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A SHADOWING RESULT WITH APPLICATIONS 
TO FINITE ELEMENT APPROXIMATION 
OF REACTION-DIFFUSION EQUATIONS 

STIG LARSSON AND J.-M. SANZ-SERNA 

ABSTRACT. A shadowing result is formulated in such a way that it applies 
in the context of numerical approximations of semilinear parabolic problems. 
The qualitative behavior of temporally and spatially discrete finite element 
solutions of a reaction-diffusion system near a hyperbolic equilibrium is then 
studied. It is shown that any continuous trajectory is approximated by an 
appropriate discrete trajectory, and vice versa, as long as they remain in a suf- 
ficiently small neighborhood of the equilibrium. Error bounds of optimal order 
in the L2 and H1 norms hold uniformly over arbitrarily long time intervals. 

1. INTRODUCTION 

The purpose of this article is to compare the dynamical system arising from a 
semilinear parabolic evolution problem with the dynamical systems that arise from 
its temporal and spatial discretizations. The long-time behavior of a dynamical 
system is governed by its invariant sets such as fixed points, periodic orbits, attrac- 
tors, etc. It is therefore important to investigate whether the discretized dynamical 
systems have the same kinds of invariant sets and whether their orbits have the 
same qualitative behavior near these sets. Our aim here is to do so for the special 
case of a hyperbolic fixed point. 

The inspiration for this work came from an article of Beyn, [3], on multi-step 
approximations of systems of nonlinear ordinary differential equations, tv/ = f(u). 
Beyn showed that if the continuous problem has a hyperbolic fixed point u, then 
there is a neighborhood 0 of u such that the following conclusion holds: for each 
initial value u0 c 0 there is U0 c 0 such that the approximate orbit U starting 
from Uo is close to the exact orbit tt starting from u0 as long as the latter orbit 
stays in 0. The error u - U satisfies an estimate which is uniform with respect to 
uo c 0 and of optimal order of convergence. Note, in particular, that the error 
bound is thus uniform over arbitrarily long time intervals. The converse statement 
is also true: for each U0 c 0 there is u0 c 0 such that the corresponding orbits U 
and u are optimally close as long as they remain in 0. We emphasize that U0 :& uo 
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in general, because the initial value problem is typically unstable near a hyperbolic 
fixed point. 

Beyn's result was extended to infinite dimensional spaces by Alouges and Debus- 
sche [1], who were thus able to cover pure time-discretization of semilinear para- 
bolic equations. Another extension to semilinear parabolic problems was made by 
the present authors in [12], where we considered spatial semi-discretization by a 
standard finite element method. We proved a result analogous to that of Beyn, 
including optimal order error bounds in both the L2 and H1 norms. 

Noting that the analysis in [12] is rather ad hoc, and that the more general 
framework in [1] does not readily apply to spatial discretizations, we decided to 
reconsider this problem. In ?2 below we provide an abstract framework for the 
long-time aspects of the analysis, which is based on carefully chosen assumptions 
to be checked in each application by proving rather standard finite-time error and 
perturbation estimates. More precisely, in ?2.1 we prove a shadowing result for 
discrete dynamical systems of the form u,+1 = S(u,), where S is a nonlinear 
operator in a Banach space X. We assume that S = L + N, where the bounded 
linear operator L is hyperbolic, and the nonlinear remainder N has a small Lipschitz 
constant on a subset D C X. This is an adaptation of the classical shadowing lemma 
of Anosov [2] and Bowen [4]. 

In ?2.2 the mapping S is studied together with a family of approximations Sh = 

Lh + Nh, where Lh is linear, and it is assumed that we have access to bounds for 
Lh- L and Sh - S, as well as estimates of the Lipschitz constant of Nh. The main 
result of ?2.2 is a theorem analogous to that of Beyn concerning the behavior of 
the orbits of S and Sh near a hyperbolic fixed point of S. 

If S(t, ) is a continuous dynamical system (nonlinear semigroup) with orbits 

u(t) = S(t, uo), t > O, u(O) = uo, 

then, for fixed T, the mapping S = S(T, ) defines a discrete dynamical system 
with orbits un = u(nT), n = 0, 1, 2,..., satisfying the assumptions of ?2.1 in a 
neighborhood D of a hyperbolic fixed point. 

In ?3 we apply the abstract framework in the context of a system of reaction- 
diffusion equations discretized in the spatial variables by a standard finite element 
method, and in the time variable by means of the backward Euler method. The 
assumptions on Lh- L and Sh - S are verified by application of rather standard 
error estimates over the finite time interval [0, T], which we quote from Larsson 
[11]. 

Our framework is similar to that of [1], but more flexible. First of all, it admits 
applications with both time and space discretization. In the applications discussed 
in ?3 it also allows us to obtain error bounds of optimal order in both the L2 and 
H1 norms. Moreover, it avoids the assumption that Sh - S is small in Cl(D, X) 
that was used in [1], but which we found inconvenient. Note, in this connection, 
that we do not assume that L is a derivative of S. This is important, because even 
in a situation where L is formally a linearization of S, it may not be a Frechet 
derivative with respect to the norms that we use; see Remark 3 below. 

If X, Y are Banach spaces, then L(X, Y) denotes the space of bounded linear 
operators from X into Y, L(X) = L(X, X), and Bx(x, p) denotes the closed ball 
in X with center x and radius p. 
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2. A GENERAL FRAMEWORK 

2.1. A basic shadowing result. We consider a mapping S: D C X -* X, where 
X is a Banach space and D a nonempty subset of X. It is assumed that S can be 
decomposed in the form 

(2.1) S= L+N 

in a such a way that, for some constants ,u > 1 and i c (0,1), the following 
hypotheses (HL) and (HN) are fulfilled. 

Hypothesis (HL). L c L(X), i.e., L is a bounded linear operator in X. Further- 
more, X can be decomposed as a direct sum X = X1 E X2 of closed subspaces X1, 
X2 that are invariant by L, i.e., LXi C Xi, i = 1, 2. If Li L ?(Xi), i = 1, 2, denotes 
the restriction of L to Xi, then L1 is invertible and 

(2.2) IL 11L(X1) ? IL, L21L(X2) </i 

Moreover, the projections Pi, i = 1, 2, associated with the decomposition X = 

X1 e X2 (i.e., Pix = xi, i = 1, 2, for x = x1 + x2, xi c Xi) satisfy 

(2.3) IIPiIIL(X) <ft 

Hypothesis (HN). The mapping N: D - X is Lipschitz continuous with a 
Lipschitz constant that satisfies 

(2.4) Lip(N) < 

Note that the boundedness of the projections P1,P2 is a consequence of the 
closedness of subspaces X1,X2; this is a well-known consequence of the closed 
graph theorem, see [10, p. 167]. 

We now state the main result of this section. 

Theorem 2.1. (i) Assume that for the mapping S in (2.1) the hypotheses (HL), 
(HN) are satisfied and set 

(2.5) 1 4p 

Let i and f be integers, i < f, and let {i}nI=i C D be a sequence. If {X}nf=i c D 
is an orbit of S, i.e., Xn+I = S(Xn), n = i,..., f - 1, which satisfies the boundary 
conditions 

(2.6) P2Xi = P2Ki, P1Xf = Plif, 

then 

(2.7) sup ||xn -xnll < ?u sup 1|xn+i -S()I0 
i<n<f i<n<f-1 

(ii) Assume, in addition to (HL), (HN), that the domain D of S contains a 
closed ball Bx (z, p) and that 

(2.8) liz - S(z)I < p/u. 

Then, for any sequence {xn}f=i c Bx(z, p/(ou-)), there exists an orbit {X}nf=i C 

Bx (z, p) of S for which (2.6) and hence (2.7) hold. 
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Remark 1. With the terminology used in shadowing theory (see, e.g., [6]) we say 
that {f}{n=i is a 6-pseudo-orbit of S if SUPi<n<f-I |n+l - S(n)I < 6- If this 
is the case, then the estimate (2.7) means that {-}nf=i is e-shadowed by the true 
orbit {xn}f=i with shadowing distance e < o6. Part (ii) ensures the existence of a 
shadow orbit. 

Remark 2. Analogous results hold also for infinite sequences {f}nf=_{oi {f}?n'Ui, 
or {xn}fon =-o with obvious modifications. For instance, for a sequence {xn If 
the first condition in (2.6) is absent and the ranges in (2.7) become n < f and 
n < f-1. The proof is essentially the same as that given below for finite sequences. 
Note in this connection that the stability constant o- in (2.7) does not depend on 
the initial and final indices i and f. 

The theorem is proved by using the following lemmas. 

Lemma 2.2. Assume that L satisfies hypothesis (HL), and that i, f are integers 
with i < f. Set v = f-i, X - X+1, Y = X2 X Xv x X1, and define a linear 
operator L X -* Y by L: (xi,... , xf) > (yi, ... , Yf+I), where 

(2.9) Yi = P2Xi, Yf+1 = Plxf; Yn+1 = xn+1-LXn n = i, ..., f-1. 

Then L is invertible and, with respect to the supremum norm of the product spaces 
X,Y, 

(2.10) IL IIL(Y,X) < _2t 

Proof. Given an element y = (yi,... Yf+1) c Y, we define x = (xi,. . .,xf) X 
by the relations Xn = P1xn + P2xn, where 

f 
P1Xn = (L-1 )f-nyf+l E(L-)j-np y 

j=n+1 

n 

P2Xn = (L2)Th yi + E (L2)Th2P2yj. 
j=i+ 1 

It is a simple matter to check that (2.9) holds. This proves that L is onto. To 
see that L is one-to-one, assume that Yn, n = i,... , f + 1, in (2.9) vanish. Then, 
by (2.9), P2xi = 0 and Plxf = 0. Recursion in (2.9) reveals that P2Xn = 0 for 
n = i + 1, . .. , f. Similarly, a descending recursion in (2.9) shows that PIxn = 0 for 
n= f -1, ... , i, so that the kernel of L is trivial. 

To derive (2.10), use (2.2)-(2.3) in the definition of Xn, n = i,..., f, 
f n 

Ixn 11<f-nllyll + j y n-iIIYI + E S n-j/,lYII 
j=n+1 j=i+1 

f n 
< (1+ j?K-n + Kn-i + , 

n-j)/'II 
j=n+l j=i+ 1 

oo n 2 
< ( , j-n + , 0n-3)l /-III 28 y 

j=n j=-oo 

D- 
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Lemma 2.3. Let X and Y be Banach spaces and let L: X -* Y be a linear 
bijection with bounded inverse L-1. Assume that the mapping N: D C X -* Y, 
defined in a nonempty subset D of X, is Lipschitz continuous with 

oz := JIL-'JIL(Y,X) Lip(N) < 1. 

Define S = L + N and set o-:= JIL-1 c(y,X)/(i- a). Then 

(2.11) IIX1-X211X < 5||S(xI)-S(X2)||y, for all X1,X2 E D. 

Proof. The bound (2.11) follows readily from the identity 

X- X2= L-1 (S(xI) - S(x2)) -L-1 (N(xi) - N(x2)). 

Lemma 2.4. In addition to the hypotheses of Lemma 2.3, assume that the domain 
D of N contains a closed ball Bx(z, p). Then, for each y E Y with 

(2.12) Ily - S(z)yY ?< P/u, 

the equation S(x) = y has a unique solution x c Bx(z, p). 

Proof. This is a simple consequence of the contraction mapping theorem. In fact, 
if we define T(x) = L-1(y - N(x)), then Lip(T) = a < 1. Moreover, the identity 

T(x) - z = L-1 (y - S(z)) - L-1 (N(x) - N(z)) 

and (2.12) imply that T maps Bx(z, p) into itself. D 

Proof of Theorem 2.1. Given i and f, we construct the spaces X and Y and the 
linear operator L as in Lemma 2.2. We further consider the mapping N: D = 

D'+l c X -* Y defined by N(x) = y, where 

(2.13) Yi =Yf+1=0?; Yn+l =-N(Xn)) n =i,. ..., If-1. 

The assumption (HN) implies that Lip(N) < (1 - K)/(4ft), and (2.10) leads to 
JIL-111 Lip(N) < 1/2. We can therefore apply Lemma 2.3 with a = 1/2; this yields 
a value of o- = JIL-17/(l - a) that coincides with o- in (2.5). Note also that S is 
defined by S(x) = y, where (see (2.1), (2.9), and (2.13)) 

Yi = P2Xi, Yf+I = Plxf; Yn+I = xn+I -S(xn), n = ii,.. .,if- 1. 

The estimate (2.7) is then a straightforward consequence of (2.11). 
To prove part (ii) of the theorem, we apply Lemma 2.4 in the ball B(z, p) = 

B(z,p)v+l, where z = (z,...,z). Given {Vn}fz=I c B(z,p/(po)), we put y = 
(P2, 0,... , 0, Piif). The condition (2.12) is satisfied. In fact, the first component 
of y-S(z) is the vector P2xv-P2z, whose norm can be estimated by lIP2 11 |x-j-zjj < 
p/uo. Similarly, the last component of y - S(z) has norm < p/uo. The remaining 
components of y - S(z) equal 0- (z - S(z)) and, in view of (2.8), are also bounded 
in norm by p/uo. Since (2.12) is satisfied, the equation S(x) = y has a solution 
x = (Xi,.. , Xf ). The choice of y ensures that {Xn I}n= is the sequence required. D 
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2.2. Shadowing and approximation. We now consider, along with the mapping 
S in (2.1), a family of approximations {Sh}. 

Let 'H be a set of positive numbers with inf 'H = 0. For each h c 'H, let Xh be 
a subspace of the Banach space X, chosen in such a way that there exist bounded 
projections Qh :X -* Xh and a number ay > 1 with 

(2.14) |lQh||L(X) < -Y 

We assume that the spaces Xh approximate X in the sense that 

(2.15) lim Qhu = u, for all u E X. 

For h c 'H, we consider mappings Sh :Dh C Xh -* Xh with domains Dh = DnXh, 

that approximate S in the sense that a continuous positive function e(h) exists such 
that 

(2.16) lim 6(h) = 0 

and 

(2.17) IlSh(QhU) - S(U) < e(h), for all u c D such that QhU C Dh. 

Finally, we assume that Sh can be decomposed as 

(2.18) Sh= Lh + Nh, 

and that (HL) and (HN) hold for this decomposition. More precisely, this means 
that Lh c L(Xh); Xh can be decomposed as a direct sum Xh = Xlh EX2h of closed 
subspaces invariant by Lh; the restrictions Lih, i = 1, 2, of Lh to Xih satisfy 

(2.19) iIL 2N11L(X1h) < K, IIL2hL c(X2h) < /i; 

the associated projections satisfy 

(2.20) IlPihllL(X) < ,i, i = 1, 2; 

and Nh: Dh -* Xh with Lipschitz constant 

Lip(Nh) < 

Note that Xih is in general different from Xi n Xh; the latter may well be the trivial 
subspace {0}. 

Theorem 2.5. (i) Assume that the subspaces Xh of the Banach space X possess 
the approximation properties (2.14)-(2.15), the mappings S in (2.1) and Sh in 
(2.18) satisfy (HL) and (HN), and the Sh approximate S as in (2.17). Let i and f 
be integers with i < f. Then the following results hold. 

(i.a) Let {Uh,n}f=i C Dh be an orbit of Sh. If {U}nf=i is an orbit of S with 

(2.21) P2Ui = P2Uh,i, PlUf = PlUh,f, 

then 

(2.22) sup un -Uh,n < oh(h): 
i<n<f 

where o- is the constant in (2.5). 

(i.b) Let {UnIf=i c D be an orbit of S with 

(2.23) Qhun E Dh, n = i,... , f. 
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If {Uh,nr}Ii C Dh is an orbit of Sh with 

(2.24) P2hUh,i = P2hQhUi, PlhUh,f = PlhQhUf, 

then 

(2.25) sup |lQhun - Uh,n < 7ye(h). 

(ii) Assume that the hypotheses in (i) hold and that S has a fixed point u such 
that Bx(U, p) C D for some p > 0. Then the following conclusions hold. 

(ii.a) For any orbit {'Uh,n}I=i C Bx(U- po), po- p/(po) < p, Of Sh there is an 
orbit {un}f=j of S for which (2.21) and (2.22) are true. 

(ii. b) Let h be small enough for the inequalities 

(2.26) 11 - Qhu p/2, 2aue(h) ? p 

to hold (cf. (2.15) -(2.16)). Then, for any orbit {Un I}f = C Bx (u, po), po = p/ (2-ypo), 
of S, the relation (2.23) is satisfied and there is an orbit {tUh,n}f=j of Sh for which 
(2.24) and (2.25) hold. 

(ii. c) For h chosen as in (ii. b), the mapping Sh has a fixed point that is unique 
in the ball Bxh (Qhu, p72). Furthermore, 

(2.27) I Qhu - Uh ?| < -ye(h). 

Proof. To prove (i.a) we apply part (i) of Theorem 2.1 with vn = Uh,n C Dh C D, 
and xn = Un. Then (2.7) yields 

sup Un - Uh,n|I <J 0 SUP I|Uh,n+l - S(Uh,n)11 
i<n<f irn<f-1 

Since Uh,n+l - S(Uh,n) = Sh(Qhuh,n) - S(Uh,n), the bound (2.22) is a consequence 
of (2.17). 

For part (i.b) we again resort to part (i) of Theorem 2.1, but this time with Sh 
playing the role of S, and Xn = Qhun c Dh, Xn = Uh,n E Dh. The estimate (2.7) 
reads 

Sup IUh,Xn-QhUnll <? c SUp |IQhUn+1-Sh(QhUn)Ik 
z<n<f z<n<f-1 

and (2.25) is a consequence of (2.14) and (2.17), in view of the identity 

QhUn+l - Sh(QhUn) = Qh[S(Un) - Sh(QhUn)] 

Part (ii.a) is a direct consequence of part (ii) of Theorem 2.1 with z = u. 
For (ii.b) we use part (ii) of Theorem (2.1) with Sh playing the role of S and 

Z = QhU- If v c Bxh (QhU, p72), then the assumption (2.26) implies 

IIV-u|| < IIv-Qhu-1 + |lQhu-Ull < P; 

this shows that Bxh(QhU P72) is contained in Bx QUp), which in turn is assumed 
to be contained in D. Hence BXh(QhUl p72) C Dh. Furthermore, by (2.14), (2.17) 
and (2.26), 

(2.28) IlQhu - Sh(Qhu-)l = Qh[S(u) - Sh(QhuJ)] ? 'e(h) < p7 

so that (2.8) holds with the role of Bx (z, p) played by BXh (Qhu, p72). If {'Un f}= C 

Bx(U7,po), then, by (2.14), {QhUn}f=j C Bxh(QhU,p7(2,up)) C BXhjQ 1,Pp2) 
and (2.23) holds. The existence of an orbit {'Uh,n}I=i of Sh satisfying (2.24) now 
follows from Theorem 2.1. 
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For (ii.c) we apply Lemma 2.4 with X = Y = Xh, L = Lh - I, N = Nh, 

y = 0 and the role of Bx(z, p) played by Bxh(Qhi,p/2), which we know to be 
contained in Dh. By Lemma 2.8, 11(Lh - I)1- < 2,u/(1 - i), leading in Lemma 
2.3 to a = 1/2 and a value of o- that agrees with the value in (2.5). The condition 
(2.12) is fulfilled in view of (2.28), because y - S(z) = -Sh(QhU) + QhU. It only 
remains to prove the bound (2.27). We again apply Lemma 2.4, but this time in 
the smaller ball Bxh(QhU, o-y6(h)) C Bx,(QhU,p/2); the condition (2.12) is still 
fulfilled in view (2.28), so that the unique fixed point uLh of Sh in Bxh(Q)hi p/2) 
also lies in BXh (QhU, o-y6(h)). * 2 

Our next theorem gives a condition under which the "hyperbolicity" (HL) of the 
operator L carries over to Lh- 

Theorem 2.6. Assume that the operator L c L(X), X a Banach space, satisfies 
hypothesis (HL), and choose is c (r,, 1), Al > p. Assume that the subspaces Xh 

with corresponding projections Qh are such that (2.14) holds and that the operators 
Lh c L(Xh) approximate L in the sense that 

(2.29) 11 L - LhQh |L(X) < 6(h) 

with e(h) as in (2.16). Then there exists ho > 0 (depending only on -y, i, f, ', A, 
and the function e) such that, uniformly for h < ho, the operators Lh satisfy (HL) 
with constants i, i. 

For the proof of the theorem we need two simple lemmas. 

Lemma 2.7. Let A, B c L?(X), X a Banach space, with A-1 L ?(X) and IIBII < 
IA-1 11 -1. Then (A + B)-1 c L(X) and 

II (A + B)-1 - A-1 IL(X) < 2IIA-1 1L(X) IIBL(X) 

Proof. We have I (A + B)- 1 
ILc(X) = IIA-1 Z"?=0(-A-1B)n IL(X) < 2IIA-1 ILc(X) 

and (A + B)-1 A-1 = -(A + B)-1BA-1. 

Lemma 2.8. Assume that the operator L c C(X), X a Banach space, satisfies 
hypothesis (HL) and let w be a complex number with w I = 1. Then (wI - L)-1 E 

L2(X) with 

11(wI-L-)-1 IL,(X) < 2pt 

Proof. Let lwl = 1. Assumption (2.2) implies that 
00 0 

(wI - L1)-' = -L1 Z(wL-1) n (wI - L2)-1 = w-l Z(w-lL2 )n 

n=O n=O 

and hence 

11(wl - Li)-' IIL(Xi) < (wl - 
IW L2) -1L(X2) < 1 

Using also (2.3) and (wI -L)-1 = (wI - Li1)-P + (wI - L2)-1P2, we obtain 

11(wI-L)- IL(x) ?1 < ip < 

D- 
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Proof of Theorem 2.6. Define Lh = LhQh c L(X) and let lwl = 1. We begin by 
showing that (wI - h)-1 L (X). In order to do so we shall apply Lemma 2.7 
with A = wI-L and B = L-Lh. From Lemma 2.8 we know that (wI-L)1 < 
2,u/(l1- i). Hence, for h sufficiently small, we have 

JIL --Lh ||z(X) < 6(h) <I 48 K< 1(W- - 4p 21 (WI -L)-1 1 

Now Lemma 2.7 applies and gives (wI - Lh)-1 L L(X) and 

(2.30) j(wI-Lh) -1 (wI-L)1 j(X) < 2(1 ) IL - LhL(X) < Ke(h), 

where K = 2(2,i/(1 _ -))2. 

We next show that (WI- E L(Xh) and that 

(2.31) (wI - Lh) -Qh = (wI - Lh)<Qh. 

In fact, if f c X, then u = (wI - Lh)-1Qhf c X satisfies 

Qhf = (wI - Lh)(QhU + (I - Qh)U) = (wI - Lh)QhU + w(I - Qh)u. 

We conclude that (I - Qh)U = 0, and (wI - Lh)Qhu = Qhf, so that u = Qhu = 

(wI - Lh)-1Qhf, which implies (2.31). 

We have now proved that, for each sufficiently small h, Lh has no spectrum on 

the unit circle. By a standard theorem (see, e.g., [10, Theorem 111-6.17, p. 178]) 
this implies the existence of a splitting Xh = Xlh E X2h as required in assumption 
(HL). It only remains to prove that the corresponding inequalities (2.19) and (2.20) 
with constants i, Al hold uniformly with respect to h. 

In order to obtain a bound for lIP2hllI(Xh) we first estimate JI(P2 - P2h)Qh|L(X)* 

Using the representations 

P2= j w -(wIL) wldw, P2h= 2h)j(wI-Lh<-dw, 

where F denotes the unit circle with positive orientation, together with (2.31), 

(2.30), and (2.14), we obtain 

JI(P2 - P2h)Qh(X) =I Jj ((wL - - (WI - Lh)Y1) dw Qh 

< -yKe(h). 

This implies that, for x C Xh, 

jjP2hXjj <- 1P2xII + JI(P2 - P2h)Xjj < (ft+ ?yKe(h)) lxll, 

so that 

JJP2h IIL(X,,) < 
f + -yKe(h) < A, 

provided that h is sufficiently small. Since (P1 - Plh)Qh = (P2h - P2)Qh, we also 

have lPlhllZ(Xh) </L 

We now turn to the bound for JIL2hllL(X2h). Since 

L2P2 = 2-i jw(wI -L)-L1 dw, L2hP2h = 2wi jw(wI - Lh)-1 dw, 
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we have 

11(L2P2- L2hP2h)Qh||L(X) = 2d ((I-L) 1 - (wI-Lh)1) dw Qh 

< -yKe(h). 

Hence, for x C X2h, 

||L2hXjj = ||L2hP2hXll < 11(L2hP2h-L2P2)QhXjl + JIL2P2XII 

< yKe(h)jjxjj + KjjP2xj 

Here, since QhX = P2hX = X, 

11P2XII < jj(P2-P2h)QhXll + 11P2hX1 < ?yKe(h)jjxjj + llXll, 

so that 

jjL2hxj <? ('s + 2-yKe(h)) IIxI , 
and we conclude that, for small h, 

jL2h 1jN(X2h) < K + 2-yKe(h) ?< R. 

The required bound for JIL-1 ILc(Xlh) is obtained in the same way, using the 
representations 

L-1P1=-1 f 1-(wI-L)-1dw1 L7lPlh=-2 fWl(wI-Lh)yldw. 
=-2wiz 

Ih 
27wi 

3. APPLICATION TO A SYSTEM OF REACTION-DIFFUSION EQUATIONS 

The purpose of this section is to illustrate how the theory of the previous section 
can be applied in the context of a standard finite element approximation of a system 
of reaction-diffusion equations. 

3.1. The continuous problem. We consider the model problem 

ut-D/Au = f(u), x E Q, t > O, 

(3.1) u = O, x E OQ, t > O, 
u(.,O) =UO, x c Q, 

where Q is a bounded domain in Rd, d = 1, 2,3, u = u(x, t) E Rs, ut = &u/&t, Au = 

Zij 2u/&xiX D = diag(dj,... ,ds) is a diagonal matrix of constant coefficients 
di > 0, and f: Rs - Rs is continuously differentiable. We assume that Q is either 
a convex polygon or has a smooth boundary. If d = 2, 3 we assume, in addition, 
that the Jacobian of f satisfies the growth condition 

jf'(()j < C(1 + 1(1 ), ( E Rs 
where . denotes the Euclidean norm on Rs and the induced matrix norm, and 
where 6 = 2 if d = 3, 6 c [0, oo) if d = 2. 

In the sequel we use the Hilbert space H = (L2(Q))s, with its standard norm 
11 and inner product (., .). The norms in the Sobolev spaces (Hm(Q))s, m > 0, 

are denoted by 11 Ilm The space V = (Hl(Q))s, with norm 11 111, consists of 
the functions in (H1(Q))s that vanish on OQ. We define the operator A = -DA 
with domain D(A) = (H2(Q) n Ho(Q))s. Then A is a closed, densely defined 
and selfadjoint operator in H with compact inverse. Moreover, our assumptions 
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guarantee that the mapping f induces an operator f: V -* H through f(v) (x) = 
f(v(x)); see Lemma 3.1 below. The initial-boundary value problem (3.1) may then 
be formulated as an initial value problem in V: 

(3.2) u'+Au=f(u), t>O; u(O) = uo. 

We assume further that (3.2) has a stationary solution u- with u c D(A), Au? = f (U); 
by standard embedding results u- is continuous in the closure of Q. The formula 
(Bv)(x) = f'(U(x))v(x) clearly defines an operator B E C(H). The operator A- 
A - B is the linearization of A - f at u-, and, being a bounded perturbation of A, 
it is a sectorial operator in H (see [9, Theorem 1.3.2]). Hence -A is the generator 
of an analytic semigroup e-t4. We assume that u- is "hyperbolic", i.e., that the 
spectrum of A does not intersect the imaginary axis. Let P1, and P2 the projections 
respectively associated with the sets 1 = a(A) n {Re z < O} and T2 = C(A) n 
{Re z > O} that partition the spectrum a(A) of A, and let H1 and H2 be the 
ranges of P1 and P2. It follows that H is a direct sum H = H1 E H2; the subspaces 
Hi are invariant under A and, if Ai, i = 1, 2, denotes the restriction of A to Hi, 
then A1 E C(H1), D(A2)= D(A) n H2. Furthermore, there are M > 1 and a > 0 
such that 

11e-t41v 1m < Me't v I, t < O, v E H1, m = 1,2, 

(3.3) 11e-t42vll < MtMm/2e-t llvll, t > 0, v E H2, m = 1, 2, 

l e-tA2vlli < Me-t v, t > 0, v E H2n v. 

We refer to [9, ?1.5] for these facts. 
Since H1 c D(A), we see that we also have a direct sum V = V, (e V2, where 

V1 = H1 and V2 = H2 n V, with associated projections Pllv and P2 v. By the 
closed graph theorem, we may select a constant ,u > 1 such that 

(3.4) IlPillC(H) <_ i, IlPi11 ) <L( ) , i = 1, 2. 

By combining these with (3.3) we have 

e- tAvlli < Ct-l/2ectlIv, t > 0 v E H 

()etAv < Ceatv, t > 0 v E V. 

With F(v) = f (v) - Bv, we may rewrite (3.2) as 

(3.6) u' + Au = F(u), t > 0; u(O) = uo, 

and clearly we also have 

(3.7) Au = F(u). 

As shown by the following lemma, whose proof is similar to that of Lemma 2.2 in 
[12], the nonlinear operator F: V -- H is Lipschitz continuous with a Lipschitz 
constant that may be rendered arbitrarily small by restricting the attention to a 
sufficiently small neighborhood of u. 

Lemma 3.1. If v,w E Bv(u, p), then 

(3.8) JIF(v) - F(w)JI < k(p)lv - w|| 1, 

where k(p)= 0(p) as p -- 0. 



66 STIG LARSSON AND J.-M. SANZ-SERNA 

The initial value problem (3.6) (or (3.2)) has a unique local solution for any initial 
datum uo E V; see [9, Theorem 3.3.3]. We denote by S(t, ) the corresponding 
(local) solution operator, so that u(t) = S(t, uo) is the solution of (3.6). The 
following lemma shows that the local solutions can be extended in time, if they 
start sufficiently near R. 

Lemma 3.2. For each p1 > 0 and T > 0 there is p > 0 such that, if uo E Bv(U I p), 
then S(t, uo) is defined and belongs to BvQ(UR pi) fort E [0, T] . 

Proof. Let p1, T > 0 be given. For p > 0 let T E [0, T] be the largest time such that 
uo E Bv(Ui, p) implies that u(t) = S(t, uo) exists and belongs to Bv((Ui, P1 + 1) for 
t E [0, T]. We must choose p such that TF= T. 

Let z(t) = u(t) - u. Forming the difference between (3.6) and (3.7) and using 
the variation of constants formula, we obtain 

t 
z(t) e`tAz(O) + J e-(t-s)A(F(u(s)) - F(u)) ds. 

Invoking (3.5) and (3.8), we therefore have, for t E [0, T], 
t 

z(t) 1 < Cet lZ(?) 1 ?+ C j(t - s)-/2ea(t-s) IF(u(s)) - F(u-) II ds 

K CeT (p + k(pi + 1) j(t-s_)-Y1/2)z(s) Ilids). 

Gronwall's lemma (see [13, Lemma 5.6.7] or [9, Exercise 4 of ?6.1]) now yields 

IIz(t)II1 < C(pi,T)p, t E [O,-r], 
so that if we choose p = pi/C(pi, T), then 

f1z(t) <iPI, tE [0,T] 

If - < T, then by local existence we obtain a contradiction with the maximality of 
T. Hence, S(t, uo) is defined and belongs to Bv(U, P1) for t E [0, T]. F 

The following lemma provides a bound for the H2 norm of the solution found in 
Lemma 3.2. 

Lemma 3.3. Let P1 > 0, T > 0 and assume that u(t) = S(t, uo) exists and belongs 
to BvQ(UE, P1) for t E [0, T]. Then there exists C(pi, T) such that 

|IU(t)12 < C(pi, T) t-1/2, t E (0, T]. 
Proof. In view of (3.8) we have I1F(u(t))f I < C(pi) for t E [0, T]. The proof is now 
obtained by tracing the constants in [9, Theorem 3.5.2]. F 

In order to set the present problem in the framework of ?2, we choose T such 
that 

(3.9) r, := me"T < 1, 

where M and ae are the constants in (3.3). We then define S= S(T, ), L = e-TA 
N = S - L. It is clear from the above that assumption (HL) is satisfied, with both 
X = H and X = V. In order to choose the domain D so that (HN) holds we need 
the following result. 

Lemma 3.4. For each e > 0 there is p > 0 such that vI, V2 E Bv (U, p) implies 

|IN(vi) - N(v2)11m < EVI - V211m, m = 0, 1. 
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Proof. Let T be as in (3.9) and let P1 > 0. We first carry out an a priori estimation 
under the assumption that ui = S(t, vi), i = 1, 2, exist and belong to Bv(U, pl) for 
t E [0, T]. From the variation of constants formula 

t 

ui(t) = e-tAvi + J e- (ts)F(ui (s)) ds, t E [0, T], 

so that N(vi) = wi(T), where 

t 

Wi (t) = X - (t-)F (ui (s) ) ds. 

Using (3.5) and (3.8), we obtain 

t 

IIwI(t) - w2(t) 1 I Ceat j(t - s)-1/2F(ui(s)) - F(u2(s))l ds 

t 
< C(T)k(p1) j(t - s)-17211U1(S) - U2(S) 1, ds. 

Here u1 (s) - u2 (s) = e-A (vI - v2) + w1 (s) - w2 (s), so that another application of 

(3.5) yields, for t E [0,T], 

IwIW(t)-W2(t)III < C(T)k(pI) Iv1-V2 
t 

+ C(T, P1) j(t - s)-1I2II(S) - W2(S) 1 ds. 

Gronwall's lemma now shows that 

(3.10) ||wI (t) - w2(t) |1 < C(T, pi)k(pi) IVl-v2 , t E [0, T]. 

This is the required a priori bound, and we may now complete the proof. Let 

E > 0. Since k(pi) = O(pi) and C(T, pi) = 0(1) as p1 -- 0, we may choose p1 so 

that C(T,pi)k(pi) < E. Lemma 3.2 provides p such that V1,V2 E Bv(Ui,p) implies 

u1(t),u2(t) E Bv(uE, pi) for t E [0,T], and (3.10) then yields 

liwi(T) - w2(T)II -< ?6V - V211, 

which implies both the required estimates. g 

Lemma 3.4 shows that there is p such that, if we set D = Bv(U, p), then N 

satisfies (HN) with both X = H and X = V. Moreover, we have found a larger 

radius p1 > p such that 

(3.11) uo E D = Bv (u, p) ==>. S (t, uo) E Bv (u, PI), t E [0 I T]. 

In summary, we have chosen the parameters so as to make sure that S = L + N 

satisfies (HL) and (HN) in both X = H and X = V. 

Remark 3. Note that L is the linearization of S at u. In fact, the mapping S: D C 
V -- V is Frechet differentiable with L = S'(ui) (E L(V). However, the mapping 

S: D c H -- H is not differentiable, because D = Bv (U, p) is not a neighborhood 

of u- with respect to the topology of H. 
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3.2. The discrete problem. In this section we first discretize the initial-boundary 
value problem (3.1) with respect to the spatial variables by means of a standard 
piecewise linear finite element method anid apply the shadowing results of ?2.2. At 
the end of the section we then briefly discuss completely discrete approximations 
obtained by means of the backward Euler time-stepping. 

Let {Vh}o<h<1 be a family of finite dimensional subspaces of V, where each 
Vh consists of continuous piecewise polynomials of degree < 1 with respect to a 
triangulation of Q with maximal mesh size h, see [5]. The approximate solution 
Uh(t) E Vh of (3.1) is defined by 

(3.12) (h, X) + (DVuh, Vx) = (f(uh), X), VX E Vh, t > 0, 
Uh(0) = U-h 

where= UOh E Vh is an approximation of uo. 
We want to set this problem in the framework of ?2.2 with Xh Vh, and both 

X =H and X =V. Let Qh: H -- Vh be the orthogonal projection. Then Qh 
satisfies (2.14) (with 6 = 1) if X = H. In order to satisfy (2.14) with X = V we 
assume that Qh is bounded (uniformly in h) with respect to the H1 norm. It is 
easy to see that this is true if the spaces Vh satisfy an inverse assumption. For a 
more general discussion of the H1 boundedness of Qh we refer to [7]. 

It is well known that (in view of standard interpolation error bounds and the L2 
and H1 boundedness of Qh) 

(3.13) IlQhvv-m l< Chv2-m 1V112, v E D(A), m = 0,1. 

Since D(A) is dense in H, it follows that (2.15) holds with X = H and X = V. 
Introducing the linear operator Ah: Vh -- Vh defined by 

(Ah+, X) = (DV0, 7X) I Vol X E Vh, 

and with f: V -> H defined as before, we may write (3.12) as 

(3.14) u/ + AhUh = Qhf (Uh), t > 0; Uh(0) = UOh, 

which is the discrete analogue of (3.2). In the same way as for the continuous 
problem we can show that there is a local solution operator Sh (t, ) such that 
Uh(t) = Sh(t, UOh) is the unique local solution of (3.14). Just as in the continuous 
case, the proof is based on the variation of constants formula, the analyticity of the 
semigroup exp(-tAh), and the local Lipschitz condition for the mapping f V V 
H, see [11]. 

With Ah = Ah - QhB and F(v) = f (v) - BV as before, we rewrite (3.14) as 

U/ + AhUh = QhF(uh), t > 0; Uh (0) = UOh, 

which is the discrete version of (3.6). Since Ah is selfadjoint, positive definite 
(uniformly in h), and QhB is bounded, we deduce that Ah is sectorial (uniformly 
in h), so that for some c > 0 

lie-tAhvill < cect lvll1, t > 0, V E Vh, 
(3.15) et41, vIl Ct-1/2ectiVi, t>0, VEVh, 

which are discrete versions of (3.5). Here we have employed the equivalence of 
norms llvll 1 IIA/2vII for v E Vh. The inequalities (3.15) can also be proved by 
noting that Uh(t) = e-tAhuOh satisfies (3.14) withf (Uh) replaced by Buh, and by 
making estimations based on the variation of constants formula. 
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From [11] we quote the following a priori error estimates. 

Lemma 3.5. Let 0 < T < T and assume that S(t,uo),Sh (t,uoh) E Bv(U,p) for 
t E [0, ]. Then, for t E [0, T], we have 

IISh(t, UOh) - S(t, uo) 1 < C(p, T) (|UOh - QhUOl + h2t1/2), 

IlSh(t, UOh) - S(t, uO)II1 < C(p, T)t1/2 (IU0h - UO| + h) 

The following is a discrete analogue of Lemma 3.2. 

Lemma 3.6. For each P1 > 0, T > 0 there are p > O, ho > 0 such that, if 
UOh E Bv (ui, p) nVh and h < ho, then Sh (t, UOh) exists and belongs to Bv (ui, pi)nVh 
for t E [0, T]. 

Proof. Let p1, T > 0 be given. For p > 0 let T E [0, T] be the largest time such that 
UOh E Bv(U, p)nvh implies that Sh(t, UOh) exists and belongs to Bv(U, pi+l)nvh for 
t E [0, T]. By local existence there are to > 0 and p > 0 such that UOh E Bv(U, p)nVh 
implies that Sh(t, UOh) exists and belongs to Bv(U, p1) nVh for t E [0, to]. Moreover, 
the second error estimate of Lemma 3.5 gives the a priori estimate 

||Sh(t, Uoh) - |l1 < C(pi, T)t 1/2 IUOh-Ul + h) 

< C(pl, T)t1 / (p + ho) < P1, t E [to, T], 

provided that p and ho are sufficiently small. If T < T, then by local existence we 
obtain a contradiction with the maximality of T. Hence, Sh(t, Uo) is defined and 
belongs to Bv(Ui,pi) n Vh for t E [0, T]. F 

We will also use the error bounds 

(3.16) ee-AhQhv - e-tAvll < Ch2tletv t > 0, v E H, 

*ie- tAhQhv - e-tAvlll < Cht-I/2eotIIVII1, t > 0, v E V, 

which can be proved by the using the techniques of [11]. 
With T as in (3.9) we define Lh = e-T4h, and (3.16) shows that 

IlLhQh- L||L(H) + hIlLhQh - LII(V) < C(T)h2. 

The assumption (2.29) is thus satisfied with both X = H and X V. We conclude 
that Theorem 2.6 applies, showing that, for small h, Lh satisfies (HL) with slightly 
larger constants k > , , > p,. Adjusting I,, ,u, we may conclude that (2.19), (2.20) 
hold. 

Finally, we define Sh = Sh(T, .), Nh = Sh - Lh, and note that, after these 
preparations, the analogue of Lemma 3.4 holds with the same proof. As for the 
continuous problem we may select p, ho such that, for h < ho, Nh satisfies (HN) 
with Dh = D n Vh, D = Bv(U1, p). The argument also selects p1 such that, in 
analogy with (3.11), 

(3.17) UOh E Dh = Sh(t, Uoh) E Bv(U Ipi), t E [0, T]. 

Moreover, using Lemma 3.5 together with (3.11) and (3.17), we see that, if v E D, 
QhV E Dh, then 

IISh(QhV) - S(v)|| < C(p1,T)h, IISh(QhV) -S(v) 1 ? C(pi,T)h, 

since IIQhv-vII < ChII v 1 < Chp. We conclude that (2.17) holds with X H and 
E(h) = Ch2, and with X = V and E(h) = Ch. 
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We have now checked all the assumptions of Theorem 2.5, and we are ready to 
apply it. 

Theorem 3.7. There are positive numbers po, ho, and C such that, for any h < ho, 
the following hold: 

(1) If Uh is a solution of (3.12) with Uh(t) E Bv(U, po) for t E [0, T], then there 
is a solution u of (3.1) such that 

(3.18) Cuh(t) -u(t)m ? C(1 + t1/2)h 2-m, t E (0, T], m = 0, 1. 

(2) Conversely, if u is a solution of (3.1) with u(t) E Bv(Ui, po) for t E [0, T], 
then there is a solution Uh of (3.12) such that (3.18) holds. 

(3) Equation (3.12) has a stationary solution Uh such that 

iiUh - Ulll < Ch. 

Proof. Let p, p1, ho, T be as above. Choose po and adjust ho in such a way that 
the requirements of parts (ii.a) and (ii.b) of Theorem 2.5 are satisfied with X = V. 

(1) Let Uh(t) E Bv((Ui po) for t E [0, T] and apply part (ii.a) with X = V to the 
sequence uh(nT), nT E [0, T], which is an orbit of Sh. This gives the existence of 
an orbit u(nT), nT E [0,T], of S, satisfying (2.21) of part (i.a), and hence (2.22) 
gives the special case m = 1 of the inequality 

(3.19) luh(nT)-u(nT)IIm < Ch2-m, nT E [0, ], mr= 0,1. 

Another application of part (i.a), now with X = H, proves the case m = 0 of (3.19). 
From the sequence u(nT) we define u(t) = S(t-nnT, u(nT)) for t E [nT, (n+1)T]. 

By uniqueness of solutions this is a solution of (3.1). Error bounds at intermediate 
times are obtained by combining (3.19) with Lemma 3.5 as follows. For t E [0, T] 
we have 

IIUh(t) -u(t)III < C(pl,T)t-1/2 I|Uh(O)-u(0)1 ?+h) < C(pi,T)t-1/2h. 

For t E [(n + 1)T, (n + 2)T], n > O, we have 

IIUh(t) - u(t)II1 < C(pl, 2T)t-1/2 (Iuh(nT)-u(nT) + h) < C(pi,T)h. 

This proves the special case m = 1 of (3.18). The case m = 0 is obtainied similarly. 
(2) Let u(t) E Bv(U,po) for t E [0,T] and apply part (ii.b) with X = V to the 

sequence u(nT), nT E [0, T], which is an orbit of S. This gives the existence of an 
orbit uh(nT), nT E [0,T], of Sh, satisfying (2.24) of part (i.b), and hence (2.25) 
gives the special case m = 1 of the inequality 

(3.20) IlQhu(nT)- uh(nT) llm < Ch2-m, nT E [0, T], m = 0,1. 

Another application of part (i.b), now with X H, proves the case m = 0 of (3.20). 
The required error bound (3.18) now follows as in part (1) above, noting that, by 
(3.13) and Lemma 3.3, 

IlQhu(t) - u(t)lm < Ch2-mlIu(t) 12 < C(pi,T)h2-mt-1/2. 

(3) Part (ii.c) of Theorem 2.5 gives uh and the error bound is an immediate 
consequence of (2.27) and (3.13). LIg 
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We conclude this section by briefly indicating how time discretization by the 
backward Euler method can be incorporated into the above argument. 

After discretization with constant time steps k (3.14) becomes 

(U3 -U31)/k + AhU3 = Qhf(Uj), t3 = jk > 0; Uo = Uoh 

The local solution operator Sh,k (t3, UOh) is readily obtained by using the smoothing 
property of the corresponding linear evolution operator Eh,k (t3) = (I - kAh) -j, and 
the local Lipschitz condition for f: V -- H (see [11]). This smoothing property 
carries over to the linearized operator Sh,k (t3) = (I - kAh)-3 in the same way as in 
the semidiscrete case; see (3.15). Error bounds analogous to those of Lemma 3.5 can 
also be found in [11]. With these ingredients we may prove an analog of Lemma 3.6. 
Error bounds for Sh,k(t3) analogous to those in (3.16) may be found in [11], and with 
a discrete time T suitably chosen we find that Lh,k = Sh,k (T) satisfies (HL) . Setting 
Sh,k = Sh,k(T,.) and Nh,k = Sh,k - Lh,k, we then prove an analog of Lemma 3.4. 
Further arguments, parallel to those above, lead to an analog of Theorem 3.7 with 
an error bound of the form 

UI - U u(tj) llm C C ( (i ? t1/2 )h2-m + (1 + t7(m+l)/2)k) t (0 T] 

Remark 4. The framework of ?2 applies also in the context of a finite element 
method for the Cahn-Hilliard equation, for which the finite time analysis was carried 
out in [8]. We skip the details. 
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