere in Rn. For an algebraic description of this set, 
we define a space RIn by 

=R= {(xo;x): xo E R, xe ERn, (x0;x) 7 (0; O), xo > 0}, 
(44) 

x=y xi= yiforana>0foralli=0,.. ,n. 

As can easily be seen, we have {(xo;x) E Rn 1 Xo 7 0O} _ Rn and {(xo;x) E 
ROI: 0} = Sn. We may write RI1 c n U Sni. Notice that we get the 
projective space PREDn by identifying antipodal points in the subset Sn-1. In other 
words, we use the projective space PRn but distinguish between two directions 
of points at infinity. For that reason we call PO {(xo; x) E Rn: xo = 0} the 
hyperplane at infinity (although it is not "really" a hyperplane). The facets of Pi 
in IRn are given by the equalities ?i (a ) = fj(i -). We use the standard Euclidean 
metric in the subsets {(xo; x) E RAn: xo 7& 0} and {(xo; x) E ]Rn: xo = 0} (this 
cannot be extended to the whole space). 
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We embed the polyhedron P into the compact R' set by 

VER' ( 1v) = lvj.. . vVn) E(xo; x) 
E 
R n :xo 7&4 ?} 

for a vertex v of P, 
(45) ~ t E R n __+ (0; t) = (0; tl v . .. v tn) E {(X0; X) E Tn: Xo = ?} 

for a nonzero vector t in the directions of edges of P. 

An unbounded convex polyhedron is then a polyhedron with vertices in the hyper- 
plane at infinity. The coordinates of a vertex at infinity are given by the vector in 
the direction of its corresponding unbounded edge, i.e. the extreme ray. 

We call all faces with vertices in R]n and in the hyperplane at infinity unbounded 
faces, and the faces with all vertices at hyperplane at infinity faces at infinity. 

For a point x at infinity we set ?(x) = (Vi, x), i.e. llxll times the directional 
derivative of f along x. 
Edges. To calculate the coefficients aj in (13) we need the vectors ty in the directions 
of the edges of P. Using the embedding into RC., we find for an edge (vo, vi), 
vo E RI, that 

(46) (0; t) 
f (1; vi) - (1; vo) if the edge is bounded, 

A (0; vi) if the edge is unbounded. 

The points on such an edge are then given by 

f (1- t) vo + tv1, 0 < t < 1, if edge (vo, vl) is bounded, 
(47) v VO + tvi, t > O0 if vo E Rn and v, is at infinity, 

to vo + tL vi, to, tL > 0, if edge (vo, vi) is at infinity. 

In the last case to vo + ti vi again is a point at infinity, and thus any multiple of 
this vector gives the same point. 
Index p(x) and face lattice. The indices p(x) and p(f ) are defined similarly to ?2.4. 
Now we use the polyhedra Pi rather than facets: 

P(X) = (PO(X); P1(X), .. , PN(X)), 

(48) with ( if x E Pi, 
with Pi (x) O otherwise. 

Po denotes the hyperplane at infinity. Every vertex v is an element of at least n + 1 
polyhedra. From now on we assume that 
(P1') every (finite) vertex v is an element of exactly n + 1 polyhedra. 
Notice that each vertex is an element of at least n + 1 polyhedra. Since we choose 
the construction points at random, this assumption holds with probability 1 if the 
Hessian of the transformed density is non-degenerate almost everywhere. 

Using (P1'), the definitions and equations of ?2.4 are still valid; except (28), 
which now is given by 

(49) dim(f) = n + 1- p(f)l. 
Initial polyhedra. We start the algorithm with n + 1 points for constructing the hat 
function. We can choose the vertices of a regular n-simplex, centered at the mode 
m. For example, such points are given by 
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Here ej denotes the j-th unit-vector and b =- , a = _b+1. The parameter cx 
can be chosen appropriately for the distribution. 

We have one vertex in R] and n + 1 vertices at infinity for the initial polyhedra. 
For all these vertices vj we find pj (v) = 0 for exactly one j. We get the coordinates 
of the vertex vj by solving the following system of equalities in RIn0: 

(51) Po (vj) *xO = O, 

Pj (Vj) *(fn+ I(X)-7 j (X)) =O0 for j = 11 ... ,n. 

Notice that one of these equalities vanishes, since pj (vj) = 0. To get the coordinates 
of the vertices at infinity we have to determine the direction of each solution (0; ti). 
We must have 

(52) ?i(v+ ti) > j(v+ti) forat least one j#Ai. 

By means of the index p(v) we can easily verify which vertices belong to which 
initial polytopes Pi. 
Violated conditions. If condition (P1), (P1') or (P3) fails, we have to move the 
vertices of the regular simplex in (50) a little bit by adding a random point. 

Condition (P2) might fail, if the gradient of the transformed density Vf(x) is 
"far away" from pointing to the mode. For example, this happens for the normal 
density f(x, y) = exp(-x2 _ 1000y2)). A possible solution to this problem is to 
start with the points ?ej as construction points. (But then we have more than nr+ 1 
vertices for the 2n initial polyhedra.) Because of the convexity of the transformed 
density, condition (P2) always holds if each polyhedron can be moved into the cone 
{x E R Xi: X > 0}. 

Adding a construction point. For the adaptive method it is necessary to add a new 
construction point whenever a point is rejected. Notice that ?(x) gives the direc- 
tional derivative for points at infinity with llxll =1. Then the following procedure 
gives the new polyhedra: 
(Al) get the new tangent ?(x) at this point (see (33)); 
(A2) find all edges (vo,v1) with ?(vo) < h(vo) and ?(v1) > h(v1); 
(A3) calculate the new vertex v = to vo + tL v1, such that ?(v) h(v). Using (47) 

and the linearity of f and h on every edge, we find that 

case vO V1 to ti 

Ei Rn Ei Rn 61 do 
61-60 To-61 

(53) ERn inf 1 -6 
61 

inf E Rn _ 61 1 

inf inf 61 8o 
where 

&i = ?(vi) -h(vi; 

(A4) remove all vertices v (and adjacent faces) with ?(v) < h(v); 
(AS) check assumptions (P1)-(P3): 

(P1) and (P1') are violated if we find a new vertex v with ?(v) h(v). 
(P3) fails if we find two new vertices vo and v1, adjacent by an edge, with 

?(vo) = (Vi). 
(P2) always holds, if it holds for the initial polytope. 
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If one of the assumptions (P1)-(P3) is violated, we cannot use the point as a new 
construction point. 

3.5. Remarks. 
A C-implementation. We translated our algorithm into a working C-program. We 
tested the algorithm for the multivariate normal distribution. The program worked 
well up to dimensions 6-7. Then round-off errors occur too frequently, i.e. some 
of the rejected points could not be used for constructing the hat and many trials 
have to be made to find a vector g for the sweep-planes in the cut polytopes Qj. 
Furthermore the average number of generated random points per second decreases 
rapidly, which is due to the great number of vertices of the polytopes Pi. 

3.6. Possible variants. 
Subset of RIn as domain. Obviously we can restrict the domain D of density f to 
a simple polyhedron, which may be bounded or not. Changes to the basic version 
are: (1) The initial polyhedra have more vertices (and thus the usage of a vertex 
finding algorithm, e.g. [2], is recommended). (2) The index p(x) must be extended 
by the facets of the boundary of D, i.e we append p_i(x) = 1 if x is in the boundary 
facet fi, and p_i(x) = 0 otherwise. 
The mode as touching point. When we use the mode m of the density f as touching 
point for our hat, ?(x) is constant on the corresponding polytope Pm, since Vf (m) 
0. Therefore we can use the algorithm from ?2. (But we have to check if this 
polyhedron is bounded.) 

Problems arise for all neighboring polyhedra Pi. Each of these must have an 
edge common with Pm. Ci(x) is constant on this edge and hence assumption (P3) 
fails for all Pi. This assumption is necessary for calculating A(x) in (14). Thus we 
"ignore" the mode m when we construct the other polyhedra (see Figure 5) and 
modify the marginal density in (39) to 

hg (x) _ A(x) T-1(c -/x) for x > vi, 
0 for x < vl, 

(54) 
where vI min (g, x) 

xCl 
(x) =h(x) 

If P does not intersect with the polytope Pm, then vI = vl. 
Tc-concave densities. A family Tc of transformations that fulfill conditions (Ti)- 

(T4) is introduced in [18]. Let c < 0. Then we set 

c ~~~~~Tc (x) TC- x Tc' (x) 

c0= O R+ R log(x) exp(x) x-l 
-n< C < ? i,+ R i- -Xc (-x) I/C _cCc-1 

It can easily be verified that condition (T4) holds if and only if-n < c < 0. 
Moreover for c < 0 we must have h p < 0. To ensure the negativity of the hat we 
always have to choose the mode m as construction point for a tangent plane ?. 

In [18] it was shown that if a density f is Tc-concave, then it is Tc,-concave for 
all cl < c. 
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F(vi) 

, *m >V5 

/V3 

FIGURE 5. "Hidden" part of a polytope 

The case c 0 is already described in ?3.3. For the case c < 0 the marginal 
density function is given by 

n-I 

(55) hg(x) = (3x- c- a bb( xk 
k=O 

Notice that a - 1 t < O for all t > vl, and that 1 < -n. By substituting z = 13 t - a 
and using the binomial theorem we find, for the&marginal distribution function, 

n-I k k 
Hj 

, 
(V-1) 13-k-1 (I) 1 ak-I 

k=O 1=0 

(56) (13 vj-a )'+ 
1 
+1 - (13 vj_-l-a)'+-+1 ) 

and for the unbounded interval [v,, oo) (if P is not bounded) 
n-I k 

H ;, b(mv,) y3- k -1 k) 
k- 1 A pV - 

k=O 1=0 

Due to the following lemma we can use the algorithm of [18] to generate random 
points in the intervals [vjp, vj) with respect to this marginal distribution. 

Lemma 1. The marginal density hg(x) = (/3x - a) A(x)(-1 < c < 0) is Tc- 
concave. 

Proof. It remains to prove that Tc(hg(x)) = (a - 3x) A(x)c is concave for c < 0. 
Let g(x) = a - fx and f (x) = A(x)c. Let x2 > xI > v1 and x = h x1 + (1- h) x2. 
By assumption, g(x2) < g(x) < g(x1) < 0 and g(x) = h g(xi) + (1- h) 9(X2)- f (x) 
is convex, since A(x) is log-concave (see ?2.3) and hence Tc(A(x)) = -A(x)c is 
concave. We have to show that 

f (x) g(x) - (h f (xi) g(xi) + (1 - h) f (X2) 9(X2)) 
(58) 

= hg(xi) (f(x) - f(xi)) + (1 - h)(f(xt) - fJ(X2)) > 0. 

Notice that f (x) < h f (xi) + (1 - h) f (X2) by assumption. Thus the left hand side 
of (58) is > h (1 - h) (9(XI) - 9(X2)) (f(X2) - f(XI)), which is > 0 if f(xi) < f(x2). 



1634 JOSEF LEYDOLD AND WOLFGANG HORMANN 

For the case f (xl) > f (X2) notice that, by the convexity of f (x), f (xl)-f (xf) > 
(1 - h) (f (xi)-f (X2)) and f () -f (X2) < h (f (xi)-f (X2)). Thus the left hand 
side of (58) is > h (1 - h) (g(x1)- g(x2)) (f (xI) - f (x2)) > 0, as proposed. D 
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