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CONVERGENCE 
OF NONCONFORMING MULTIGRID METHODS 

WITHOUT FULL ELLIPTIC REGULARITY 

SUSANNE C. BRENNER 

ABSTRACT. We consider nonconforming multigrid methods for symmetric pos- 
itive definite second and fourth order elliptic boundary value problems which 
do not have full elliptic regularity. We prove that there is a bound (< 1) 
for the contraction number of the W-cycle algorithm which is independent of 
mesh level, provided that the number of smoothing steps is sufficiently large. 
We also show that the symmetric variable V-cycle algorithm is an optimal 
preconditioner. 

1. INTRODUCTION 

The multigrid theory for conforming finite element methods where the finite ele- 
ment spaces on successive grids are nested is now well understood (cf., for example, 
the books [42], [46], [10] and the references therein). 

However, for certain problems the simplest finite element methods are noncon- 
forming or conforming but nonnested. For example, the simplest method for the 
stationary Stokes equations uses the Crouzeix-Raviart element (nonconforming), 
and the simplest finite element methods for the plate bending problem use the Mor- 
ley finite element (nonconforming) or the (reduced) Hsieh-Clough-Tocher macro- 
element (conforming but nonnested). Also, some simple nonconforming methods 
can overcome the phenomenon of locking in elasticity problems and plate problems 
(cf., [5], [37], [28], [67]). 

The convergence of multigrid methods for nonconforming elements was studied 
in [14]-[18], [20], [21], [23], [49], [9], [43], [50], [62], [63], [52], [55], [64], [65], [68] 
and [60]. The convergence of the multigrid method for macro-elements was studied 
in [66]. The results for the nonconforming or conforming but nonnested multigrid 
methods can also be obtained from the more abstract theory of Bramble, Pasciak 
and Xu (cf., [13]) once their "regularity and approximation" assumption is verified 
for each concrete problem. The results in all the papers (except [65]; see below) 
cited above for nonconforming and macro elements have been obtained under the 
condition that the underlying boundary value problem has full elliptic regularity. 
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In this paper we study the convergence of multigrid methods for nonconforming 
finite elements without assuming full elliptic regularity. We follow the methodology 
of Bank and Dupont in [6], where the convergence of conforming, nested W-cycle 
multigrid methods is established without full elliptic regularity. The two key ingre- 
dients in their approach are: (i) the equivalence between mesh-dependent norms 
and fractional order Sobolev norms on the finite element space, and (ii) a duality 
argument involving fractional order Sobolev spaces. Since the nonconforming fi- 
nite element space may not be a subspace of the fractional order Sobolev space, 
there are no straightforward generalizations of (i) and (ii) to the nonconforming 
case. We overcome this difficulty by relating the nonconforming finite element to a 
conforming finite element. 

The idea of using conforming "relatives" in the treatment of nonconforming 
finite elements was first used in the context of additive Schwarz preconditioners for 
nonconforming finite elements (cf., [22], [24], [25]). Let (K, -',fif) and (K, X, Xi) be 
two finite elements (cf., [30], [27]), where K is the shared element domain, 7' and 
F are the spaces of shape functions, and XV and XA are the sets of nodal variables. 
We say that (K, -,) M (K, P,) if 7' C )5 and Xi C X i, and refer to (K, 7,) 
as a "relative" of (K,7,ff). Let V and V be the finite element spaces on the 
same triangulation associated with (K,7,A) and (K,7, .A) respectively. Then 
we say that V -< V if (K,7,) -< (K,,). Our idea is to find a conforming 
finite element space 17h for a given nonconforming finite element space Vh such that 
Vh - 17h. Then we obtain multigrid convergence results for Vh by exploiting its 
connection with 17h. In the theory we do not require that the 7h on successive grids 
be nested. Therefore, by applying the theory to Vh =Vh, we also have multigrid 
convergence results for conforming but nonnested finite element methods. 

After the completion of the first draft of this paper, we learned that W-cycle 
convergence in the (nonconforming) energy norm without full elliptic regularity 
was obtained in [65] by a different technique. However, one of the assumptions 
(Assumption A.4) in [65] concerns a discretization error estimate for nonconforming 
finite elements which is not in the literature and was not proved in [65]. It turns 
out that this estimate follows from our theory (cf., the remark after Theorem 3.8). 
Thus the estimate from our approach combined with the theory in [65] would give 
another complete proof of the W-cycle convergence in the (nonconforming) energy 
norm. 

The rest of the paper is organized as follows. In Section 2 we set up the notation 
and assumptions of an abstract framework for our finite element multigrid analysis 
which is applicable to both second and fourth order problems. Preliminary esti- 
mates are established in Section 3. In Section 4 we obtain the convergence of the 
k-th level W-cycle algorithm and the full multigrid W-cycle method in both the 
(nonconforming) energy norm and a lower order norm. In particular we show that 
the contraction number of the k-th level W-cycle algorithm is bounded away from 
1 uniformly when the number of smoothing steps is sufficiently large. For fourth 
order problems, the convergence in the lower order norm and the connection to 
the conforming relative result in a better pointwise convergence rate for the non- 
conforming method. We also prove that the symmetric variable V-cycle multigrid 
algorithm is an optimal preconditioner. Applications of our theory to second and 
fourth order problems are given in Sections 5 and 6. 
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For future reference, we state the W-cycle and variable V-cycle algorithms here. 
Let V1, V2,... be finite-dimensional vector spaces, and let Ak: Vk - ?. 
Vk-l - Vk and Ik1: Vk -> Vk. The equation to be solved is 

(1.1) AkZ = 9. 

The W-cycle multigrid algorithm. Let ml and m2 be two nonnegative integers. 
The W-cycle multigrid algorithm with initial guess zo yields WMG(k, zo, g) as an 
approximate solution to the equation (1.1). 

For k = 1, WM1G(1, zo, g) is the solution obtained from a direct method. In other 
words, 

WMG(1, zo, g) = A1 g. 

For k > 1, WMAIG(k, zo, g) is defined recursively in three steps. 
* Pre-smoothing. Let zl E Vk (1 < 1 < m1) be defined recursively by the 

equations 

(1.2) Zl = Zi 1 + g - AkZl 1), 1 <Kml, 

where Ak dominates the spectral radius of Ak. 

* Correction. Let - 
Ik1h(g - kAkZmi). Let qi E Vk-l (O < i < 2) be defined 

recursively by 

(1.3) qo0=, and 

qi = W-IIG (k - 1,qi_ ,, i = 1, 2. 

Let zrn1 Zm+ = Z + Ik1q2 

* Post-smoothing. Let z1 E Vk (m1 + 2 < 1 < m1 +m2 + 1) be defined recursively 
by the equations 

(1.4) zl = Zl 1+ X(g-AkZ_1), ml +2K< K <mMl +m2 + 1. 

Then WM1G(k, zo, g)= Zrmj+n2+1l 

The symmetric variable V-cycle algorithm. Let mj (j = 2, ... , k) be positive 
integers which are chosen so that /3omj < mjp1 < /3mj for j = 3,... , k, and 
1 < i3o < /31. The symmetric variable V-cycle multigrid algorithm with initial 
guess zo yields VMIG(k, zo, g) as an approximate solution to the equation (1.1). 

For k = 1, VMIG(1, zo, g) is the solution obtained from a direct method. In other 
words, 

VMIG(l,zo,g) = A1lg. 

For k > 1, VAMG(k, zo, g) is defined recursively in three steps. 
* Pre-smoothing. Let z1 E Vk (1 K I< Mk) be defined recursively by the 

equations 

(1.5) zI =zl + A - Akzl) 1K I<n k, 

where Ak dominates the spectral radius of Ak. 
* Correction. Let -:= I-1(g - AkZmk), and 

(1.6) q = VMG(k - 1, , ). 

Let Zmk?+ 1 Zrnlk + Ik_1 q 
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Post-smoothing. Let zl E Vk (Mk + 2 < 1 < 2mk + 1) be defined recursively 
by the equations 

(1.7) z 1 = zi-1 + g(- Akzlil), mk + 2 < 1 < 2mk + 1, 

Then VMG(k, zo, g) = Z2mk +1 

2. AN ABSTRACT FRAMEWORK 

In this section we set up an abstract framework for our finite element multigrid 
analysis, which will be carried out in Sections 3 and 4 under the assumptions 
stated here. Throughout this paper, f = 1 (second order problems) or 2 (fourth 
order problems), and a E (0, 1]. The case a = 1 corresponds to the case of full 
elliptic regularity. 

We begin with the continuous problem. Let V be a Hilbert space and a(., ) be 
a symmetric bilinear form on V which is bounded and coercive: 

(B) la(vl,v2)1 < I1 v Iv2 V11v VvI,V2 E V, 

(C) ~~~~a(v,v) > llvll2v Vv (E V. 

In order to avoid the proliferation of constants, we adopt the notation <, > and 
The statement F < G (or G > F) means that F is boundo I by G multiplied by a 
constant which is independent of mesh sizes. The statei, -fiat F G means F < G 
and G < F. 

Let F E V'. The continuous problem is to find u E V such that 

(2.1) a(u, v) = F(v) V v E V. 

There exists a unique solution of (2.1) by (B), (C) and the Riesz Representation 
Theorem. 

We assume that there exist two other Hilbert spaces Z and W such that 

(R-1) ZC - VC - W, 

(R-2) llullz < W|FI|w, 

where F E W' and u is the solution to (2.1). 
Moreover, we assume the spaces Z and W are related by the following duality 

estimate. 

(D) la((,v)l < llllzllvllw V E Z, v E V. 

Remark. In applications V is a subspace of He(Q), W is a subspace of He-c(Q), 
and Z is a subspace of He+a(Q). The elliptic regularity for (2.1) is then given by 
(R-1) and (R-2). 

Next we describe the finite element spaces. Let V1, V2,. .. and V1, V2, ... be two 
sequences of finite-dimensional vector spaces with corresponding mesh parameters 
hl, h2, . We assume that there exist positive constants C, and C2, independent 
of the mesh sizes, such that 

(M) Clhk-l <hk<C2hk-l and 0<C1<C2<1. 

We assume that the spaces Vk and Vk are connected to the spaces of the contin- 
uous problem through the following relations: 

(C-1) Vk C V (i.e., Vk is conforming), 
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and there exists a Hilbert space X such that 

(C-2) Wc )X and Vk, Vk C X for k > 1, 
(C-3) W =X, V] - wf)) 

where [X, V]1-(,/e) denotes the interpolation space obtained from X and V by the 
complex method of interpolation (cf., [7], [61], [44]). When a = 1 = X, we interpret 
[X, V]0 to be the space X. 

Remark. Note that we do not assume Vkl C Vk, i.e., Vk is conforming but not 
necessarily nested, and the space Vk can be nonconforming and hence nonnested. 
However, they are all inside the space X, which is just L2 (Q) in applications. 

Let Vo = {O}. We assume that, for each positive integer k, there exists a sym- 
metric positive definite bilinear form ak(*,.) on Vk-l + Vk + V such that ak(, ) 

reduces to a(., ) on V and akl1(*,) on Vk_1. The (possibly nonconforming) energy 
norm 11 Ik on Vk_1 + Vk + V is then defined to be 

(2.2) JIVIlk = [ak(v,v)]1/2. 

It follows from the boundedness and coercivity conditions (B) and (C) that 

(2.3) JIVIV JIVlk VvEV. 

Furthermore, we assume the following inverse estimate holds for k > 1: 

(I) ||VIlk 
< hk llvllx Vv EVVk-1 + Vk + Vk. 

We assume there exists an interpolation operator Hk: V > Vk which satisfies 
the following interpolation estimates for k > 1: 

(HI-i) HIIkv-vJk X+ hkHkvIIk < h llvllv Vv E V, 

(11-2) II(-Hk( X+ hf l-HkIlk < hk+ l(lz V( E Z. 

The spaces Vk and Vk are connected by the operators Ek: Vk - 1k and 
Fkj, -* Vk which satisfy the following: 

(E) IlEkv-vx$h < v hk|VIlk Vv E Vk, 

(EII) ||EkIIk-(||x V+eZ, he -(JIV < hf+llllz V E Z) 
(F) IlFkv-vIlx < h8|lv|Iv Vi EVk, 

(FE) FkEkV = V V VE Vk. 

Remark. In applications the constructions and analyses of Ek and Fk rely on the 
relation Vk - Vk. 

Let ( E Z and (k E Vk be related by 

(2.4) a((,Ekv) =ak((k,V) VV Vk. 

We assume that 

(N-1) lak(( - (k, V)l < hk |(|Z JIVIlk VV E Vk,( (E Z, 
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Remark. In applications the estimates (N-1) and (N-2) are obtained by modifying 
standard estimates for nonconforming finite element methods. 

So far the relations between the spaces Vk have not been specified. Now we con- 
nect Vk-l and Vk by the coarse-to-fine intergrid transfer operator ijk1 Vk- 

Vk. We assume that the following estimates on i_k hold: 

(I-i) j1ik v-vllx < h'|V|lk-i VVC E Vk-1, 

(I-2) JIjikH1ki1-HIlk(iIx < h?IK lz V( E Z. 

We also assume that Vk is equipped with the inner product (,-)k such that 

(P) (V, V)k (V, V)X VV E Vk. 

We can then define Ak: Vk - Vk, by 

(2.5) (AkvI,vV2)k= ak(vI,vV2) VVI,v2 E Vk 

By our assumptions on ak(., .), Ak is a linear symmetric positive definite operator. 
It follows from (I), (P) and (2.5) that 

(2.6) p(Ak) < C*h 
2 

where C* > 0 is independent of k. The number Ak in (1.2), (1.4), (1.5) and (1.7) 
is then defined by Ak = C*hk-2. 

Finally, the fine-to-coarse intergrid transfer operator Iki Vk > Vk-i iS 

defined by 

(2.7) (Ik-i Vi)v2)k-i = (Vi,kIkiV2)k Vvi E Vk and v2 E Vk-1. 

For the convergence analysis we also need the operator pki Vk > Vk-i 
defined by 

(2.8) ak-i(Pk VI,V2) = ak(VI,IkkIV2) Vvi C Vk and V2 Vk-i. 

It is easy to see from (2.5), (2.7) and (2.8) that the operators Ak, Ak-_, Ik and 
pk-i are related by 

(2.9) Ak- lpk- = k- Ak- 

3. PRELIMINARY ESTIMATES 

In this section we derive some estimates in preparation for the convergence anal- 
ysis in the next section. 

Lemma 3.1. The following estimates hold: 

(3.1) IlEkV||V V< IVIlk and IlEkv|x < ||V||X Vv E V Vk, 

(3.2) k1|IFk Ik< jj||Jjv and |1Fkfilx < 11l$Ix V EVk, 

(3.3) 
k 

IkvVk v Ck- and kIj_4v x VV C Vk-i 

Proof. Using (I), (2.3) and (E) we have 

IlEkVIV$ < IlEkV-Vllk + |IVIlk < hj IlEkV-V||X + |IVIlk < $IV|lk, 

IEkvx < EkV-Vx + h IV Vlk + |lVIIX < |lVIlX. 

The estimates (3.2)-(3.3) are similarly established by using (I), (F) and (I-1). C] 
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Lemma 3.2. The following estimates hold: 

(3.4) IIEk1k( - 1114 < h2c1111Z V eZ, 

(3.5) IEkHIkv - V IX + hIEkkIV < h l v v Vv C V. 

Proof. The estimate (3.4) follows immediately from (C-3), (EH) and interpolation 
(cf., [7], [611). The estimate (3.5) is obtained from (H-1), (E) and (3.1) as follows: 

iEkHkV - vllx + h'IlEkHkVIIA/ 

(3.6) < IIEk(Hkv - v)ll x+ IlEkV -VIIX + h' lvlVl, 

<3 llHkv-vIIx + h'llvllv < hIIvIIv. 

D 

For the convergence analysis, we need the following mesh-dependent norms on Vk: 

(3.7) v Ik (A Iev,v) Vv e Vk 

The spaces (Vk., k,s) form a Hilbert scale (cf., [44]). 
From (2.2), (2.5), (2.6), (3.7), (P) and the Cauchy-Schwarz inequality, we have 

(3.8) V IIO, k v= V V VX V VE Vk, 

(3.9) IIVIIf, = JIVIlk V VE Vk, 

(3.10) IIIVIIIs,k < ht-sIIIVItk Vv EV Vk and t < s, 

(3.11) lak(v1,v2)1 <? ||vi |lC+t, kIIV2IIIe-t,k Vv1, v2 E Vk, t E R. 

Lemma 3.3. The following estimates hold: 

(3.12) I>II_kv 1s,k < IJV Is,k- 1 VO < s < C,v E Vk_1, 

(3.13) IIIP VIIIt,_k- < IIIVIIIt, k V < t < 2f,v E Vk, 

(3.14) IjiHk-l( - Hlk.(IIe-a,k < z Vl C Z. 

Proof. The estimate (3.12) follows from (3.3), (3.8), (3.9) and interpolation (cf., 
[44]). The estimate (3.13) then follows from (2.8), (3.12) and duality. 

From (I-2), (3.8), and (3.10) we have 

(3.15) Ij~iH_klk - lk(H o,k < h' I z V( e Z, 

(3.16) IjIIk_11 - IHkl , < h Vl e Zk 

The estimate (3.14) follows from (3.15), (3.16) and interpolation. D 

Lemma 3.4. We have the following equzivalence of norms: 

(3.17) IIIv IIe-a,k I, EkvII wl1 Vv e Vk. 

Proof. From (C-3), (3.1), (3.8) and (3.9), we obtain by interpolation that 

(3.18) BIEkVITy' <4_ I IVII-a,k VV e Vk. 

Let Qk: X - Vj be the orthogonal projection with respect to the inner product 
of X. Then from (I), (FE), (11-1), (3.2), (3.5), (3.8) and (3.9) we have 

(3.19) lllFkQkvIIIO,k <lFk-QkvIIX < |lQkvIIX <5 ||V|X Vv x vX, 

(3.20) IIIFkQkvIIIf,k < llFkQk(V 
- 

Ek)IkV),llf,k + H111IskVI C,k 

kh TVEHkV|X + |lVIVl Vy/ Vvev. 
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We find by (C-3), (3.19), (3.20) and interpolation that 

(3.21) IIIFkQkvIIIf-a,k <S |lVIW VV e W. 

In particular, we have by (FE) and (3.21) that 

(3.22) I|IVIIIt-a,k = IIIFkQkEkVIIIt-a,k < IlEkVI W Vv e Vk- 

Theorem 3.5. Let - e Z and (k e Vk be related by (2.4). Then the following 
estimates hold: 

(3.23) II( - (kllk < hf jj(jjz 

(3.24) ||l-||eak< h 2k lI(IZ. 

Proof. We have the following estimate for nonconforming methods (cf., [27]): 

(3.25) II(-(kllk k< inf I(-Vllk + SUP lak (-k,V) 
v E/k, VEVk\{O} IVIlk 

The estimate (3.23) follows from (N-1), (H-2) and (3.25). 

By (3.17) and duality we have 

(3.26) H||IIk( - $kIe-a,k IIEk(Hk( - (k) w SUp Ks(Ek)k . 
OEW'\{O} 11011w 

Let q e W' be arbitrary. We define ( e Z and (k e Vk by the following equations: 

(3.27) a((,v) = (v) Vv e V, 

(3.28) ak((k,V) = (EkV) VV e Vk- 

From (R-2) we have 

(3.29) 1 z < w' 

Using (2.4), (3.27) and (3.28), we have 

(3-30) 0(Ek(Hk-(k)) = a((, EkHk-() + ak (k, -(k) + ak-k, 

The terms on the right-hand side of (3.30) can be estimated as follows. 

Using (D) and (3.4), we have 

(3.31) ja((, EkHk( - O) < IIEk1k - (z W < hk 
2c, 

gZ llllZ. 

It follows from (H-2), (N-2) and (3.23) that 

jak((k, - k) j ak((k - Hk,) W-I,k) + jak(Hk, W-Ik) 

(3.32) z1_ ( ) ~~~~~~< h2. gIIlz ||(||Z. 

Similarly, we have 

(3.33) lak( - k, ()I < h 2c g|Z KH(z|Z. 

The estimate (3.24) now follows by combining (3.26) and (3.29)-(3.33). El 

The following corollary is an immediate consequence of (H1-2), (EH), (3.1), (3.4), 

(3.17), (3.23) and (3.24). 

Corollary 3.6. Let , E Z and (k E Vk be related by (2.4). Then the following 
estimates hold: 

II( - EkkIIV < h |I(Ilz and II( - EkkIIW < hk1 1 z. 
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Remark. Let ( E Z and (k E Vk be the solutions of the continuous problem a((, v) = 
0(v) Vv E V and the discrete problem ak((k, V) = q(EkV) VV E Vk. Because of 
the presence of the operator Ek, the discrete problem is well-posed for 0 in some 
negative order Sobolev spaces even though Vk is nonconforming. Theorem 3.5 and 
Corollary 3.6 give the discretization error estimates for these new nonconforming 
finite element methods. 

Lemma 3.7. Let ( E Z, and let (k E Vk and (k-1 E Vk-l be defined by 

(3.34) ak((k, v) = a((, Ekv) VV E Vk, 

(3.35) ak-I ((k-1, V) = a((, Ek_lV) VV E Vk-1. 

Then the following estimate holds: 

(3.36) 111(k-1 -_ pI(kll ?-a,k-1 < h2o 111z. 

Proof. Again, by (3.17) and duality we have 

(3.37) 111k pk-l I(kllk -,k-1 j|Ek-1((k-1 -Pk -k) | v W 

- sup |l(Ek-l((k-1 -PkI(k)) 
q5W'\{O} (7$lw' 

Let ( E Z, 'k E Vk and (k-l E Vk-l be defined by 

(3.38) a(E, v) = q(v) Vv E VI 

(3.39) ak (k,v) = c(EkV) VV E Vk, 

(3.40) ak-l((k-I,V) = (Ek-lV) Vv E Vk-l- 

Again, the estimate (3.29) holds. Using (D), (2.8), (3.34), (3.35) and (3.40), we 
find that 

(3.41) (Ek-l((k- -Pk (k)) 

l ak-l((k-I-Pkk(k, k-l)l 

ak-I ((k-1, Ik-1) - ak((k, Ikk-1k-1) 

l a((, Ek-lk-1 - EkIkk-fk-1) I 

< jj(jjzjEk-z k-1 - EkIkk- 1 k-llW 

On the other hand, by (M), (3.4), (3.12), (3.14), (3.17), (3.38)-(3.40) and The- 
orem 3.5, we have 

JEk-lfk-l - EkIkk- 1 k-l|W 

< J-Ek-l((k-l -Hk-l) Jw + JjEk-lHk-1 - (lW 

(3.42) + ||- W ? |Ek(H.- IklHk1l) W 

+ IlEkIk-(Hk-11-)k-l)11W < h2 gl z. 

The lemma now follows from (3.29) and (3.37)-(3.42). El 

Finally we derive within our abstract framework the discretization error esti- 
mates for the standard (nonconforming) discretization. 

Theorem 3.8. Let F E XI, u E Z, and Uk E Vk be such that 

(3.43) a(u, v) = F(v) V v E V, 

(3.44) ak(Uk,V) =F(v) Vv v Vk. 
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Then the following estimates hold: 

(3.45) u-Ukk< hkuz + hk'lFIlxI, 

(3.46) lllHkU -Ukjjj?-,k< h"lullz + h'+ ||F|lxl . 

Proof. Let U$k E Vk satisfy 

(3.47) ak(U$k, V)= F(Ekv) VV E Vk- 

Theorem 3.5 implies that 

(3.48) u-Uklkhk ullz, 

(3.49) lllHkU - U$ 1t-a,k < U uIIZ. 

FRom duality we have 

/ ~~~~ak(Uk - Uk,v)I (3.50) IlUk-U'kllk SU p kP 

VGVk\{0} JIVIlk 

Using (E), (3.44) and (3.47), we obtain 

(3.51) lak(Uk-Uk, V) = IF(V-EkV) < M JIF lx' IIVIlk- 

Combining (3.50) and (3.51), we have 

(3.52) IlUk-Uk k l< h'|Flx'. 

The estimate (3.45) follows from (3.48) and (3.52). 
By (3.17) and duality, we have 

(3.53) |||Uk -Uk I-c, k Ek(Uk - Uk)||W SUp ( - )) I k 
kW'\{O} 11011w 

Let ( E Z and (k E Vk satisfy (3.27), (3.28) and (3.29). It follows that 

(3.54) q$(Ek (Uk - Uk)) = ak (Qk- Hk, Uk - Uk) + ak(Tk , Uk -Uk) - 

From (H-2) and (3.52) we have 

(3.55) lakQ(k-Hk(,U$-Uk) < hk ||FIIx'|II|Iz. 

On the other hand, from (IT-2), (EH), (3.44) and (3.47) we obtain 

(3.56) lak(Hk(, U$k - Uk)I = IF(EkHkf - Hk()I 

< ||F|lxI (IjEkHk - |x + jj4-Hk(||X) 

< h'j+'|F|Ix'II IIz. 

Combining (3.29) and (3.53)-(3.56), we have 

(3.57) IIUk -Uk jjj-a,k < hk ||Fllx'. 

The estimate (3.46) follows from (3.49) and (3.57). D] 

Remark. The estimate (3.45) is the Assumption A4 in [65]. 

The following corollary is an immediate consequence of (H-2), (EH), (3.1), (3.4), 
(3.17), (3.45) and (3.46). 
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Corollary 3.9. Let F, u and Uk be as in Theorem 3.8. Then the following esti- 
mates hold: 

||U-EkUk lV < hkjjU|z| + h x |F||X', 

I|U-EkUkIIW < h21 U|IZ + h IIFIlx'. 

4. CONVERGENCE ANALYSIS 

In this section we establish the convergence results for the multigrid algorithms. 
First we investigate the convergence of the W-cycle algorithm. Following the 
methodology in [6], we start with the convergence analysis of the two-grid algo- 
rithm, where we assume that the residual equation is solved exactly on the coarser 
grid, i.e., the q2 in the correction step is replaced by 

(4.1) q = A 

Let z be the exact solution of (1.1), and let ei = z-Zi for i =, ... ., m, where 
m = m1 + m2 + 1. In order to relate the final error em to the initial error eo, we 

introduce the operator Rk defined by 

(4.2) Rk = I- Ak. Ak 

FRom the pre-smoothing step (1.2) and the post-smoothing step (1.4), we have 

(4.3) ej =Rkej1_ , j = 1,2,... ml, ml +2,... m. 

Since Ak dominates the spectral radius of Ak, it is easy to see that 

(4.4) IIRkVS1k < IIIVIII8,k V E Vk, S E R. 

FRom (2.9), the correction step of the two-grid algorithm, and (4.1), we have 

(4.5) em?+1 = em1 -I-1q =em1 -_I IAkk I -1Akem 
- 

(I - IP1k )emi 

It follows from (4.3) and (4.5) that 

(4.6) em =Rm 2(II- Ik iPk )Rmleo. 

Lemma 4.1. We have the following smoothing property: 

(4.7) {lIRkVIIIs,k < h `3[max(1, n)] /( 2) |llV IIs-f,k 
for any s E R, > 0, n 0, 1, 2,... 

Proof. For n > 1, the proof of (4.7) is standard (cf., [6]). For n = 0, the estimate 
follows from (3.10). D 

The following estimate on the operator I - Ikk_ 1Pk-1 is the crux of the conver- 
gence analysis. 

Lemma 4.2. We have the following approximation property: 

(4.8) _I(I-Ij_1Pk )vh?-a,k < hI ||VIJ?+a,k VV E Vk. 

Proof. From (3.17) and duality we have 

~~~(I _| (I-I-kk 
1 )V01W a,SP|X(Ek (I -Ikk_ I pkk-IH1 )V (4.9) (Ip- I~P1)VIII?-c,k SUP (Ek(I- 1k v III k 

OE~q5W'{O} 111WI 
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Let q E W' be arbitrary. We define ( E Z, (k E Vk and (k-l E Vk-l by 

(4.10) a((, v) = (V) VV E VI 

(4.11) ak ((k, v) = O(EkV) Vv EE Vk, 

(4.12) ak-l((k-l,V) = O(Ek-1V) VV E Vk-I- 

FRom (R-2), we have 

(4.13) IIz <1 jq WI. 

Using (2.8) and (4.11), we find 

(4.14) (Ek(I - kIk_P/ )V) 

ak((k, (I - Ij1 Pk/)v) 

= ak(k,V) - ak-1(Pkk(k,PkkV) 

= ak ((k -k-1 (k-1, V) + ak-1((k1 -IPj k, PPkV)k 

We can estimate the two terms on the last line of (4.14) by using (M), (3.11)- 
(3.14), (4.10)-(4.12), Theorem 3.5 and Lemma 3.7 as follows: 

(4.15) lak ((k -Ikk_l (k-I, V)l| 

< 1 -11 k-kl k-1lIII-o,k I|IVIII+a,k 

< (|k - Hk(l?-,k + IllIk-lHk-1l - Hk(ll?-c,k 

+ ||Ikk1(k-1l-(k-1) IIIo-o,k) I|IVIII+a,k 

< hk 2o1(1Z I|IVIIIt+,k, 

(4. 16) l ak-l((k1- Pkk (k, Pk v)l 

< 111(k-1 - Pkki< kIk ?-o,k-1 IIIPkk1v ??+a,k-1 

< h2k11(11Z V 

The estimate (4.8) now follows from (4.9) and (4.13)-(4.16). D] 

Theorem 4.3 (Convergence of the two-grid algorithm). For ml + m2 sufficiently 
large, the two-grid algorithm is a contraction in the 11 Ilk norm, with contraction 
number uniformly bounded away from 1. For ml sufficiently large, the two-grid 
algorithm is also a contraction in the 111- llle-a,k norm, and the contraction number 
is uniformly bounded away from 1. 

Proof. Since the final error em is related to the initial error eo by (4.6), we have by 
(3.9), (4.7) and (4.8) that 

(4.17) ||emIlk = ||R M2(I Ik_Pl)RmleOIIe,k 

< h`[max(1,m2)] a/(2e) III(I - Ik-IPk )R7 1eoO -ca,k 
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Similarly, we have by (4.4), (4.7) and (4.8) that 

(4.18) em cE,k = IIIRm'2(I - Ik_lPk )Rm ?eO|1E-a,k 

< |(I - Ik_lPk )R Mle0o a-,k 

< h' III Rm1e0I II+o,k 

< [max(l, ml)]-0"III|emjj|k-o,k 

The theorem follows from (4.17) and (4.18). C] 

Remark. The estimate in (4.18) seems to indicate that a one-sided algorithm with 
only pre-smoothing may be more efficient for convergence in the III j-j,k norm. 

The next theorem follows from (3.12), Theorem 4.3 and a standard perturbation 
argument (cf., [6]). 

Theorem 4.4 (Convergence of the W-cycle multigrid algorithm). For ml + m2 

sufficiently large, the W-cycle multigrid algorithm is a contraction in the 11 * |k 
norm, with contraction number uniformly bounded away from 1. For ml suffi- 
ciently large, the W-cycle algorithm is also a contraction in the jII . jj-j,k norm, 
and the contraction number is uniformly bounded away from 1. 

Let F E X', u E Z and Uk E Vk be such that (3.43) and (3.44) hold. We can 
find an approximate solution for (3.44) by the following full multigrid method. 

The full multigrid W-cycle algorithm. For k = 1, the approximate solution 
iii E VI is obtained by a direct method. 

For k > 1, the approximate solution fuk E Vk is obtained recursively from 

=Uk,o IklUkl 

(4.19) Uk,j = WMG(k,'Uk,j-1,fk), 1 < j < r, 
Uk = Uk,r, 

where r is a positive integer independent of k and fk E Vk is defined by 

(fk,v)k = F(v) V V E Vk. 

Theorem 4.5. Let F E X', u E Z and Uk E Vk be such that (3.43) and (3.44) hold. 
Let ml + m2 (resp., ml) be sufficiently large so that the W-cycle algorithms are 
contractions in the ||-||k (resp., III ||jj-a,k) norms with contraction numbers uniformly 
bounded away from 1. Then, for r sufficiently large, the following estimates hold for 
the approximate solutions Uk (k = 1, 2,... ) obtained by the full multigrid algorithm: 

(4.20) IIUk - UkI k < ho ||ullz + h4IIFIlx', 
(4.21) II'Uk -aUkIll-a,k < h 2||u||z + hk+ajjFjjx'. 
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Proof. By (M), (11-2), (3.3), (3.9), (3.12), (3.14), (3.16), (3.45) and Theorem 3.8 
we have 

(4.22) lUk - IklUk-llk ? Uk - flkUllk + HIlkU - IkklHklUllk 

+ IIIkk l(HTk-1U-Uk-l) lk 

r< h'o llullz + h'J IFIlx, 

(4.23) IllUk - IkkUk-1 l-lla,k < IIIUk - HkUlil-a,k + IlHkU - IkkHk-1U Ie-0,k 

+ IIkk-j(Hk-1U - Uk-1) 1?-ca,k 

<5 h2oII|uIIz + h'^+ IIFIIxI 

Let k > 1. By (4.19) and the assumption on the W-cycle algorithm, there exists 
a positive 6 such that 6 < 1 and 

(4.24) IlUk-ukIlk < FI Uk-Ik-1Ukk-11k for k 1,2, .... 

(4.25) IllUk - Uk ll-a,k < 8r IlUk - IklUk-Illl -a,k for k 1, 2... 

Combining (3.3), (4.22) and (4.24), we obtain 

(4.26) UlUk-Ukllk < U [IjUk -I U*l Ilk + Ii(k_I1(-UIk-1)tk1 

<6_ c [(ho'llUllz + h' JFlx,) + IlUk-I -Uk-lk] 

where C' is independent of k. 

Similarly, using (3.12), (4.23) and (4.25), we obtain 

(4.27) I||Uk - UkIIk-o,k < FC [(hr ||U||Z + h+ ||Fllx') + I|1Ukik-11Uk -a,k] 

where C" is independent of k. 

Since 0 < a < f, it follows from (M) and iterations of (4.26) and (4.27) that 

(4.28) IlUk - [klk c? 
3 

(h%|lul |z + h IF || xi) 

(4.29) Uk k ?-c:,k ? [ (C/+8 l (hk U + h? ||Flx,). 

The estimates (4.20) and (4.21) follow from (4.28) and (4.29) for r sufficiently 

large. D] 

The following corollary is an immediate consequence of (3.1), (3.17), Theo- 

rem 3.8, Corollary 3.9 and Theorem 4.5. 

Corollary 4.6. The following estimates hold under the assumptions of Theorem 
4.5: 

(4.30) ||u-U -ak +k |u-EkUkIu- < hk ||ullz + hk||Flx', 

(4.31) HIlITkU- ikll?-a,k + Iu -EkUkllW < h2allUlIZ + ?h+II FIIx/ 

Remark. For fourth order problems, pointwise convergence of fUk follows from (4.31) 

and the Sobolev inequality (cf., the remark after Example 6.1). 
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Next we consider the symmetric variable V-cycle algorithm as a preconditioner. 
Let Bk: Vk Vk be defined by 

Bkg = VMG(k, 0, g). 

It can be shown by mathematical induction that Bk is a linear symmetric positive 
definite operator with respect to (-, -)k (cf., Theorem 4.5 in [10]). Therefore BkAk 

is symmetric positive definite with respect to ak(, -). Our goal is to estimate the 
condition number of BkAk with respect to the energy norm I Ilk induced by ak(., )- 

The following lemma furnishes the crucial "regularity and approximation" esti- 
mate in the Bramble-Pasciak-Xu theory for the symmetric variable V-cycle multi- 
grid preconditioner. 

Lemma 4.7. The following estimate holds: 

(4.32) jak((I - kI/Pk 1)lv v) < ((AkVj\kV)k) (ak(v, V))1-('/e) 

for all v E Vk, where Ak (= p(Ak)) is the largest eigenvalue of Ak. 

Proof. Let v E Vk be arbitrary. Using (3.7), (3.11) and (4.8), we have 

(4-33) jak((I-Ik lPkI)V, v)| < |||(I-Ik PkI )PIIIv-a,k I|IVIII#+a, 

/%j hk |V +a,k = hk Ak(/)V,V)k. 

H6lder's inequality implies that 

(4.34) (Ak ( / )v, V)k < (AkV, AkV)0'" (AkV, v)k 
I / ). 

The estimate (4.32) follows from (4.33), (4.34) and (2.6). C] 

We can now simply apply the Bramble-Pasciak-Xu theory ([10], [12], [13]) to obtain 
the following theorem. 

Theorem 4.8. The condition number of BkAk with respect to the energy norm 

II * IIk is bounded by a positive constant which is independent of the mesh parameter 
k. 

5. APPLICATIONS TO A MODEL SECOND ORDER PROBLEM 

In this section we apply our theory to the Poisson equation with homogeneous 
Dirichlet boundary condition. Let Q be a polygonal domain in R2 and f E L2(Q). 
Consider the following boundary value problem: 

(5.1) -\u = f inQ and u = 0 on0Q. 

Let V = Ho (Q), and let a(., ) on V x V be defined by a(vl, v2) f I Vv VV2 dx. 
Conditions (B) and (C) follow from the Cauchy-Schwarz inequality and the Poincare 
inequality (cf., [48]), respectively. 

The weak formulation of (5.1) is to find u E V such that 

(5.2) a(u,v) = /fvdx Vv E V. 
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By the elliptic regularity theory for non-smooth domains (cf., [36], [39], [40], 
[41]), there exists ae E (1, 1] such that for f E H-1+'(Q), the solution u of (5.2) 
belongs to H1l+(Q) and 

(5.3) ||U |H1+-(Q) 11f11H-1+-(Q) 

Let Z = H1+ (Q) n Ho(Q) and W = Ho-(Q) (= H1`(Q) since 1 - a < 1/2). 
Clearly, (R-1) holds and (R-2) follows from (5.3). 

Let X = L2(Q). From interpolation of Sobolev spaces (cf., [61] and [57]) we have 

(5.4) Z = [Ho'(Q) IH 2(Q) n Ho'(Q) Ice 

and W = [L2(Q), Ho(Q)]I_. In particular, the condition (C-3) holds. 
The Laplacian /\ is a bounded linear operator from H2 (Q) to L2(Q), and from 

H1(Q) to H-1(Q). Therefore by interpolation (cf., [61]) we have 

(5.5) 11/\(11H-1+-(Q) <5. 11(1IH1+-(Q) V( (E Hl+a(Q)- 
Let ( E Z and v E V. There exists a sequence q$, E Co (Q) (the space of 

C' functions with compact supports in Q) which converges to v E V. Since 
Ho(Q) -* Ho-a(Q), the sequence q$, also converges to v E Ho-(Q). Therefore, 
we have 

(5.6) a((,v)= lim j V(Q- Vq dx= lim (-A(i On) = (-A(,v), 

where (,.) denotes the canonical duality bilinear form between H-1+ (Q) and 
Ho-(Q). The duality estimate (D) now follows from (5.5) and (5.6). 

We now consider finite element multigrid methods for (5.2). 

Example 5.1. Let {Tk} be a sequence of quasi-uniform triangulations (cf., [30], 
[27]) of Q. For simplicity we may assume that Tk+I is obtained by connecting the 
midpoints of the edges of the triangles in Tk. Therefore, (M) holds for C, = C2 

1/2. 
Let Vk* = {V E L2(Q): VIT is linear for all T E Tk, v is continuous at the 

midpoints of interelement boundaries} be the PT nonconforming finite element space 
associated with Tk (cf., [35]), and let Vk* = IV E H1(Q): VIT is quadratic for all 
T E Tk} be the P2 conforming finite element space associated with Tk. The space 
Vk (resp., 17k) is the subspace of Vk* (resp., 1i*) whose members vanish at the 
boundary nodes. Note that Vk < Vk and the conditions (C-1) and (C-2) clearly 
hold. The finite element space Vk* is equipped with the inner product (, *) defined 
by (v1, v2)k = h2 Em vl(m)v2(m), where the summation is taken over all the 
midpoints in the triangulation Tk. The equivalence of (v, V)k and (v, V)L2(Q) is 
standard. Hence (P) holds. 

Let ak(., ) be defined by ak(VI,V2) = ZTGTkfT VvI Vv2dx. Then (I) is a 
standard inverse estimate (cf., [30], [27]). The discrete problem for (5.2) is to find 
Uk E Vk such that 

(5.7) ak(Uk,V) = fvdx Vv E Vk. 

The interpolation operator Hk: V - Vk is defined by 

(5.8) (H kv) (m) A vds, 
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where m is the midpoint of the edge e. Note that 

(5.9) (flko)T = (IT if (IT is linear. 

The following estimate can be found in [35]: 

(5.10) 11I -k(g L2(T)+ hkI(-Hk(IH1(T) < hk IH(T) 13 = 1, 2, 

for all T E Tk and ( E H3(Q) n Ho(Q). The estimate (11-1) follows from (5.10) 
with 3 = 1, and the estimate (H-2) follows from (11-1), (5.4), (5.10) with = 2 and 
interpolation. 

The operators Ek: Vk V,k and Fk : Vk - Vk are defined by 

{(Ekv)(m) v(m) for all internal midpoints m E Tk, 

(EkV) (p) = average of vi(p) for all internal vertices p E Tk, 

where vi = v IT and Ti E Tk contains p as a vertex, and 

(5.12) (Fki)(m) = v(m) for all midpoints m E Tk. 

Note that Fk is well-defined because Vk -< Vk. 
The relation (FE) is trivial, and the estimates (E) and (F) can be found in 

[24]. For the proof of (EU), it is convenient (because we can ignore the boundary 
conditions) to introduce the operator Ek : Vk* Vk* which is defined by the same 
formula in (5.11) for all midpoints and vertices of Tk. Note that for v E Vk, we 
have E*v = Ekv except at the vertices on &Q. 

Let T E Tk, and let ST be the interior of the union of the closures of all the 
triangles in Tk neighboring T. We have the following estimate for Ek (cf., [24]). 

(5.13) E*v-v L2(T)hT IVI(K) VvV - 
KEST 

It follows from (5.13) and a standard inverse estimate that 

(5.14) ||E*vIIL2(T) < ||V||L2(ST) VV E Vk 

The definition of Ek also implies that 

(5.15) (E*rq) T = if r ST is linear. 

Let T E Tk. Let X be an arbitrary linear function on ST and X E H2(Q) be an 
extension of 0. For any c z H2(Q) n Ho'(Q), it follows from (5.9), (5.10), (5.14) 
and (5.15) that 

(5.16) ||EHk Ik - | |L2(T) < E Hk((-q) - IL2(T) + 1 - I IL2(T) < I I L2 (ST1 ) 

Since X is an arbitrary linear function on ST, it follows from (5.16) and the Bramble- 
Hilbert lemma (cf., [11]) that 

(5.17) ||EkI - ( L2(T) < TIH2(ST) 

Summing (5.17) over all the triangles T E Tk, we have 

(5.18) |E| l - 
. kl < H2(Q) V( E H2(Q) n Ho(Q). 
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Since EkHk( and ElHk( differ only at the vertices along OQ, we have 

(5.19) IlEkIlk( - 
EIllk2(Q) < hk E [(Il) T(P)] 

PG&QT E Tk 

T D p 

< hS E E [(IlkC)IT(p)-(P)] 
PGaQT E Tk 

T D p 

< h 
4 

id(X 

by (5.10). It follows from (5.18) and (5.19) that 

(5.20) E|llk( (-|L2(Q) < h2 (Q) V( E H2(Q) n Ho(Q) 
By (5.10), (5.20) and standard inverse estimates, we have 

(5.21) IlEklk - (IIH1(Q) < h IlEklk - kIL2(Q) + IIkI - k 

< hk l H2(Q) V( E H2(Q) n Ho'(Q). 

On the other hand, using (E), (I) and (Il-1), we have 

(5.22) IEkHk( - (|L2(Q) + hklEkHk - (IIH1(Q) 

< IlEkHk-HIk(IIL2(Q) + HITk(-(IIL2(Q) 

+ hk( |IEkHk( -Hk(Il k + |Hk - (Il k) 

< hk II(||H1(Q) V( z Ho(Q)- 

The estimate (EU) now follows from (5.4), (5.20), (5.21), (5.22) and interpolation. 
Next we verify the assumptions (N-1) and (N-2). Let ( E H2(Q) n Ho (Q), and 

let (k E Vk be related to ( through (2.4). Let v E Vk + V, then Green's formula 
implies that 

(5.23) ak(( v) 5 J( )v dx [v]ds, 

where [v] denotes the jump of v (in the direction of n) across the edge e, and the 
second summation is taken over all the edges of Tk. 

Since EkV E Ho(Q), it follows from (2.4) and (5.23) that 

(5.24) ak((k, v) = - :j (&)Ekvdx Vv E Vk. 
TETk 

By subtracting (5.24) from (5.23), we obtain 

(5.25) ak(-k, V) =- i (A)(v -Ek v) dx[v]ds V Vk. 

Using the Cauchy-Schwarz inequality and (E), we have 

(5.26) T (AOkJ (v-Ekv) dx < hk I(IIH2(Q)| 
V Ilk V Ez Vk- 
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Since v is continuous at the midpoints, a standard argument (cf., [35]) shows that 

(5.27) Ja [v] ds <hk II(IIH2(Q) |IVlk VV E Vk. 

Combining (5.25)-(5.27), we have 

(5.28) Jak((-(k,V) Ihk II(IIH2(Q) |IVIlk VV E Vk. 

Assume now that ( E Ho(Q). By (2.4) and (3.1) we have 

(5.29) ak ((k i(k) = a((, Ek(k) _< II(||H1(Q) IIEk(kIIH1(Q) <5. II(||H1(Q)lIIkIIk- 

It follows from (5.29) that 

(5.30) 11( k ||k II(||H1(Q)) 

which then implies 

(5.31) Jak((-(k,V)l ?< I(-(kllk |IVIlk V II(||H1(Q) |IVIlk VV E Vk. 

The estimate (N-1) follows from (5.4), (5.28), (5.31) and interpolation. 
From (5.25) we obtain 

(5.32) ak (k, Hk() = - j (0(Hkf - EkHk() dx + [Hki] ds 

for (, E H2(Q) n Ho (Q). 
It follows from the Cauchy-Schwarz inequality, (5.10) and (5.20) that 

(5.33) S j( ) (HlkE - EklHk() dx < hk ||H2(Q) I IH2(Q) 
TETk 

Since 11kf is continuous at the midpoints, we have by a standard argument (cf., 
[35]) 

SjD34)[nk~]ds ]d<h211 
(5 3) | ,)[IIk, dS -,n[Ilkf-( d<k IIIH2(Q) RII IH2(Qi) 

Combining (5.32)-(5.34), we obtain 

(5.35) Jak((- k,Hk() < hk | H2(Q) 
- E H(Q) I Ho (Q). 

On the other hand, for (E E Ho (Q), we get the following trivial estimate by 
using (5.10) and (5.30): 

(5.36) Jak(( -(k,llk()I <_ I 1- (kIlkllk(Ik1k <5. II(IIH1(Q) RIIIH1(Q)- 

The estimate (N-2) follows from (5.4), (5.35), (5.36) and (bilinear) interpolation 
(cf., [7]). 

Finally, we define the intergrid transfer operator Ikj_1 Let m be a midpoint of 
an edge of a triangle in Tk. If m E &Q, then (Ikkjlv)(m) = 0. If m lies in the 
interior of a triangle in Tk-1, then (Ikkjlv)(m) = v(m). Otherwise if m lies on 
the common edge of two adjacent triangles T1 and T2 in fk-1, then (Ikkjlv)(m) - 

2 [vlTl (m) + vIT2 (m)]. The proof of the estimate (I-1) can be found in [14] and [18]. 
Let ( E H2(Q) n Ho (Q). A slight modification of the arguments in [14] and [18] 

(where the nodal interpolation operator was used) gives 

(5.37) IlIkk_lHkI1l - Hk(||L2(Q) < h2 



44 SUSANNE C. BRENNER 

For ( E Ho(Q), using (M), (Il-1) and (I-1) we have the estimate 

|II1k_ l 1 - flk(||L2(Q) 

(5.38) IIkk_lIlk_1I-lk-l(|1L2(Q) 
+ IIk-1-(IIL2(Q) + II( L2(Q) 

< hk 11 11H1 (Q)- 

The estimate (I-2) now follows from (5.4), (5.37), (5.38) and interpolation. 
We have verified all of the assumptions in Section 2 for this example. Therefore 

the results in Section 4 are applicable to the multigrid algorithms for (5.7). 

In the next example, we omit the technical details since they can be carried out 
along the same lines as in Example 5.1. 

Example 5.2. In this example, we assume that the sides of the polygonal domain 
Q are parallel to the coordinate axes. Let {Tk} be a sequence of quasi-uniform 
"triangulations" of Q consisting of rectangles. For simplicity we may assume that 
Tk+? is obtained by connecting midpoints of the opposite sides of the rectangles in 
Tk - 

Let Vk {v V R E (1_X1)X2)X2 _x2) VIR E Tk,v is continuous at the midpoints 
of the interelement boundaries and vanishes at the midpoints on &Q} be the non- 
conforming "rotated" bilinear element (cf., [52]), and VA = {v E Ho (Q) : vIR iS 
biquadratic for all R E Tk} be the conforming Q2 finite element space. Note that 
Vk -< 17k. The inner product for Vk is defined by (vI, v2)k = h2 Em vI(m)v2(m), 
where the summation is taken over all internal midpoints m of the triangulation 
Tk - 

Let ak(,*) be defined by ak(Vl, V2) ZERGTk fR VV1 Vv2 dx. The discrete 
problem is again given by (5.7). 

The interpolation operator Hk: V - Vk is defined by the same formula in 
(5.8), and the estimate (5.10) remains valid (cf., [52]). 

The operator Ek: Vk ) Vik is defined by (Ekv)(m) = v(m) for all internal 
midpoints m E Tk, (EkV)(C) = v(c) for all centroids c E Tk, and (EkV)(P) = 
average of Vi (p) for all internal vertices p E Tk, where vi = v R and Ri E Sk 

contains p as a vertex. 
The operator Fk Vk -* Vk is defined by the same formula in (5.12), and the 

intergrid transfer operator is defined by averaging as in Example 5.1. 
All the assumptions in Section 2 can be verified for this example by the same 

arguments used in Example 5.1. Hence the results in Section 4 are applicable to 
the multigrid methods for (5.7) using the "rotated" Qi finite elements. 

Remark. The nonconforming 'P and "rotated" Qi finite elements are equivalent to 
the lowest order triangular and rectangular Raviart-Thomas mixed finite elements 
(cf., [53], [4], [2]). There are multigrid methods for (5.1) using the lowest order 
Raviart-Thomas elements (cf., [19], [2]) which are based on the multigrid methods 
for the nonconforming elements. The results in Section 4 are therefore applicable 
to these multigrid algorithms for the lowest order Raviart-Thomas finite elements. 

6. APPLICATIONS TO A MODEL FOURTH ORDER PROBLEM 

In this section we apply our theory to the biharmonic equation with homogeneous 
Dirichlet boundary conditions. Let Q be a bounded polygonal domain in 1R2 and 



CONVERGENCE OF NONCONFORMING MULTIGRID METHODS 45 

f E L2(Q). Consider the following boundary value problem. 

(6.1) \2U = f in Q and u = ,) = 0 on &Q. 
On 

Let V = H02(Q), and let a(.,.) on V be defined by either 

a(v,w) = j vXt3 wXX3 dx 
i,3=1,2 

or 

a(v,w) j [AvAw + (1 - a)(2vY1 X2WX1X2 
- 

VXlXlWX22 VX2X2WX1X1 )] dx, 

where a- is the Poisson ratio and 0 < a- < 1 For either choice of the variational 2 
form a(., .), conditions (B) and (C) follow from the Cauchy-Schwarz inequality and 
the generalized Poincare inequality (cf., [48]), respectively. 

The weak formulation of (6.1) is to find u E V such that 

(6.2) a(u,v) = Xfvdx Vv E V. 

By the elliptic regularity theory for non-smooth domains (cf., [36], [39], [40], 
[41]), there exists ae E (1, 1] such that for f E H-2+, (Q), the solution u of (6.2) 
belongs to H2+a(Q) and 

(6.3) 1|U||1H2+- (Q) <I||f II H-2+. (Q) - 

Let Z = H2+o(Q) n H02(Q) and W H02-0'(Q). Clearly, (R-1) holds. Since 
W' = H-2+o,(Q), the estimate (R-2) follows from (6.3). 

Let X = L2(Q). By the interpolation of Sobolev spaces (cf., [61], [57]), we have 

(6.4) Z = [HO2(Q), H13(Q) n Ho2(Q)]aI 

and W = [L2 (Q), H2(Q)]1-a/2. In particular, the condition (C-3) holds. 
The biharmonic operator A2 is a bounded linear operator from H3 (Q) to H-1 (Q), 

and from H2(Q) to H-2(Q). Therefore by interpolation we have 

(6.5) IIA2(1IH-2+-(Q) < ||0|H2+.(Q) V( E H + (Q). 

As in the case of the Poisson equation (cf., Section 5), the duality estimate (D) 
follows from (6.5) and a density argument. 

We now consider finite element multigrid methods for (6.2). In the following 
examples, {Tk} ??= is a sequence of quasi-uniform triangulations of Q. For simplicity 
we assume that Tk+? is obtained by connecting the midpoints of the edges of the 
triangles in Tk. Let T E Tk. We denote by ST the interior of the union of the 
closures of the triangles in Tk neighboring T. 

Example 6.1. Let Vk* = {V E L2 (Q) VIT is quadratic, v is continuous at the 
vertices and &v/&n is continuous at the midpoints of interelement boundaries} 
be the Morley finite element space associated with Tk (cf., [47]), and let Vk* be 
the Hsieh-Clough-Tocher macro element space associated with Tk (cf., [34]). A 
function v E V1k* is Cl on Q, and its restriction to each T E Tk is piecewise cubic 
on the three triangles formed by the centroid and the vertices of T. The space 
Vk (resp., Vk) is the subspace of Vk* (resp., Vk*) whose members have zero nodal 
values along &9Q. Note that Vk < Vk. The inner product for Vk* is defined by 
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(V, W)k= h2> E, v(p)w(p) + h4 EZm v (in) lw (n), where the summations are taken 
over all vertices p and midpoints m in Tk. 

The symmetric positive definite bilinear form ak(., .) is defined by either 

ak(v,w) = E E JVx'x3wx x3 dx 
TeTk i,j=1,2 

or 

ak(V, w) j[AvAw + (1 -) 

x (2vxlX2WX1X2 - VXlXlWX2X2 - 
VX2X2WXlXl) dx. 

The discrete problem for (6.2) is to find Uk E Vk such that 

(6.6) ak(Uk,V) = Xjfvdx Vv E Vk. 

Clearly, (M), (C-1), (C-2), (I) and (P) are satisfied. 
The interpolation operator Hk: V - Vk is defined by 

(6.7) (lVkv)(p) = v(p) and 0(kV) (m) = I IJ ds, 

where p and m range over the internal vertices and midpoints of Tk, and m is the 
midpoint of the edge e. Note that 

(6.8) (Ik) T = (IT if (IT is quadratic. 

The following interpolation estimates are established by the standard techniques 
for almost affine family of finite elements (cf., [30]). 

- 11 L2 (T) + hk 1 - k IH1(T) 

(6)h( 1k(1H2(T) < IHO(T) 13 = 2,3, 

for all T E Tk and ( E H'3(Q) n H02(Q). The estimate (H-1) follows from (6.9) 
with ,3 = 2, and the estimate (11-2) follows from (11-1), (6.4), (6.9) with ,3 = 3 and 
interpolation. From (6.9) with ,3 = 3 we also have 

(6.10) ( 5 - 11 ) II/I IjH3 (Q) E H3(Q) n Ho(Q) 
TC' Tk 

Let p and m be the internal vertices and midpoints of Tk. The operators Ek 

Vk 17k and Fk: 1k - Vk are defined by 

(EkV)(p) = v(p), 

(6.11) O(k )(n )= ,9 (m), 

[03(Ek V)I (p)= average of (&0vj)(p), 131 = 1, 

where vi = v T, and Ti contains p as a vertex, and 

(6.12) (Fki3)(p) =i(p) and (FO (im)= n (m) On O 

Note that Fk is well-defined because Vk < 1k. Clearly the relation (FE) holds, and 
(F) follows from a simple element by element calculation. 
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Let Ek: V-* V* be defined by the same formulas in (6.11) for all vertices 
and midpoints of Tk. A straightforward computation (cf., the similar computation 
in [24] where the Argyris element was used instead of the Hsieh-Clough-Tocher 
element) yields 

(6.13) E*v-v L2(T) < hk IVIH2(K) VvV - 
KEST 

Moreover, 

(6.14) (E*7) T = if r|ST is quadratic. 

It follows that 

(6.15) IE*v - V11 2 <h4 2 
V H(T) V (6.15) ~ ~ ~~ ||k IL (Q) <l_ hk E IV IH2) VV E Vk- 

TC'Tk 

Let v e1 Vk. Since Ekv and E*v differ only by their first order derivatives at the 
vertices along &Q, we have 

(6.16) IIEkV-E4v i2(Q) < hkZ V LOO(T) E<v24 <v hVv h Vk, 

where the summation El in (6.16) is taken over the triangles in Tk neighboring &Q. 
The estimate (E) follows from (6.15) and (6.16). A standard inverse estimate 

then yields 

(6.17) ( Ekv-vH1(T)) < hk V k VveVk. 
TC'Tk 

Using (6.8), (6.9), (6.13), (6.14) and the Bramble-Hilbert lemma as in Example 
5.1, we obtain 

(6.18) Ik( - (IIL2(Q) < h 3(Q) V( E H3(Q) n H02(Q) 
Since EkHk( and E*Hk( differ only by their first order derivatives at the vertices 
along OQ, we have, by (6.9), 

IlEkHk- EHkL2(Q) 12 
< 5 V(HI)kT (P) 

PeaQ TETk 
T3p 

2 

(6.19) < h1 5 5 V(IHk) T -V| (p) 
peaQ TCTk 

T3p 

< h 6 l I d3 Q V( (E H 3(Q) n H02 (Q). 

It follows from (6.18) and (6.19) that 

(6.20) IEkHk( - ( L2(Q) < h 3(Q) V e H3(Q) n Ho(Q). 

By (6.9), (6.20) and standard inverse estimates, we have 

(6.21) I1EkHk( - 1 H2$(Q) < hk2 IlEkHk( - Hk (IL2(Q) + 11Ik - 11IH2 (Q) 

< hk l(H3(Q) V e H3(Q) n H02(Q). 

By (I), (E) and (11-1) we also have the trivial estimate 

(6.22) IlEkHk( - (IL2(Q) + h 2IEkHk - (H2(Q) < h2II(IIH2(Q) V( E H0(Q). 

The estimate (ER) follows from (6.4), (6.20), (6.21), (6.22) and interpolation. 
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Next we turn to the assumptions (N-1) and (N-2). Let E e H3(Q) n Ho (Q) and 
(k E Vk be related to ( through (2.4). Let v E Vk + V; then by the Green's formula 
(cf., [59]) we have 

(6-23) ak ((v) =- E V(AO) vv dx + ? (G (() [v., ] + G2 (() [VX2 ]) ds, 
TeTk z e ? 

where G1(() and G2(() are combinations of second order derivatives of (, [v,,] and 
[vX2] denote the jumps of vx1 and vx2 across the edge e, and the second summation 
is taken over all edges e of Tk. 

Since Ekv E H2(Q), it follows from (2.4) and (6.23) that 

(6.24) akT(k,V) - E jV(A JT V(Ekv)dx. 
TC'Tk 

By subtracting (6.24) from (6.23) we obtain 

(6.25) ak(( - (k, V) = - E j V(A) V(v - Ekv) dx 

+ Ej (G(()[vxl]+G2(()[vx2])ds VVEVk. ee 
By the Cauchy-Schwarz inequality and (6.17) we have 

(6.26) ZjV(A O V(v -Ekv)dx <hkII( V H3(Q) JIVlk VV E Vk 

Since vxl and vx2 are continuous at the midpoints, we have, by a standard argument 
for nonconforming finite elements, 

(6.27) z (Gi(()[vxl] + G2(([v2]) ds < hkI(H3(Q) IVlk VV eVk 
e 

Combining (6.25)-(6.27), we obtain 

(6.28) Jak((-(k,V)I hkII(I|H3(Q) |IVIlk VV E Vk. 

Let ( e Ho (Q). Then we have the obvious estimate 

(6.29) llk r<1 < II(IIH2(Q)) 

which implies that 

(6.30) Jak((-(k,V)I II - k V < 
II(H2(Q)||V lk VV E Vk. 

The estimate (N-1) now follows from (6.4), (6.28), (6.30) and interpolation. 
By (6.9) and (6.20) we have 

(6.31) |EkHkf - 1k'IIL2(Q) I IEkHkf - |L2(Q) + 11- k'IIL2(Q) 

<h3k 11(|11(Q) V4 EE H 3 () n H02 (Q) 

A standard inverse estimate then implies that 

(6.32) ( l EkHlk - I ( hk | H3(Q) V e H3(Q) n H (Q). 
T CTk 
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It follows from (6.25) that 

(6.33) ak(( - (k, IHk) - TEr V(A) . V(HkJ - EkHkT)dx 
T CTk 

? zj J(Gl(() [(Hlk()xj] + G2(()[(HIk)X2]) ds 
ee 

for ( E E H3(Q) n H02(Q). 

By the Cauchy-Schwarz inequality and (6.32) we have 

(6.34) j V(A0) V(Hkf - EkHk() dx h2k11|1H3(Q) RjjH3(Q) 
T C'Tk 

for , E H3(Q) n H02(Q). 

A standard argument for nonconforming finite elements shows that 

|Sf (Gl(()[(IIk()xj] + G2(()[(IHk)X2])Xds 
e 

(6.35) < SfE (G1(() [(Ik()xl - Cxj] + G2(()[(HIk0)X2 - 2]) ds 

< I(IIlH3(Q) V|( |H(Q 8(vE H 3(Q) n H02(Q). 

Combining (6.33)-(6.35), we obtain 

(6.36) jak(( -k, Hk) < hI k 11 H3(Q) 11 H3(Q) E H3(Q) n Ho(Q). 

On the other hand, for (E E H02(Q), the estimates (6.9) and (6.29) imply that 

(6.37) |ak((-(krIIkH)j < 11(11H2(Q) '11H2(Q). 

The estimate (N-2) now follows from (6.4), (6.36), (6.37) and (bilinear) interpola- 
tion. 

The intergrid transfer operator IJk_ Vk-l Vk is defined by averaging as 
follows. Let p be a vertex of Tk inside Q. If p is also a vertex of Tk_j, then 
(Ik _v)(p) = v(p). If p is the midpoint of the common edge of two triangles T1 and 
T2e Tk_, then 

(Ik_iv)(p) = 2 [VlTl(P) + IT2(P)]- 
Let m be a midpoint of an edge e of Tk inside Q and n be a unit normal of e. If m 
is in the interior of a triangle in Tk1j, then 

&(Ik (v) (__ 

d9n (m)= n(m). 

If m is on the common edge of two triangles T1 and T2 in Tk_j, then 
k_ 

_ [___ 
&VIT2 

1 
&(Ik 1v)T 

1 
= VI 

in 
(in). 

(in) [ An ) n 
The estimate (I-1) follows immediately from the estimates in [16], and the estimate 
(1-2) follows from the estimates in [16] and interpolation, as in Example 5.1. 

Since all of the assumptions of our theory hold for this example, the results in 
Section 4 are applicable to the multigrid methods for (6.6). 
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Remark. For 1/2 < a < 1, the estimate (4.31) and the Sobolev inequality (cf., [61]) 
imply that 

sup |u(x) - [Ekik] (X) I< hIIU IIH2+?(Q) + hk2 Ilf IIL2(Q) 
xCQ 

Since Ekv and v coincide at the vertices, we have 

max I u(p)- Uk (P) I< U | |UH2+?(Q) + h'' |f 1IL2(Q), 

where the summation is taken over all the vertices of Tk. 

In the case oe - 1, we have, for any 0 < ,B < 1, 

max I u(p) - Uk (P) I< Co [h 2| U IIH2+?(Q)+ h? 
2 

Ilf |IL2(Q)] 

Remark. The symmetric variable V-cycle preconditioner for the Morley finite ele- 
ment method can also be used to precondition the Argyris finite element method 
(cf., [3], [26]). 

Remark. The results in Example 6.1 are also valid for the Adini element (cf., [1], 
[29], [45]) and the incomplete biquadratic element (cf., [58]), which are connected 
to the Bogner-Fox-Schmit element (cf., [8]) and the Fraeijs de Veubeke-Sander 
quadrilateral element (cf., [54], [38], [32]), respectively. 

Example 6.2. Let Vk = 1k C Ho2(Q) be the Hsieh-Clough-Tocher or the reduced 
Hsieh-Clough-Tocher macro finite element space associated with Tk (cf., [34], [31], 
[51]), and let ak(,.) a(., ) on Vk. The discrete problem for (6.2) is to find Uk E Vk 
such that 

(6.39) a(Uk,v) jfvdx v EVk. 

There exists an interpolation operator Hk: V - Vk such that 

(6.40) II l-lk |IL2(T)+ 
hk | 

Q-Hk(|H2(T) < h I ( sI H (ST) 3 p23, 

and 

(6.41) (Iko) T = (IT if (IST is quadratic. 

The estimates (Il-1) and (11-2) follow from (6.40). The operator Hk can be con- 
structed by using the techniques in [33] and [56]. For the Hsieh-Clough-Tocher 
element, we can also take Hk to be the composition of the interpolation opera- 
tor for the Morley element defined in (6.7) and the connection operator defined in 
(6.11). 

Let Ek= Fk = identity map on Vk. The estimates (E), (Ell), (F), (FE), (N-1) 
and (N-2) are then completely trivial. We can take IkJ- Vkl - Vk to be the 
nodal interpolation operator. Then (I-1) is a standard interpolation error estimate. 
Moreover, we have 

(6.42) (Ik-lv) T V T if vIT is quadratic. 

The estimates (Il-1) and (I-1) imply that 

(6.43) _IkkHk-1 - k(|L2(Q) < I I IIH2(Q) V( E H2(Q). 
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Using (6.41), (6.42) and the Bramble-Hilbert lemma, we obtain (cf., the proof of 
(6.20)) 

(6.44) JjIkkj_-1( - r1k(|L2(Q) -< h' II(IH3(Q) V E H3(Q) n Ho(Q). 

The estimate (1-2) follows from (6.4), (6.43), (6.44) and interpolation. 
Therefore the results from Section 4 can be applied to these macro element 

methods. 
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